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Abstract

This paper presents a Bayesian adaptive group least absolute shrinkage and selection operator 

method to conduct simultaneous model selection and estimation under semiparametric hidden 

Markov models. We specify the conditional regression model and the transition probability model 

in the hidden Markov model into additive nonparametric functions of covariates. A basis 

expansion is adopted to approximate the nonparametric functions. We introduce multivariate 

conditional Laplace priors to impose adaptive penalties on regression coefficients and different 

groups of basis expansions under the Bayesian framework. An efficient Markov chain Monte 

Carlo algorithm is then proposed to identify the nonexistent, constant, linear, and nonlinear forms 

of covariate effects in both conditional and transition models. The empirical performance of the 

proposed methodology is evaluated via simulation studies. We apply the proposed model to 

analyze a real data set that was collected from the Alzheimer’s Disease Neuroimaging Initiative 

study. The analysis identifies important risk factors on cognitive decline and the transition from 

cognitive normal to Alzheimer’s disease.
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1 ∣ INTRODUCTION

Hidden Markov models (HMMs) have been widely used in the medical, behavioral, social, 

environmental, and psychological sciences where longitudinal data are frequently collected.
1-6 Basically, HMMs are designed to have two parts: a transition model to investigate the 
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effects of covariates on the dynamic transition process of hidden states and a conditional 

regression model to examine state-specific covariate effects on the response of interest. In 

these two parts, the effect of a covariate on the response or on the transition process can be 

nonexistent, constant, linear, or nonlinear. Identifying the specific forms of such covariate 

effects is useful not only in achieving a parsimonious model but also in obtaining enhanced 

parameter estimation and attractive interpretations.

Conventional studies on HMMs have focused on a parametric framework, wherein the forms 

of covariate effects on responses and/or on transition probabilities are prespecified. 

However, one fundamental issue overlooked by these parametric HMMs is that the complex 

relationships among variables are seldom known a priori, and the parametric form is thus too 

restrictive to correctly reflect the reality. Several nonparametric approaches have been 

investigated recently to relax the parametric assumption of HMMs. Yau et al7 developed a 

Bayesian nonparametric HMM, where the sampling distribution of the observations at each 

state was assumed unknown and modeled via a mixture of Dirichlet processes. Although 

their method did not rely on the distributional assumption of the observed process, it cannot 

reveal the functional effects of potential explanatory variables on the outcome of interest. 

Song et al8 considered Bayesian P-splines for describing the nonparametric relation among 

latent variables in HMMs, but they did not consider the model selection problem.

Model selection is an important issue beyond estimation in the application of HMMs. 

Classical model selection methods are mainly developed on the basis of a pairwise 

comparison through common model selection criteria, such as the Akaike information 

criterion and the Bayesian information criterion. However, such pairwise-based procedure 

usually becomes increasingly computationally demanding when the search dimension is 

high. An appealing alternative is to adopt least absolute shrinkage and selection operator 

(lasso)–type variable selection techniques. Choi et al9 applied lasso to correlated HMMs to 

detect the important parameters in transition models. Städler and Mukherjee10 introduced L1 

penalization to obtain a sparse HMM with state-specific graphical models. However, the 

preceding studies consider only parametric HMMs. Recently, some variants of lasso, such as 

group lasso, adaptive lasso, and adaptive group lasso, have been developed to manage group 

variables and address the issue of lasso and group lasso possibly suffering from appreciable 

bias. Owing to the computational efficiency and stability of the Bayesian approach, the 

Bayesian analogs of lasso and its variants have been proposed.11,12 However, the available 

Bayesian lasso-type methods are all developed in the context of cross-sectional models 

without between-state transitions, thereby making them inapplicable to the proposed 

semiparametric HMMs.

In this paper, we propose a Bayesian adaptive group lasso (BaGlasso) procedure to conduct 

simultaneous model selection and estimation for semiparametric HMMs. With the use of 

basis expansion and appropriate penalties, the non-parametric relationships that subsume 

nonexistent, constant, linear, and nonlinear relationships between covariates and the 

response can be automatically identified. The proposed procedure has the following 

appealing features: first, the group effects and additional correlation within the basis 

expansion are well addressed by the group lasso, thus ensuring estimation accuracy. Second, 

adaptive penalties imposed on different groups of coefficients enable us to achieve an 
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efficient variable selection. Finally, the proposed procedure avoids tedious pairwise 

comparisons among competing models with different combinations of covariates in the 

conditional and transition models. This entirely data-driven feature not only relaxes the 

dependence on experts’ knowledge in empirical studies but also reduces the computational 

burden. To the best of our knowledge, this study is the first to introduce Bayesian lasso-type 

procedure into semiparametric HMMs.

The proposed method is motivated by a real study conducted by the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). A set of biomarkers, namely, gender, age, educational 

levels, marital status, hippocampal volume, and apolipoprotein E (APOE)-ϵ4, is collected 

across several time points in this data set. The purpose of this study is to detect the potential 

risk factors of Alzheimer’s disease (AD) from two perspectives. First, considering that the 

pathology of AD usually evolves from cognitive normal (CN) to mild cognitive impairment 

(MCI) to dementia, characterizing the disease pathology, identifying hidden states that 

correspond to the diagnosed stages of cognitive decline, and examining the potential risk 

factors of the neurodegenerative transition are of scientific interest and practical value. 

Given that the effects of biomarkers on the pathology from one state to another may vary 

across nonexistent, constant, linear, and nonlinear ones, allowing their forms to be 

unspecified and introducing penalties to penalize unimportant effects can reveal the patterns 

of the effects to the greatest extent. Previous studies13 pointed out that the relationships 

between some biomarkers and cognitive decline are variant across different states. 

Therefore, identifying the significant state-specific risk factors of cognitive decline and 

investigating the subtle forms of their effects are of great interest. However, existing relevant 

research either restricts the examination of the above relationships under a parametric 

framework or emphasizes only estimation. The proposed methodology enables us to 

perfectly accommodate all the aforementioned features and provide new insights into the 

prevention of AD.

The rest of this paper is organized as follows. Section 2 introduces the semiparametric HMM 

and discusses the associated identifiability issue. Section 3 illustrates the statistical inference 

of the proposed model. Specifically, BaGlasso for simultaneous variable selection and 

parameter estimation as well as the deviance information criterion (DIC) for the 

determination of the number of hidden states are presented. Section 4 investigates the 

empirical performance of the proposed method via simulation studies. Section 5 presents an 

application of the proposed method to the aforementioned ADNI study. Several important 

biomarkers are detected to have significant functional effects on patients’ cognitive decline 

across neurodegenerative states and/or on transition probabilities. The extension of the 

model is discussed in Section 6.

2 ∣ MODEL DESCRIPTION

2.1 ∣ Semiparametric HMMs

Let yit with subject i = 1, … , n at t = 1, … , T be the observation process. Zi = (Zi1, … , ZiT)

′, the hidden-state sequence, is commonly assumed to follow a first-order Markov chain 

taking values in a finite set {1, … , S). Given the hidden state Zit, the conditional 

semiparametric regression model is formulated as follows:
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[yit ∣ Zit = s] = μs + αs′cit + ∑
j = 1

q
f s j(xit j) + δit, (1)

where cit = (cit1, & , citp)′ and xit = (xit1, & , xitq)′ are a p × 1 vector of discrete covariates 

and a q × 1 vector of continuous covariates, respectively; intercept μs, fixed effects 

αs′ = (αs1, …, αsp), and unknown smoothing function fsj(·)s are all defined as state-specific to 

address the heterogeneity underlying the observations; δit is a random residual independent 

of yit; and [δit∣Zit = s] ~ N[0, ψs].

In addition to the observable process, the hidden process, Zi, is formulated as follows: let 

pitus denote the transition probability from state Zi,t–1 = u at occasion t – 1 to state Zit = s at 

occasion t for individual i. Then, we have

pitus = P(Zit = s ∣ Zi1, Zi2, …, Zi, t − 1 = u) = P(Zit = s ∣ Zi, t − 1 = u) . (2)

Notably, model (2) is guaranteed by the assumed property of Markov chain. A common 

setting for the initial distribution of Zi1 is the multinomial distribution with probability (π1, 

… , πS)′, such that πs ≥ 0 and Zi = (Zi1, …, ZiT)′. Thus, the hidden-state sequence Zi = (Zi1, 

… , ZiT)′ is fully specified by the initial and transition probabilities.

Considering that the hidden states usually have natural ranking information in empirical 

studies, we assume the hidden states {1, … , S) to be ordered and consider a continuation-

ratio logit model14 as follows: for t = 2, … , T, s = 1, … , S – 1, and u = 1, … , S, we have

log
P(Zit = s ∣ Zi, t − 1 = u)
P(Zit > s ∣ Zi, t − 1 = u) = log

pitus
pitu, s + 1 + ⋯ + pituS

= ζus + α′cit + ∑
j = 1

q
g j(xit j), (3)

where the left-hand side is the log odds of transition to state s rather than to a state that is 

higher than s given Zi,t–1 = u, ζus is a transition-specific intercept, cit = (cit1, … , citp)′ and 

xit = (xit1, … ,xitq)′ are the covariate vectors defined in (1), α = (α1, …, α p)′ is a p × 1 vector 

of fixed effect, and gj(·)s are unknown smoothing functions. Let ϑitus = P(Zit = s∣Zit ≥ s, 

Zi,t–1 = u). Then, the continuation-ratio logits in (3) can be rewritten as

Kang et al. Page 4

Stat Med. Author manuscript; available in PMC 2020 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



log
P(Zit = s ∣ Zi, t − 1 = u)
P(Zit > s ∣ Zi, t − 1 = u)

= log
P(Zit = s, Zi, t − 1 = u)

P(Zit ≥ s, Zi, t − 1 = u) − P(Zit = s, Zi, t − 1 = u)

= log
P(Zit = s, Zi, t − 1 = u) P(Zit ≥ s, Zi, t − 1 = u)

1 − P(Zit = s, Zi, t − 1 = u) P(Zit ≥ s, Zi, t − 1 = u)

= log
P(Zit = s ∣ Zit ≥ s, Zi, t − 1 = u)

1 − P(Zit = s ∣ Zit ≥ s, Zi, t − 1 = u)

= log
ϑitus

1 − ϑitus
.

Thus, the continuation-ratio logit (3) can be rewritten as a conventional logistic regression 

model as follows:

logit(ϑitus) = ζus + α′cit + ∑
j = 1

q
g j(xit j), (4)

where logit(ϑitus) is the log odds of Zit = s given Zit ≥ s and Zi,t–1 = u. In model (3) or (4), α
and gj(−)s are assumed to be independent of u and s. This proportional odds assumption is 

compulsory in modeling an ordinal variable because it ensures the that P(Zit < 1) < P(Zit < 2) 

< ⋯ < P(Zit < S) for ordered states 1 < 2 < ⋯ < S.14,15 Moreover, the proportional odds 

assumption avoids a tedious inference, in which every possible transition of origination and 

destination elicits a set of parameters, and it, in turn, greatly reduces the complexity and 

enhances the interpretability of the transition model.

2.2 ∣ Nonparametric modeling

We use linear basis expansion to estimate the nonparametric functions fsj(·) and gj(·) in (1) 

and (3). Given that gj(·) can be regarded as a special case (without a state-specific setting) of 

fsj(·) we describe only the modeling of fsj(·) in this section. Specifically, fsj(xitj) can be 

approximated as follows:

f s j(xit j) = ∑
m = 1

M j
βs jmhm(xit j) = βs j′ hit j, (5)

where hm(·)s are basis functions, such as piecewise polynomials or natural cubic splines,16 

hitj = (h1(xitj), …, hMj (xitj))′, and Mj is the number of basis functions that are used to 

estimate the jth unknown smoothing function. For notational simplicity, Mj is set to be 

invariant to states. An extension to relax this assumption is straightforward.

An important issue regarding the model selection of (1) and (3) is whether a functional 

effect, eg, fsj(·), truly exists or not. In this study, we utilize a norm ∥·∥ to quantify the 
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magnitude of nonparametric function fsj. Let xsj and Hsj denote the submatrix of xj = (x11j, 

… ,xnTj)′ and Hj, respectively, with the rows corresponding to Zit ≠ s deleted, where Hj is 

formed by

H j =
h′(x11 j)

⋮
h′(xnT j)

=

h1(x11 j) ⋯ hM j
(x11 j)

⋮ ⋱ ⋮
h1(xnT j) ⋯ hM j

(xnT j)
nT × M j

. (6)

The norm of fsj, ∥fsj∥, is defined as E( f s j
2 (xs j)). Then, fsj = 0 is equivalent to ∥fsj∥ = 0. On the 

basis of (5), ∥fsj can be approximated by βs j Gs j
= (βs j′ Gs jβs j)

1 2 with positive definite 

matrix Gs j = Hs j′ Hs j ns, where ns is the number of subjects staying in state s. Denote f s j

as the estimator of ∥fsj∥. In the model selection procedure, if f s j = 0, then fsj = 0. The 

nonparametric function gj(xitj) can be similarly approximated by

g j(xit j) = ∑
m = 1

M j
β jmhm(xit j) = β j′hit j, (7)

where β jm, hm(·), hitj, Mj, and β j are defined in the same manner as those in (5). Likewise, 

∥gj∥ can be approximated by g j G j
= (β j′G jβ j)

1 2, where G j = H j′H j (n × (T − 1)).

Let yi = (yi1 , ⋯ , yiT)′, Y = (y1′ , …, yn′ )′, dit = (cit′ , xit′ )′, Di = (di1′ , …, diT′ )′, D = (D1′ , …, Dn′ )′, Zi 

= (Zil, … ,ZiT)′, Z = (Z1′ , …, Zn′ )′, and θ be the vector that includes all the unknown 

parameters. With the linear basis expansion, the complete-data log-likelihood function is 

given by

log p(Y, D, Z ∣ θ) = ∑
i = 1

n
log p(yi ∣ Di, Zi, θ) + log p(Zi ∣ Di, θ)

= ∑
i = 1

n
∑
t = 1

T
log p(yit ∣ dit, Zit = s, θ) + ∑

i = 1

n
∑
t = 2

T
log p(Zit = s ∣ Zi, t − 1 = u, dit, θ) + ∑

i = 1

n
log p(Zi1 = s ∣ θ)

= − 1
2 ∑

i = 1

n
∑
t = 1

T
log(2πΨ s) + (yit − ηit)

2 Ψ s + ∑
i = 1

n
∑
t = 2

T
log(pitus) + ∑

i = 1

n
log(pi10s),

(8)

where
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ηit = μs + αs′cit + ∑
j = 1

q
βs j′ hit j, pi10s = πs, s = 1, …, S,

pitu1 =
exp{aitu1}

1 + exp{aitu1} , pi1uS = ∏
j = 1

S − 1 1
1 + exp{aitu j}

,

pitus =
exp{aitus}

1 + exp{aitus}
∏
j = 1

s − 1 1
1 + exp{aitu j}

, s = 2, …, S − 1,

(9)

with aitus = ζus + α′cit + ∑ j = 1
q β j′hit j.

2.3 ∣ Related issues

The proposed model is not identifiable because of the following two model indeterminacies. 

First, the basis functions involved in basis expansion may contain constant parts. When 

applying such constant basis functions in every fsj(·) and/or gj(·), each unknown function is 

not identifiable up to a constant. To address this issue, we need to impose the following 

constraints on the unknown functions to enforce their integrations in the ranges of predictors 

to zero17,18:

∫
χ j

f s j(x)dx = 0, for s = 1, …, S, j = 1, …, q, (10)

where χ j is the domain of xj. Second, the label switching problem, which is caused by the 

invariance of the likelihood function to a random permutation of the state labels, arises and 

leads to a multimodal posterior under a symmetric prior specification. We address this issue 

by imposing constraint μ1 < ⋯ < μS on posterior samples.

3 ∣ BAYESIAN ANALYSIS

3.1 ∣ Adaptive group lasso penalties

We explain the key idea of the adaptive group lasso penalties in the context of a simple 

linear regression model: y = μ1n + Xβ + δ, where y is the response vector, μ is an intercept, 

1n is an n-dimensional vector of all elements being 1, X is a standardized design matrix, δ is 

the vector of residuals, δ ~ N(0, ψIn), and In is an n-dimensional identity matrix. 

Tibshirani19 first introduced the lasso procedure for simultaneous model selection and 

parameter estimation of the above linear regression. The lasso estimator of β can be 

expressed as

argminβ (y − μ1n − Xβ)′(y − μ1n − Xβ) + γ ∑
h = 1

p
∣ βh ∣ , (11)
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where γ ≥ 0 can be regarded as an L1-penalty that automatically shrinks unimportant 

covariate effects to 0. Given that the covariates in X are standardized to the same scale, the 

magnitudes of the coefficients in β can represent the significance of predictors. If some 

elements of β are close to 0, then the corresponding covariates are unimportant and can be 

removed from the model.

However, when simply applying lasso to the proposed semiparametric HMMs, at least two 

problems exist. First, lasso is originally designed for the selection of individual variables. 

Yuan and Lin20 showed that lasso tends to select more factors than necessary in the presence 

of group variables. Moreover, the pairwise correlations among group variables jeopardize 

the model selection accuracy of the lasso estimator.21 In this study, high correlations exist 

among the basis functions hm(xit)s in the conditional and transition models because they can 

be viewed as different transformations of xit. Consequently, the linear basis expansion 

involves group variables and should not be treated separately. Second, lasso applies the same 

tuning parameter γ to different regression coefficients, thereby introducing the same amount 

of shrinkage to different covariate effects. This inflexible setting may add considerable bias 

to the resulting estimates.22,23

To address the aforementioned issues, Yuan and Lin20 proposed group lasso to perform 

model selection among group variables. Wang and Leng24 further developed adaptive group 

lasso to assign different tuning parameters to different groups of regression coefficients. Let 

α = (α1′ , …, αS′ )′, βs′ = (βs1′ , …, βsq′ )′, β = (β1′ , …, βS′ )′, β = (β1′ , …, βq′ )′, and θ∗ = (α′, α′, β′, β′)′. 

On the basis of the proposed model defined in (1)–(7), the adaptive group lasso estimator 

can be formulated as

arg min
θ∗ ∑

i = 1

n
∑
t = 1

T
(yit − ηit)′(yit − ηit) − ∑

i = 1

n
∑
t = 2

T
log(pitus) − P(θ∗) , (12)

where ηη is the mean ofyit, pitus is the transition probability defined in (2) and (9), and

P(θ∗) = ∑
s = 1

S
∑

h = 1

p
γαsh ∣ αsh ∣ + ∑

h = 1

p
γ αh ∣ αh ∣ + ∑

s = 1

S
∑
j = 1

q
γβs j βs j

Gs j

+ ∑
j = 1

q
γ β j β j

G j

,

(13)

in which αsh, αh, βsj, and β j are coefficients of fixed effects and basis functions in the 

conditional and transition models; γash, γ αh, γβsj and γ β j are the corresponding tuning 

parameters; and the norms ∥βsj∥Gsl and β j Gl
 are defined in Section 2.2. Notably, the 

coefficients of discrete covariates, namely, αsh and αh, are simply assigned adaptive 

penalties, whereas the coefficients of unknown smooth functions βsj and β j, which have 
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groupwise features, are assigned adaptive group lasso penalties. The initial probabilities 

pi10s are excluded from (13) because they are independent of αh and β j.

Yuan and Lin20 argued that the penalty function in (13) is intermediate between the L1-

penalty used in lasso and the L2-penalty used in ridge regression. Therefore, the adaptive 

group lasso not only has the same advantages of lasso in model selection but also alleviates 

the problem caused by the existence of high pairwise correlation among basis functions. 

Furthermore, with the use of different tuning parameters γβsj and γ β j, the adaptive group 

lasso automatically imposes large penalties on groups of unimportant coefficients to 

efficiently shrink them to 0. Moreover, the penalty terms ∥βsj∥Gsj and β j G j
 can be regarded 

as the scaled version of the groupwise prediction penalty suggested by Buhlmann and Van 

De Geer.25 With the great power of adaptive group lasso, the estimation of all unknown 

parameters and the structure detection for important functional covariate effects on the 

observed response and on the hidden-state process can be simultaneously and efficiently 

obtained.

3.2 ∣ BaGlasso and prior specification

Under the Bayesian framework, the adaptive group lasso procedure can be implemented by 

introducing a multivariate conditional Laplace prior to the regression coefficients in 

θ∗ = (α′, α′, β′, β′)′ as follows:

p(θ∗ ∣ Ψ , σ2) ∝ exp − ∑
h = 1

p γαsh
Ψ s

∣ αsh ∣ +
γ αh

σ2 ∣ αh ∣ − ∑
j = 1

q γβs j
Ψ s

βs j
Gs j

+
γ β j

σ2 β
G j

,

(14)

where ψ = (ψ1, … , ψS)′. This conditional Laplace prior can be represented as a scale 

mixture of normals with an exponential mixing density, leading to a hierarchical 

representation of the full model as follows: for i = 1, … , n, t = 1, … , T, s = 1, … ,S, h = 1, 

… , p, and j = 1, … , q, we have
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yit ∣ Zit = s, μs, cit, αs, βs, Ψ s ∼ N(ηit, Ψ s),

αs ∣ Ψ s, ταs1
2 , …, ταsp

2 ∼ind N p(0, Ψ s, Σαs), Σαs = diag(ταs1, …, ταsp)

α ∣ σ2, τ α1
2 , …, τ αp

2 ∼ N p(0, σ2Σα), Σα = diag(τ α1, …, τ αp)

βs j ∣ Ψ s, τβs j
2 ∼ind NM j

0, Ψ sτβs j
2 Gs j

−1 , β j ∣ σ2, τ β j
2 ∼ind NM j

0, σ2τ β j
2 G j

−1 ,

ταsh
2 ∼ind Gamma 1,

γαsh
2

2 , τ αh
2 ∼ind Gamma 1,

γ αh
2

2

τβs j
2 ∼ind Gamma

M j + 1
2 ,

γβs j
2

2 , τ β j
2 ∼ind Gamma

M j + 1
2 ,

γ β j
2

2

Ψ s
−1 ∼ind Gamma(αΨs0, βΨs0), σ−2 ∼ Gamma(ασ0, βσ0,

(15)

where ∼ind represents “independently distributed according to” and ηit is defined in (9). For 

the tuning parameters γαsh, γ αh, γβsj, and γ β j, we assign gamma priors as follows:

p(γαsh
2 ) ∼ind Gamma(ααsh0, βαsh0), p(γ αh

2 ) ∼ind Gamma(ααh0, βαh0),

p(γβs j
2 ) ∼ind Gamma(αβs j0, ββs j0), p(γ β j

2 ) ∼ind Gamma(αβ j0, β β j0),
(16)

where ααsh0, ααh0, αβsj0, α β j0, βαsh0, βαh0, ββsj0, and ββ j0 are hyperparameters with 

prespecified values. We follow a common practice in the literature11,12 to set 

ααsh0 = ααh0 = αβs j0 = α β j0 = 1, βαsh0 = βαh0 = 0.1, and ββs j0 = ββ j0 = 0.01 to obtain 

relatively dispersed gamma priors. The key idea of BaGlasso is to properly update the tuning 

parameters by using the data, thereby automatically imposing large penalties on unimportant 

coefficients. This target can be naturally achieved by introducing dispersed priors with small 

hyperparameters βαsh0, βαh0, ββsj0, and ββ j0. We explain this regularization procedure 

further through the posterior distribution of the tuning parameters as follows:
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p ταsh
−2 ⋅ ∼ In − Gaussian

γαsh
2 Ψ s

∣ αsh ∣2
, γαsh

2 , p τ αh
−2 ⋅ ∼ In − Gaussian

γ αsh
2 σ2

∣ αsh ∣2
, γ αsh

2 ,

p τβs j
−2 ⋅ ∼ In − Gaussian

γβs j
2 Ψ s

βs j Gs j

, γβs j
2 , p τ β j

−2 ⋅ ∼ In − Gaussian
γ βs j

2 σ2

β j G j

, γ β j
2 ,

p γαsh
2 ⋅ ∼ Gamma ααsh0 + 1, βαsh0 +

ταsh
2

2 , p γ αh
2 ⋅ ∼ Gamma ααh0 + 1, βαh0 +

τ αh
2

2 ,

p γβs j
2 ⋅ ∼ Gamma αβs j0 +

M j + 1
2 , ββs j0 +

τβs j
2

2 ,

p γβ j
2 ⋅ ∼ Gamma αβ j0 +

M j + 1
2 , β β j0 +

τβ j
2

2 ,

(17)

where “In-Gaussian(·)” denotes the inverse Gaussian distribution. We omit the tedious 

subscripts and use generic terms τ and γ to simplify notations below. On the basis of (17), if 

the coefficients are significant, then τ2 tends to be large. As a result, the corresponding 

tuning parameter γ is dominated by τ2, leading γ to be mostly data driven. If the coefficients 

are insignificant, then τ2 tends to be small. Consequently, the corresponding tuning 

parameter γ is dominated by the dispersed prior information, leading to a large value of γ. 

Thus, the degree of dispersion of the gamma priors in (16) determines the amount of 

penalties imposed on unimportant predictors. This rationale explains why we assign higher 

dispersed priors to γβs j
2  and γ β j

2  than to γαsh
2  and ααh

2  because the coefficients of the nonlinear 

parts of basis functions are more difficult to shrink to 0 than those of the linear parts.

To conduct a full Bayesian analysis, we specify appropriate prior distributions for other 

unknown parameters, such as μs, πs, and ζus. For u = 1, … ,S and s = 1, … , S, the following 

Gaussian priors are considered:

p(μs) ∼ind N μs0, σμs0
2 , p(πs) ∼ind N πs0, σπs0

2 , p(ζus) ∼ind N ζus0, σζus0
2 , (18)

where μs0, σμs0
2 , πs0, σπs0

2 , ζus0, and σζus0
2  are hyperparameters with preassigned values.

3.3 ∣ Posterior inference

The Bayesian estimate of θ can be obtained through the mean or mode of the posterior 

samples drawn from p(θ∣Y). However, directly sampling from p(θ∣Y) is intractable because 

of the existence of latent states. To address this issue, we adopt the data augmentation 
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technique to work on p(θ, Z∣Y) and utilize the Gibbs sampler to simulate each of the 

unknowns from its full conditional distribution iteratively. Owing to the nonlinearity of the 

continuation-logit transition model, the full conditional distributions related to the transition 

model have complex forms. Thus, Markov chain Monte Carlo (MCMC) methods, such as 

the forward filtering and backward sampling algorithm26 and the Metropolis-Hastings 

algorithm,27,28 are used to sample from them. The details of the full conditional distributions 

are provided in the Appendix.

For nonparametric functions involved in (1) and (3), as suggested by Li et al,29 a functional 

effect of a covariate is detected as significant and included in the regression if at least one of 

its coefficients of the basis expansion has a two-sided 95% credible interval estimate that 

does not cover zero. The latent state Zit, which usually has actual meaning in empirical 

studies, is also of great interest for scientists. By using posterior samples, we can estimate 

the hidden state as follows:

Z it = arg max
s ∈ {1, …, S}

P(Zit = s ∣ yi, θ) ≈ arg max
s ∈ {1, …, S}

1
L ∑

l = 1

L
I Zit

(l) = s , (19)

where Zit
(l) denotes the latent allocation of yit at the lth iteration, and 1

L ∑l = 1
M I(Zit

(l) = s) is the 

posterior mean of the latent allocations of yit drawn from the MCMC iterations.

3.4 ∣ Determination of the number of hidden states

In the analysis of HMMs, the number of hidden states, S, is usually determined a priori. We 

use a modified DIC, which was developed by Celeux et al,30 for model comparison in the 

presence of incomplete data, to determine the number of hidden states of the proposed 

model. The modified DIC is defined as follows:

DIC = D(θ) + pD, (20)

where D(θ) = Eθ, Z[ − 2 log p(Y, Z ∣ θ) ∣ Y] is the posterior mean deviance to reflect the 

goodness of fit of the model, pD is the effective number of parameters to penalize an 

overcomplex model, and pD = Eθ,Z[−2logp(Y, Z∣θ)∣Y] + 2EZ[logp(Y, Z)∣Eθ[θ∣Y, Z])∣Y]. 

The expectations involved in (20) can be approximated by averaging the posterior samples 

collected through the MCMC algorithm.30,31 The model with the smallest value of DIC is 

selected.

4 ∣ SIMULATION STUDY

This section contains two simulations: Simulation 1 assesses the empirical performance of 

the proposed BaGlasso for simultaneous estimation and variable selection in the context of 

semiparametric HMMs, and Simulation 2 examines the performance of the DIC in 

determining the number of hidden states in semiparametric HMMs.
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4.1 ∣ Simulation 1

We consider 100 simulated data sets, each consisting of n = 700 subjects and T = 9 time 

points. For each data set, observations are generated from a two-state semiparametric HMM 

with a continuous response yit, two discrete covariates cit = (cit1, cit2)r (p = 2), and three 

continuous covariates xit = (xit1, xit2, xit3)′ (q = 3). For i = 1, … , 700 and t = 1, … , 9, cit1 

and cit2 are independently generated from the Bernoulli distribution with a probability of 

success of 0.5, and xit1, xit2, and xit3 are generated from U(−1, 1), N(0, 1), and N( t, 1), 
respectively, and they are standardized to the same scale beforehand. Here, xit1 and xit2 are 

set as time-invariant covariates, whereas xit3 is set as a time-variant one. The conditional 

regression model is defined as follows:

[yit ∣ Zit = s] = μs + αs1cit1 + αs2cit2 + f s1(xit1) + f s2(xit2) + f s3(xit3) + δit, (21)

where f11(xit1) = 0, f12(xit2) = sin(1.5xit2) + xit2 – 0.6, f13(xit1) = −0.8xit3, f21(xit1) = 2.08 – 

exp(xit1), f22(xit2) = 0, and f23(xit3) = −0.105 + cos(2xit3) + 0.5xit3.

The transition model is defined as

logit(ϑitus) = ζus + α1cit1 + α2cit2 + g1(xit1) + g2(xit2) + g3(xit3), (22)

where g1(xit1) = −log(2 + xit1)/(2 – xit1), g2(xit2) = 1.5xit2, and g3(xit3) = 0. The true 

population values of the unknown parameters are set as μ = (μ1, μ2)′ = (−1, 1)′, π = (π1, 

π2)′ = (0.5, 0.5)′, ζ11 = ζ21 = 0.5, α1 = (α11, α12)′ = (0, 0.5)′, α2 = (α21, α22)′ = (−0.5, 

0)−, α = (α1, α2)′ = ( − 1, 0)′, and ψ = (ψ1, ψ2)′ = (0.36, 0.16)′.

In this study, we use a simple version of natural cubic splines derived from a truncated 

power series basis function16 to approximate the nonparametric functions: hj1(xitj) = 1, 

hj2(xitj) = xitj, and hj,m+2 = ujm(xitj) − uj,Mj–1(xitj) for m = 1, … , Mj – 2, where 

u j, m(xit j) = [(xit j − κ jM j)+
3 − (xit j − κ jm)+

3 ] (κ jM j − κ jm), and κjm, m = 1, … , Mj, are the 

knots taken in the range of xitj. The prior inputs in (15), (16), and (18) are assigned as 

follows: μs0 = ζus0 = πs0 = 0, σμs0
2 = σζus0

2 = σπ0
2 = 1, αψs0 = ασ0 = 9, βψs0 = βσ0 = 4, 

ααsh0 = ααh0 = αβs j0 = α β j0 = 1, βαsh0 = βαh0 = 0.1, and ββs j0 = β β j0 = 0.01. For each xitj, Mj 

= 10 knots are used. We impose the constraint μ1 < μ2 in each MCMC iteration to avoid 

label switching and check the convergence of the algorithm using the estimated potential 

scale reduction (EPSR) proposed by Gelman et al.32 The MCMC algorithm converges 

within 5000 iterations. Thus, we collect posterior samples with a size of 20 000 with the first 

10 000 as burn-in iterations. The performance of Bayesian estimates is assessed through the 

bias (BIAS) and the root-mean-square error (RMSE) between the Bayesian estimates and 

the true population values of the parameters.

Table 1 summarizes the estimation results on the basis of the 100 data sets. The BIAS and 

RMSE for most of the parameters are close to zero, indicating a satisfactory performance of 
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Bayesian estimation regarding the parametric part. Figure 1 depicts the averages of the 

pointwise posterior means of the nonparametric functions, along with their 2.5% and 97.5% 

pointwise quantiles. Three nonexistent functions are successfully shrunk to almost zero by 

the proposed BaGlasso procedure. The posterior means of other nonzero nonparametric 

functions are close to their true curves, and all the ranges of the 2.5% and 97.5% pointwise 

quantiles are small, indicating that the estimated nonparametric curves can correctly recover 

the complex functional relationships between the response and covariates. Moreover, the 

average of the correct classification rates calculated from (19) is approximately 95%, 

implying the good performance of the proposed method in identifying the hidden states of 

the observations.

To reveal the sensitivity of Bayesian estimates to the input of prior distributions, we disturb 

the prior input as follows: μs0 = ζus0 = πs0 = 2, σμs0
2 = σζus0

2 = σπs0
2 = 2, αψs0 = 3, βψs0 = 2, 

ααsh0 = ααh0 = αβs j0 = α β j0 = 1, βαsh0 = βαh0 = 0.5, and ββs j0 = β β j0 = 0.01. The Bayesian 

results obtained under the disturbed prior are similar and not reported.

Notably, this simulation study contains five covariates in the conditional and transition 

models, which result in a large number (22×5) of competing models with various 

combinations of covariates in both models. Traditional Bayesian model selection statistics, 

such as the Bayes factor and the DIC, are extremely time consuming in performing variable 

selection because they compare these competing models in a pairwise basis. By contrast, the 

proposed BaGlasso procedure automatically selects important predictors and avoids the 

tedious pairwise comparison, thereby greatly reducing the computational time. In this 

simulation study, the computing time for simultaneous variable selection and parameter 

estimation in each replication is 48 minutes using a PC Intel Core i7-6700 3.40-GHz CPU 

and 16 G of RAM.

4.2 ∣ Simulation 2

To examine the performance of the DIC in determining the number of hidden states of a 

semiparametric HMM, we consider five competing models M1, M2, M3, M4, and M5, where 

Ms is a model defined by (1)–(3) with S = s, s = 1, … , 5. Here, M4 is the true model, 

whereas M1, M2, M3, and M5 are models with incorrect numbers of hidden states. To mimic 

the scenario of the ADNI data set in the subsequent real example, we generate 100 data sets 

from (1)–(3) with S = 4, n = 633, T = 4,p = 4, and q = 3. For i = 1, … , 633 and t = 1, … , 4, 

cit1 to cit4 are independently generated from the Bernoulli distribution with a probability of 

success of 0.5, and xit1, xit2, and xit3 are generated from U(−1, 1), N(0, 1), and N( t, 1), 
respectively, and they are standardized prior to analysis. The true functions are set as 

f11(xit1) = 0, f12(xit2) = sin(1.5xit2)+ xit2 – 0.6, f13(xit1) = –0.8xit3, f21(xit1) = 2.08 – 

exp(xit1), f22(xit2) = 0, f23(xit3) = −0.105 + cos(2xit3) + 0.5xit3, f31(xit1) = 0.5xit1, f32(xit2) = 

0, f33(xit1) = −xit3, f41(xit1) = 2xit1, f42(xit2) = 1.5xit2, f43(xit3) = 0, g1(xit1) = −log(2 + xit1)/(2 

− xit1), g2(xit2) = 1.5xit2, and g3(xit3) = 0. The true population values of the unknown 

parameters are set as μ = (μ1, μ2, μ3, μ4)′ = (−4, −2, 2, 4)′, π = (π1, π2, π3, π4)′ = (0.25, 

0.25, 0.25, 0.25)′, ζ11 = ζ21 = ζ31 = ζ41 = −1, ζ12 = ζ22 = ζ32 = ζ42 = 0, ζ13 = ζ23 = ζ33 = 

ζ43 = 1, α1 = (α11, α12, α13, α14)′ = (1, 0, 0.5, 1)′, α2 = (α21, α22, α23, α24)′ = (0.5, −0.5, 

0, −1)′, α3 = (α31, α32, α33, α34)′ = (0.5, −1, 1, 0)′, α4 = (α41, α42, α43, α44)′ = (0.5, 1, 
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−0.5, 0)′, α = (α1, α2, α3, α4)′ = ( − 1, 0.5, 0, 1)′, and ψ = (ψ1, ψ2, ψ3, ψ4)′ = (0.16, 0.16, 

0.16, 0.16)′. The prior distributions and other settings are specified in the same manner as in 

Simulation 1. On the basis of the 100 simulated data sets, the means and standard deviations 

of the DIC values for M1 to M5 are reported in Table 2, which suggests that the true model 

M4 is consistently selected in each of the 100 replications.

The computer code for conducting the preceding analyses is written in R and is freely 

available at http://www.sta.cuhk.edu.hk/xysong/codes/BaGLassoHMMs.

5 ∣ ADNI STUDY

To demonstrate the empirical utility of our proposed method, we conduct real data analysis 

on the basis of the ADNI study. The data set collected imaging, genetic, clinical, and 

cognitive data from participants under CN controls and participants with mild cognitive 

impairment or AD. ADNI-1 was first conducted in 2004, and several extensions, namely, 

ADNI-GO, ADNI-2, and ADNI-3, followed afterward. In this study, we focused on 633 

participants collected from ADNI-1 and included their clinical and genetic variables at four 

time points, namely, baseline, 6 months, 12 months, and 24 months. Functional Assessment 

Questionnaire (FAQ), a widely used assessment of abilities to function independently in 

daily life, was used as a response variable (yit) to reflect cognitive decline over time. Patients 

with higher FAQ scores have lower cognitive abilities. Three continuous covariates, namely, 

the logarithm of the ratio of hippocampal volume over whole brain (xit1), age at baseline 

(xit2), and years of education (xit3), were considered. Moreover, we included a genetic 

variable, APOE-ϵ4 (cit1 and cit2), which was coded as 0, 1, and 2, denoting the number of 

APOE-ϵ4 alleles. Other discrete demographic characteristics, such as gender (cit3, 0 = 

female; 1 = male) and marital status (cit4, 0 = has been married; 1 = has not been married), 

were also included. The three continuous variables, namely, FAQ score, hippocampus, and 

age, were standardized prior to analysis. The main objective of this study is to examine the 

complex effects of potential risk factors on the transition of neurodegenerative states and on 

the cognitive decline of participants across different states.

We first determined the number of hidden states. We considered five competing models Mk, 

k = 1, … , 5, where Mk represents a semiparametric HMM defined in (1)–(3) with k states. 

We used natural cubic splines for hitj and Mj = 10 in approximating the unknown smoothing 

functions. The hyperparameters were assigned in the same manner as those in the simulation 

study, and the identifiability constraint μ1 < ⋯ < μ5 was taken to avoid label switching. We 

generated several MCMC chains with different initial values to monitor the convergence of 

the MCMC algorithm. The EPSR plot depicted in Figure 2 indicated that the MCMC 

algorithm converged within 10 000 iterations. Therefore, we collected 10 000 observations 

after discarding 10 000 burn-in iterations to calculate the DIC values of the competing 

models.

The values of D(θ), pD, and DIC corresponding to M1 to M4 are reported in Table 3. When 

fitting the data to M5, the MCMC algorithm broke down after several iterations. After 

carefully checking the results, we found that one of the states included only fewer than six 

subjects after several iterations. This phenomenon implies the nonexistence of such a state 
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and the inapplicability of the five-state model in this study. On the basis of the results in 

Table 3, the four-state model M4 with the smallest DIC was selected. Then, we used the 

proposed BaGlasso procedure to conduct a simultaneous estimation and variable selection 

under M4. Results are presented in Table 4 (parametric part) and Figure 3 (nonparametric 

part), in which only significant functional effects are reported.

We obtain the following observations: first, intercepts μ1, μ2, μ3, and μ4 were ranked in 

ascending order. Patients in state 1 had the lowest mean score of FAQ, whereas those in state 

4 received the highest mean score. That is, patients’ cognitive ability reflected by 

independent functioning in daily life steadily deteriorated from state 1 to state 4. According 

to the existing literature,33 state 1 to state 4 can be explained as CN, early mild cognitive 

impairment (EMCI), late mild cognitive impairment (LMCI), and AD, respectively.

Second, BaGlasso selected six significant functional effects across the states. The effect of 

hippocampus on the FAQ score exhibits a descending trend in all the states. Specifically, in 

the CN state, participants with a greater hippocampal volume tend to have slightly better 

memory. This result is consistent with the common sense that the hippocampus helps 

consolidate outside information from short-term memory to long-term memory. In EMCI 

and LMCI states, the magnitude of the functional effect of the hippocampus on FAQ 

becomes increasingly large, confirming that atrophy in hippocampal volume continuously 

impairs patients’ cognitive ability during the progression from EMCI to LMCI. Published 

medical reports34-36 also revealed the similar result that the loss of hippocampal volume 

greatly affects dementia. In the AD state, preventing the loss of hippocampal volume is still 

beneficial to postpone cognitive decline, but this effect is significant only in a small range of 

hippocampal volume. The effect of age on FAQ is nonsignificant in the first three states, 

implying that age influences cognitive function mainly in the AD state. Relatively younger 

AD patients (around 75 years old) have better functional independence in daily life 

compared with elder ones. This age effect was also revealed by previous research.37,38 The 

effect of educational level on FAQ is likewise significant only in the AD state. Such effect 

becomes large when educational level is high, indicating that patients with higher 

educational levels tend to experience more pronounced cognitive decline compared with 

patients with lower educational levels. This finding is in line with the existing literature.39,40

Third, for the parametric part, gender has a negative effect on FAQ in the LMCI and AD 

states, implying that women suffer more serious cognitive decline than men in the late 

progression period of AD. This result agrees with existing medical reports.41-43

Fourth, in the transition model, the functional effect of the hippocampus exhibits an 

ascending trend with the growth of hippocampal volume. In the progression of AD, patients 

with larger hippocampal volumes are more likely to remain in the current state rather than 

transit to a worse one compared with those with smaller hippocampal volumes. By contrast, 

patients with APOE-ϵ4 alleles are more likely to transit to a worse state rather than remain 

in the current one. Thus, APOE-ϵ4 alleles are important risk factors for the development of 

AD. This result is consistent with the existing finding.44 However, the estimates of other 

covariates, such as age, educational level, gender, and marital status, were shrunk to nearly 

zero by BaGlasso, implying that conditional on hippocampus and APOE-ϵ4, the direct 
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effects of age, educational level, gender, and marital status on the transition probability are 

weak.

For comparison, we reanalyzed the ADNI data set using a parametric HMM as follows:

[yit ∣ Zit = s] = μs + αs1cit1 + αs2cit2 + αs3cit3 + αs4cit4 + βs1xit1 + βs2xit2 + βs3xit3 + δit,

logit(ϑitus) = ζus + α1cit1 + α2cit2 + α3cit3 + α4cit4 + β1xit1 + β2xit2 + β3xit3 .

The Bayesian adaptive lasso procedure was used to perform estimation. Table 5 presents the 

results of parameters βsj and β j. The results of μs, ζus, αsh, and αh are similar to those in 

Table 4 and not reported. Several differences exist between the results obtained using the 

parametric and semiparametric HMMs. First, the parametric model shows a negative 

constant effect of the hippocampus on FAQ in the CN, EMCI, and LMCI states, whereas the 

semiparametric model reveals that these negative effects have a descending trend. Second, 

the parametric model indicates that the effects of the hippocampus, age, and educational 

level on FAQ are all insignificant in the AD state, whereas the semiparametric model reveals 

that these effects are actually significant in certain covariate ranges. Finally, the parametric 

model shows that the effect of age on FAQ is negative in the NC and EMCI states but 

positive in the LMCI state. This diverse effect is hard to interpret and probably caused by 

overlooking the subtle structure of the age effect in the parametric model.

6 ∣ CONCLUSION

In this paper, we have introduced a BaGlasso procedure to conduct simultaneous variable 

selection and parameter estimation in the context of semiparametric HMMs. We developed a 

full Bayesian approach, along with efficient MCMC methods and the basis expansion 

technique, to implement the procedure and estimate nonparametric functions. The 

methodology was demonstrated by a simulation study and an application to the analysis of 

the ADNI data set. In the proposed model, covariates are allowed to affect both responses 

and transition probabilities. This feature enables the model to cope with general situations 

where certain covariates simultaneously influence the two stochastic processes in various 

ways. An alternative method of including covariates in HMMs is to use an exclusion 

restriction to split the overall set of covariates into two groups: one contains covariates 

affecting only the responses, and the other contains covariates affecting the hidden-state 

transition. However, determining such an exclusion restriction may be subjective and 

difficult to justify in practice, which, in turn, elicits model selection issues.

This study can be extended in several directions. First, in approximating nonparametric 

functions, we considered only a simple version of natural cubic splines. Highly sophisticated 

smoothing techniques, such as splines and local polynomial kernel methods, may be used to 

enhance the performance of estimation and variable selection. Second, we simply used a 

single indicator, FAQ, to reflect cognitive ability in the ADNI data analysis. A 

comprehensive way to characterize cognitive function is to account for other relevant tests, 

such as the Alzheimer’s Disease Assessment Scale and the Mini-Mental State Examination. 

Grouping such highly correlated but different perspectives into an integrated latent variable 
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through factor analysis can improve the analytic power and interpretability of the model. 

Finally, our model framework includes only binary and continuous variables. Given that 

ordered and unordered categorical data are frequently encountered in medical, social, and 

psychological sciences, generalizing the existing framework to accommodate a wide variety 

of data types is of great interest.
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APPENDIX A

FULL CONDITIONAL DISTRIBUTIONS

A.1 ∣ Full conditional distributions of Zit

Let yi = (yi1, … , yiT)′, dit = (cit′ , xit′ )′, and Di = (di1′ , …, diT′ )′. Then, we have

p(Zit ∣ ⋅ ) ∝ p(yi, Di, Zit ∣ θ)
= p(yi1, …, yit, di1, …, dit, Zit ∣ θ) × p(yi, t + 1, …, yiT , di, t + 1, …, diT ∣ Zit, θ)
= qit(yi, Di, Zit ∣ θ) × q‒it(yi, Di ∣ Zit, θ) .

We first initialize qi1(yi, Di, Zit∣θ) = p(yi1, di1, Zit∣θ) = p(yi1∣di1, Zi1, θ)p(Zi1∣θ) and 

calculate qit(yi, Di, Zit∣θ) for t = 2, … , T, in a recursion manner as follows:

qit(yi, Di, Zit ∣ θ) = qit(yi1, …, yit, di1, …, diT, Zit ∣ θ)

= ∑
u = 1

S
p(yi1, …, yit, di1, …, diT, Zit, Zi, t − 1 = u ∣ θ)

= ∑
u = 1

S
p(yi1, …, yit, di1, …, diTZi, t − 1 = u ∣ θ) × p(Zit ∣ Zi, t − 1 = u, dit, θ) × p(yit ∣ dit, Zit, θ)

= ∑
u = 1

S
qi, t − 1(yi, Di, Zi, t − 1 = u ∣ θ) × p(Zi, t − 1 = u, dit, θ) × p(yit ∣ dit, Zitθ) ,

(A1)

where p(Zit∣Zi,t–1 = u, dit, θ) and p(yit, dit∣Zit, wi1, θ) can be calculated on the basis of (8).
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Similarly, we initialize q‒iT(yi, Di ∣ ZiT, θ) = 1 and calculate q‒it(yi, Di ∣ Zit, θ) for t = T – 1, – , 1 

as follows:

q‒it (yi, Di ∣ Zit, θ) = p(yi, t + 1, …, yiT, di, t + 1, …, diT ∣ Zit, θ)

= ∑
u = 1

S
p(yi, t + 1, …, yiT, di, t + 1, …, diT, Zi, t + 1 = u ∣ Zit, θ)

= ∑
u = 1

S
p(yi, t + 1, …, yiT, di, t + 1, …, diT ∣ Zi, t + 1 = u, θ) × p(Zi, t + 1 = u ∣ Zit, di, t + 1, θ)

× p(yi, t + 1 ∣ di, t + 1, Zi, t + 1 = u, θ)

= ∑
u = 1

S
q‒i, t + 1(yi, Di ∣ Zi, t + 1=u, θ) × p(Zi, t + 1 = u ∣ Zit, di, t + 1, θ) × p(yi, t + 1 ∣ di, t + 1, Zi, t − 1 = u, θ)

(A2)

Thus, Zit can be directly generated from (A1) when all qit(·) and q‒it( ⋅ )S defined in (A1) and 

(A2) are well calculated.

A.2 ∣ Full conditional distributions of μs, αs, and ψs

[μs ∣ ⋅ ] ∼ N μs
∗, σμs

∗ , [αs ∣ ⋅ ] ∼ N αs
∗, Σαs

∗ , Ψ s
−1 ∣ ⋅ ∼ Gamma αΨs

∗ , βΨs
∗ (A3)

In the above equation, αΨs
∗ = (ns + p + ∑ j = 1

q M j) 2 + αs0, σμs
∗ = (nsΨ s

−1 + σμs0
−1 )−1, and

βΨs
∗ = βs0 + 1

2 ∑
i = 1

n
∑

t = 1

T
I(Zit = s) yit − μs − αs′cit − ∑

j = 1

q
βs j′ hit j

2
+ ∑

j = 1

q βs j Gs j

2

τβs j
2 + ∑

h = 1

p
+

∣ αsh ∣2

ταsh
2 ,

Σαs
∗ = ∑

i = 1

N
∑

t = 1

T
citcit′ Ψs

−1I(Zit = s) + Dαs
−1

−1
, Dαs = diag(ταs1

2 , …, ταsp
2 ),

μs
∗ = σμs

∗ Ψs
−1 ∑

i = 1

n
∑

t = 1

T
I(Zit = s) yit − αs′cit − ∑

j = 1

q
βs j′ hit j + σμs0

−1 μs0 ,

αs = Σs
∗ Ψs

−1 ∑
i = 1

n
∑

t = 1

T
I(Zit = s)cit yit − μs − ∑

j = 1

q
βs j′ hit j + Σαs0

−1 αs0 .

A.3 ∣ Full conditional distributions of βsj

[βs j ∣ ⋅ ] ∼ N βs j
∗ , Σs j

∗ I(1ns
′ Hs jβs j = 0) (A4)
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In the above equation, Σs j
∗ = Ψ s(Hs j′ Hs j + τβs j

−1 Gs j)
−1, βs j

∗ = Ψ s
−1Σs j

∗ Hs j′ ys
∗, and ys

∗ = {yits
∗ } is an 

ns × 1 vector with

yits
∗ = yit − μs − αs′cit − ∑

l ≠ j, l = 1

q
βsl′ hitl, for Zit = s .

A.4 ∣ Full conditional distributions of πs, ζus, and α

p(πs ∣ ⋅ ) ∝ exp ∑
u = s

S
∑
i = 1

n
log(pi10u) × I(Zi1 = u) −

(πs − πs0)2

2σπ0
2

p(ζus ∣ ⋅ ) ∝ exp ∑
ν = s

S
∑
i = 1

n
∑
t = 2

T
log(pituν) × I(Zit = ν, Zi, t − 1 = u) −

(ζus − ζus0)2

2σζus0
2

p(α ∣ ⋅ ) ∝ exp ∑
i = 1

n
∑
t = 2

T
log(pitus) × I(Zit = s, Zi, t − 1 = u) − 1

2(α − α0)′Dα
−1(α − α0)

(A5)

In the above equation, Dα = σ2diag(τ α1
2 , …, τ αp

2 ), and pitu0 and pitus can be calculated on the 

basis of (9).

A.5 ∣ Full conditional distributions of β j

p(β j ∣ ⋅ ) ∝ exp ∑
i = 1

n
∑
t = 2

T
log(pitus) × I(Zit = s, Zi, t − 1 = u) − 1

2 β j − β j0 ′Dβ j
−1 β j − β j0

(A6)

The above equation is with the constraint 1n(T − 1)′ H jβ j = 0, where Dβ j = σ2τ β j
2 G j

−1, and pitus 

can be calculated on the basis of (9).

Notably, the full conditional distributions in (A5) and (A6) are not familiar probability 

distributions. Therefore, the Metropolis-Hastings algorithm is used to sample from them. 

Besides, the full conditional distributions in (A4) and (A6) involve constraints, and the 

procedure for sampling from them can be found in the work of Song and Lu.18
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FIGURE 1. 
Estimates of the unknown smooth functions in the simulation study. The solid curves 

represent the true curves, and the dashed curves represent the estimated posterior means and 

the 2.5% and 97.5% pointwise quantiles on the basis of 100 replications
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FIGURE 2. 
Plot of estimated potential scale reduction (EPSR) values for the parameters in the ADNI-1 

(Alzheimer’s Disease Neuroimaging Initiative) data analysis. The horizontal dotted line is 

for EPSR = 1.2. MCMC, Markov chain Monte Carlo
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FIGURE 3. 
ADNI-1 (Alzheimer’s Disease Neuroimaging Initiative) data analysis results: the estimates 

of significant unknown smooth functions at the corresponding states. The solid curves 

represent the pointwise mean curves, and the dashed curves represent the 2.5% and 97.5% 

pointwise quantiles. Line y = 0 is denoted in each picture by a red dot-dash line to illustrate 

the range of significant effects for each risk factor. FAQ, Functional Assessment 

Questionnaire [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1

Bayesian estimates of the parameters in the simulation study

Parameters in the Conditional Regression Model

State 1 State 2

Par True Est RMSE Par True Est RMSE

μ1 −1.0 −0.969 0.041 μ2 1.0 1.006 0.033

α11 0.0 −0.000 0.025 α21 −0.5 −0.499 0.015

α12 0.5 0.501 0.023 α22 0.0 0.001 0.015

ψ1 0.36 0.392 0.034 ψ2 0.16 0.191 0.032

Parameters in the Probability Transition Model

Par True Est RMSE Par True Est RMSE

α1 −1.0 −0.985 0.080 α2 0.0 −0.000 0.055

π1 0.5 0.528 0.036 π2 0.5 0.472 0.036

ζ11 0.5 0.501 0.152 ζ21 0.5 0.504 0.152

Abbreviation: RMSE, root-mean-square error.
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TABLE 2

Summary of deviance information criterion (DIC) values in the simulation study

Competing Model DIC (mean) DIC (std) No. of Selections

M1 12 018 79 0

M2 10 912 92 0

M3 10 124 461 0

M4 8988 128 100

M5 10 052 158 0

Note: No. of selections represents the number of times that the DIC value of Ms (s = 1, … ,5) is the smanest among all competing models in 100 

replications.
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TABLE 3

Summary of deviance information criterion (DIC) values in the analysis of the Alzheimer’s Disease 

Neuroimaging Initiative data set

Competing Model D(θ) PD DIC

M1 6294 35 6329

M2 1434 69 1503

M3 1016 97 1113

M4 972 126 1098
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TABLE 4

Estimation results in the ADNI-1 (Alzheimer’s Disease Neuroimaging Initiative) data analysis: parametric part

Parameters in the Conditional Regression Model

State 1 State 2 State 3 State 4

Par Est SE Par Est SE Par Est SE Par Est SE

μ1 −0.608 0.005 μ2 −0.200 0.032 μ3 0.948 0.075 μ4 2.466 0.127

α11 0.000 0.005 α21 0.059 0.040 α31 0.113 0.082 α41 0.256 0.151

α12 0.015 0.013 α22 0.012 0.040 α32 0.068 0.086 α42 0.120 0.143

α13 0.003 0.005 α23 0.019 0.031 α33 −0.303 0.107 α43 −0.427 0.157

α14 0.003 0.005 α24 0.008 0.030 α34 −0.047 0.073 α44 −0.115 0.143

ψ1 0.009 0.000 ψ2 0.073 0.008 ψ3 0.173 0.020 ψ4 0.437 0.052

Parameters in the Transition Model

Par Est SE Par Est SE Par Est SE Par Est SE

α1 −0.386 0.174 α2 −0.821 0.253 α3 0.012 0.078 α4 −0.150 0.132

π1 0.592 0.022 π2 0.198 0.022 π3 0.149 0.018 π4 0.060 0.014

ζ11 2.513 0.165 ζ21 −1.459 0.246 ζ31 −3.278 0.451 ζ41 −3.343 0.500

ζ12 2.395 0.418 ζ22 1.498 0.253 ζ32 −1.674 0.331 ζ42 −3.320 0.498

ζ13 1.405 0.740 ζ23 2.840 0.447 ζ33 1.657 0.279 ζ43 −2.017 0.426
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TABLE 5

Estimation results of the parametric hidden Markov model in the ADNI-1 (Alzheimer’s Disease Neuroimaging 

Initiative) data analysis

Parameters in the Conditional Regression Model

State 1 State 2 State 3 State 4

Par Est SE Par Est SE Par Est SE Par Est SE

β11 −0.022 0.004 β21 −0.122 0.023 β31 −0.155 0.039 β41 −0.127 0.065

β12 −0.006 0.003 β22 −0.008 0.017 β32 0.070 0.034 β42 0.088 0.055

β13 −0.004 0.003 β23 −0.014 0.018 β33 0.030 0.029 β43 0.025 0.051

Parameters in the Transition Model

Par Est SE Par Est SE Par Est SE Par Est SE

β1 0.351 0.042 β2 −0.033 0.034 β3 0.004 0.023
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