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Abstract 

This paper considers a joint modeling framework for simultaneously examining 

the dynamic pattern of longitudinal and ultrahigh-dimensional images and their 

effects on the survival of interest. A functional mixed effects model is considered 

to describe the trajectories of longitudinal images. Then, a high-dimensional 

functional principal component analysis (HD-FPCA) is adopted to extract the 

principal eigenimages to reduce the ultrahigh dimensionality of imaging data. 

Finally, a Cox regression model is used to examine the effects of the longitudinal 

images and other risk factors on the hazard. A theoretical justification shows that 

a naive two-stage procedure that separately analyzes each part of the joint 

model produces biased estimation even if the longitudinal images have no 

measurement error. We develop a Bayesian joint estimation method coupled with 

efficient Markov chain Monte Carlo sampling schemes to perform statistical 

inference for the proposed joint model. A Monte Carlo dynamic prediction 

procedure is proposed to predict the future survival probabilities of subjects given 

their historical longitudinal images. The proposed model is assessed through 

extensive simulation studies and an application to Alzheimer’s Disease 

Neuroimaging Initiative, which turns out to hold the promise of accuracy and 

possess higher predictive capacity for survival outcome compared with existing 

methods.  
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1 Introduction 

The current research is motivated by the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study, which was first launched in 2004 with overarching 

objective of detecting Alzheimer’s disease (AD) at the earliest stage and 

identifying ways to track the disease progression with biomarkers. ADNI recruited 

participants with age from 55 to 90 and collected their imaging, genetic, clinical, 

cognitive, and biochemical characteristics across the long-term study. The 

preprocessed magnetic resonance imaging (MRI) data (Appendix 1 of 

Supplementary Material), which can be represented by a 133 170 129   array, 

were scanned for each participants at several visits. During the cohort study, 

participants who met the specific inclusion criteria shown in the general 

procedures manual would be diagnosed as suffering AD, and thus, a possibly 

censored time-to-AD outcome was also recorded. A portion of participants with 

mild cognitive impairment (MCI) at baseline quickly progressed to AD, whereas 

some remained stable or even revert to normal cognition. For instance, the 

ventricle (butterfly-shaped cavity) of the subject with MCI to AD conversion was 

increasingly enlarged across time, whereas that of subject staying at MCI stage 

remained nearly unchanged (See Figure S1 in Supplementary Material). Such 

difference, in turn, indicates that the dynamic changes of specific brain regions 

are likely to be associated with AD progression. Hence, investigating the 

association between the longitudinal feature of MRI images and time to AD and 

obtaining a prognostic model for doctors to plan intervention based on the history 

of patients’ MRI images are important in AD prevention and targeted treatment.  

Joint modeling of longitudinal and survival data is a useful tool in simultaneously 

analyzing repeatedly measured outcomes and time-to-event responses (e.g., 

DeGruttola and Tu, 1994; Wang and Taylor, 2001; Lin et al., 2002; Brown and 

Ibrahim, 2003). A comprehensive overview can be found in Tsiatis and Davidian 
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(2004) and the references therein. The basic idea behind existing joint models is 

that certain common factors jointly influence the time-to-event response and 

longitudinal variables, thereby inducing correlation between the two observation 

processes. Thus, existing joint models often consist of a mixed effects model for 

describing the dynamic variations or changing patterns of the longitudinal 

outcomes and a survival model, such as a proportional hazards (Cox) model 

(Cox, 1972), for delineating the association between the longitudinal outcomes 

and the survival of interest.  

Despite the rapid development of the joint modeling approach for longitudinal and 

survival data, little is known when the longitudinal observations are ultrahigh-

dimensional images, such as the MRI data collected in the ADNI study. 

Incorporating longitudinal images into the existing joint modeling framework is 

confronted with several challenges. The first challenge is the ultrahigh 

dimensionality of images. Basically, images are voxelwise stored and the number 

of voxels is often huge compared with the sample size. Therefore, applying the 

preceding joint models at each voxel is computationally infeasible. The second 

challenge lies in performing efficient estimation for a joint analysis of the mixed 

effects and survival models. A naive two-stage estimation procedure that 

separately analyzes each part of the joint model leads to biased estimation in the 

analysis of a survival model with covariate measurement errors (Prentice, 1982). 

Such kind of bias is also expected when applying the two-stage method to the 

present study with imaging predictors. The third challenge is conducting dynamic 

prediction. Given the history of longitudinal images and other relevant predictors, 

dynamically predicting the survival outcome and thus making highly informed 

decision is of great importance. However, the existing prediction procedures 

(e.g., Rizopoulos, 2011; Andrinopoulou et al., 2018) only accommodate 

longitudinal low-dimensional observations. How to make use of longitudinal and 

ultrahigh dimensional imaging information to facilitate a dynamic prediction for 

survival probabilities has not ever been investigated.  
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This study aims to address the aforementioned challenges. First, we develop a 

novel joint modeling approach to simultaneously analyze longitudinal imaging 

and survival data. We consider a functional mixed effects model to describe the 

dynamic pattern of longitudinal images and address the between-image 

correlation through subject-specific random imaging coefficients. The subject-

specific imaging covariates are then incorporated into a Cox model to examine 

the effects of time-variant images and time-invariant predictors on time-to-event. 

Moreover, a high-dimensional FPCA (HD-FPCA) technique (Zipunnikov et al., 

2014) is adopted to extract the principal eigenimages of subject- and subject-

visit-specific variations in ultrahigh longitudinal imaging data. Second, we 

establish valid estimation procedure for the proposed model. We propose to use 

a Bayesian approach coupled with efficient Markov chain Monte Carlo (MCMC) 

sampling schemes to conduct statistical inference. A theoretical justification 

shows that a naive two-stage method produces biased estimation even if the 

longitudinal imaging data has no measurement error, and empirical evidences 

demonstrate that the proposed Bayesian joint estimation procedure is 

consistently superior to the two-stage procedure in all scenarios under 

consideration. Third, we develop a mechanism for dynamic prediction of the time-

to-event outcome. A Monte Carlo estimate of the predictive survival probability 

given the history of longitudinal images and baseline covariates is derived. 

Numerical studies show that the proposed joint model outperforms several 

existing models in terms of predictive capacity.  

Relevant researches in the existing literature have worked either on joint models 

for low-dimensional functional observations or on survival models with time-

invariant imaging predictors. Lee et al. (2015) utilized the FPCA technique to 

analyze Cox models with baseline functional predictors. Such time-invariant 

assumption ignores the possibly time-dependent association between 

functional/imaging observations and the hazard of interest, which will be 

demonstrated in Sections 4 and 5 to result in lower predictive accuracy than the 

proposed model. Li and Luo (2019) developed a joint model for longitudinal low-
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dimensional functional and survival data. However, they only used a functional 

random intercept to capture the subject-specific effects and restricted the 

functional parameter in the survival model to be a constant. All of these methods 

are not applicable to the current model setting where the imaging data are ultra-

high dimensional and longitudinal with dynamic structure.  

The rest of this paper is organized as follows. Section 2 introduces the proposed 

joint model for longitudinal imaging and survival data. Section 3 presents the 

Bayesian joint estimation procedure. Meanwhile, a theoretical justification is 

provided to show that a naive two-stage method produces biased estimation. 

Section 4 presents simulation studies to evaluate the empirical performance of 

the proposed method and demonstrates that the proposed method consistently 

outperforms the two-stage method. Section 5 applies the proposed methodology 

to the ADNI dataset. Section 6 concludes the study with a brief discussion. 

Technical details are provided in the Supplementary Material.  

2 Joint modeling of longitudinal imaging and survival 
data 

Let ijY
 denote the sample of image for subject i ( 1, , )i I  at time Tij (

1, , ij J

), where I is the total number of subjects and Ji is the number of visits for subject 

i. All the images are stored in 3-dimensional (3D) array structures of dimension 

1 2 3p p p p  
 with voxels being the same across subjects and visits. The 

images can be unfolded into a 1p   vector containing the voxels in a particular 

order, where the order is preserved across all subjects and visits, that is, 

( (1), , ( ))ij ij ijY Y p Y
. Following Greven et al. (2010) and Zipunnikov et al. (2014), 

we consider a functional mixed effects model as follows:  

0 1( ) ( ) ( ) ( ) ( ),ij i i ij ijY v v X v X v T W v     (1)  

where v denotes the voxel in a compact space , ( )v  is a fixed image, 0 ( )iX v
 

and 1( )iX v
 denote the random imaging intercept and slope for subject i, and 
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( )ijW v
 is the random subject-visit-specific imaging deviation from subject-specific 

mean image. Similar to Zipunnikov et al. (2014), we assume that 0 1( ), ( )i iX v X v
, 

and 
( )ijW v

 are zero-mean, square-integrable, and mutually uncorrelated random 

processes on a compact space . Model (1) excludes a measurement error term 

because the images are usually presmoothed. The linear form of Tij in (1) is only 

for presentation simplicity. An extension of incorporating polynomial terms of Tij, 

spline growth curves, and/or other covariates of interest is straightforward.  

For each subject i, let 
*

iT
 and Ci denote time to event and the censoring time, 

respectively. The observed time 
*min( , )i i iR T C

 and failure indicator 

*( )i i iI T C  
 are recorded. Let 1( , , )i i iqZ Z Z

 denote time-invariant 

covariates. A Cox model that relates the hazard of interest to imaging trajectories 

and baseline covariates Zi is defined as follows:  

0 1 0 0 0 1 1( | ( ), ( ), ) ( )exp ( ) ( ) ( ) ( ) ,[ { } ]i i i i i ih t X v X v h t v X v t v X v dv    Z Zγ  (2)  

where 0 ( )h t
 denotes an unspecified baseline hazard function, and 1( , , )q  γ

 

is a 1q   vector of regression coefficients. Similar to conventional joint models for 

longitudinal and survival data (e.g., Tsiatis and Davidian, 2004), the effect of 

longitudinal images on the hazard of interest is assessed through 

0 0 1 1( ) ( ) ( ) ( )i iv X v t v X v 
 in model (2). Here, 0 ( )v

 and 1( )v
 are imaging 

parameters that link 0 ( )iX v
 and 1( )itX v

, respectively, to ( |·)h t , thereby 

characterizing the effects of longitudinal imaging data on the hazard function. In 

the ADNI study, for example, 0 ( )v
 is significantly positive near the brain regions 

of the “lateral ventricle” (see the upper panel of Figure 2). That is to say, subjects 

with larger lateral ventricles are at higher risk of suffering AD. Notably, 
( )ijW v

 in 

model (1) plays a role similar to measurement error and is thus not included in 

model (2).  
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Let 
0 1

1 2 1 2( , ), ( , )X Xv v v vK K
, and 1 2( , )W v vK

 denote the covariance operators of 

0 1( ), ( )i iX v X v
, and 

( )ijW v
, respectively. Assume that 

0 1

1 2 1 2( , ), ( , )X Xv v v vK K
, and 

1 2( , )W v vK
 are continuous. Based on the Karhunen-Loève (KL) decomposition 

(Karhunen, 1947; Loève, 1978), 

0 1

0 1

1 1

( ) ( ), ( ) ( )X X

i ik k i il l

k l

X v v X v v   
 

 

  
, and 

1

( ) ( )W

ij ijm m

m

W v v 





, where 

0 1(·), (·)X X

k l 
, and 

(·)W

m
 are the eigenfunctions of 

0 1,X X
K K , and 

W
K  operators, respectively, and 

0 1

0 1( ) ( ) , ( ) ( )X X

ik i k il i lX v v dv X v v dv      , and 
( ) ( )W

ijm ij mW v v dv    are their 

corresponding eigenscores with 
( ) ( ) ( ) 0ik il ijmE E E    

 and 

0 1Var( ) , Var( )X X

ik k il l    
, and 

Var( ) W

ijm m 
. Then, model (1) can be rewritten 

as  

0 1

1 1 1

( ) ( ) ( ) ( ) ( ).X X W

ij ik k ij il l ijm m

k l m

Y v v v T v v      
  

  

       (3)  

The assumption that 0 1(·), (·)i iX X
, and 

(·)ijW
 are mutually uncorrelated is 

ensured by the assumption that 1 1{ } ,{ }ik k il l  

  , and 1{ }ijm m 

  are mutually 

uncorrelated.  

Model (3) can be approximated by truncating the summations to the first N0, N1, 

and NW coordinates, respectively, as follows:  

0 1

0 1

1 1 1

( ) ( ) ( ) ( ) ( ),
WN NN

X X W

ij ik k ij il l ijm m

k l m

Y v v v T v v      
  

       (4)  

where the eigenscores ξik, ζil, and ηijm are assumed to be normally distributed as 

0 1~ (0, ), ~ (0, )X X

ik k il lN N   
, and 

~ (0, )W

ijm mN 
. The normality assumption on 

the prior distributions of 
,ik il 

, and ηijm can be relaxed without much difficulty. 

Other distributions with the existence of second order moments can also be 

considered. The numbers of principal components, N0, N1, and NW, are typically 

Acc
ep

te
d 

M
an

us
cr

ipt



small and determined using criterion-based methods (Müller and Stadtmüller, 

2005).  

Suppose 0 ( )v
 and 1( )v

 in (2) can be expanded on 
0 (·)X

k
 and 

1(·)X

l
, 

respectively. Then, 0 (·)
 and 1(·)

 can likewise be approximated by 

0

0

0 0

1

( ) ( )

N

X

k k

k

v v  



 and 

1

1

1 1

1

( ) ( )

N

X

l l

l

v v  



, respectively. Based on the 

orthonormality of eigenimages, model (2) can be rewritten as  

0 1

0 1 0 0 1

1 1

0 0 1

( | ( ), ( ), ) ( )exp

( )exp ,

( )

( )

N N

i i i k ik l il i

k l

i i i

h t X v X v h t t

h t t

    

 

  

  

  

 Z Z

Z

γ

β ξ β ζ γ

 (5)  

where 0 0 10 01 0 1 1 11 1( , , ) , ( , , ) , ( , , )N i i iN N         β ξ β
, and 11( , , )i i iN  ζ

. 

Figure 1 presents a path diagram to illustrate the modeling procedure described 

by (1)–(5).  

To derive the eigenimages in (4), the spectral decompositions of 
0 1,X X

K K , and 
W

K  should be constructed. We start with centering the longitudinal imaging data 

as 
ˆ( ) ( ) ( )ij ijY v Y v v 

, where the estimated overall mean image is 

1

1 1

ˆ ( ) ( )
iJI

ij

i j

v n Y v 

 

 
, and 1

I

i

i

n J



. Under the assumption of model (1), we have  

1 2 1 2
1 2 1 2

0 1E( ) Cov( , ) ,X X W
ij ij ij ij ij ij j jT T 

 

   Y Y Y Y K K K  (6)  

where 1 2, 1, , , 1i ijj j J  
 if i = j and 0 otherwise. Equation (6) suggests a 

straightforward solution for the covariance operators estimation by regressing 

linearly the “outcome” 1 2ij ij



Y Y  on the “covariates” 1 2 1 2
(1, , )ij ij j jT T 

. Then, Equation 

(6) can be formulated as 1 2
1 2

E( ) v
ij j ij jY K f

, where 1 2 2 1ij j ij ij Y Y Y  is a 
2 1p   

vector, ⊗ denotes the Kronecker product, 
0 1[vec( ),vec( ),vec( )]v X X WK K K K  is a 

2 3p   matrix with the parameters of interest, vec (·)  stands for the vectorization 
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that stacks the columns of a matrix on top of each other, and 1 2 1 2 1 2
(1, , )ij j ij ij j jT T  f

 

is a 3 × 1 vector of covariates. Let 
v

Y  be a 
2p m  matrix with 

2

1

I

i

i

m J



, and F  

be a 3 m  matrix with columns of 1 2 1 2, 1, , , , 1, ,ij j ii I j j J f
. With these 

notations, We have E( )
v vY K F . Thus, the moment estimator of 

v
K  is 

1( )
v v   K Y F FF , which provides the unbiased estimators of covariance operator 

0 1, ,X X
K K  and 

W
K  as follows:  

1 2 1 2
1 2 1 2

1 2 1 2

1 2
1 2

1 2

0 1
1 2

1 1 1 1 1 1

3

1 1 1

, ,

,

i i i i

i i

J J J JI I
X X

ij ij ij ijij j ij j

i j j i j j

J JI
W

ij ij ij j

i j j

h h

h

 

     



  

 



 



K Y Y K Y Y

K Y Y

 (7)  

where 1 2
, 1,2,3q

ij jh q 
 are the elements of the qth colomn of 

1( )  H F FF . Despite 

an explicit representation of the covariance operators 
0 1,X X

K K , and 
W

K  in (7), 

constructing and diagonalizing 
0 1,X X

K K , and 
W

K  with a brute-force 

implementation fails when ijY  is ultrahigh dimensional. For example, in the 

analysis of ADNI dataset, the MRI images of dimension 

133 170 129 ( 2,916,690)p    result in a covariance operator 

0 0

1 2{ ( , )}
X X

v vK K
 

of dimension 2,916,690 2,916,690 . A standard eigenanlysis on 
0X

K  requires 
3( )O p  operations and is essentially of infeasible level.  

To overcome this challenge, we follow the idea of Zipunnikov et al. (2014) to 

manage longitudinal images using the HD-FPCA technique. Let 1( , , )IY Y Y , 

where 1( , , )
ii i iJY Y Y  is a centralized ip J

 matrix and the colomn j, 

1, , ij J
, contains the unfolded image for subject i at visit j. We construct the 

singular value decomposition (SVD) of the matrix Y  as 
1/2 Y VS U , where V  is 

a p × n matrix with n orthonormal columns, S  is a n × n diagonal matrix, and U  is 

a n × n orthogonal matrix. The calculation of the SVD of Y  requires only 
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2( )O pn n  operators. Meanwhile, we consider the n × n symmetric matrix 


Y Y  

with its spectral decomposition 
 Y Y USU . Then, we obtain that 

1/2V YUS . In 

an extremely ultrahigh-dimensional case where Y  cannot be directly loaded into 

the memory, we partition it into D slices as 
1 2

[( ) | ( ) | , ( ) ]
D   Y Y Y Y , where D 

is chosen to ensure that the dth slice 
d

Y  of dimension /p D n  can be adapted 

to the available computer memory. 


Y Y  can then be sequentially calculated as 

1

( )
D

d d

d





 Y Y

. Accordingly, V  is partitioned into D slices as 
1 2[( ) | ( ) | , ( ) ]D   V V V V , and 

1/2dd V Y US .  

After obtaining the SVD of Y , each image can be represented as 
1/2

ij ijY VS U
, 

where ijU
 is the corresponding column of matrix 


U . Therefore, vectors 

, 1, , , 1, ,ij ii I j J Y
 differ only through factors ijU

 of dimension 1n . By 

substituting 
1/2

ij ijY VS U
 into Equation (7), the estimated covariance operators 

can be rewritten as  

0 1
1/2 1/2 1/2 1/2 1/2 1/2

0 1, , ,
X X W

W
    

U U U

K VS X S V K VS X S V K VS X S V  (8)  

where the inner matrices are 
1 2 1 2

1 2 1 2

1
0 1

1 1 1 1 1 1

,
i i i iJ J J JI I

ij ij ij j

i j j i j j

h

     

  
U U

X U U X

 

1 2 1 2

2

ij ij ij jh
U U

, and 
1 2 1 2

1 2

3

1 1 1

.
i iJ JI

W ij ij ij j

i j j

h

  


U

X U U

 Equation (8) corresponds high-

dimensional operators 
0 1

{ , , }
X X W

K K K  with their low-dimensional counterparts 

0 1{ , , }W

U U U

X X X . Based on the spectral decomposition 

1/2 1/2 1/2 1/2
0 10 0 0 1 1 1,  
U U

S X S A Σ A S X S A Σ A
, and 

1/2 1/2
W W W W


U

S X S A Σ A
, the 

covariance operators in (8) can be written as  

0 1

0 0 0 1 1 1( ) ( ) , ( ) ( ) , ( ) ( ) ,
X X W

W W W

    K VA Σ VA K VA Σ VA K VA Σ VA  (9)  
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where 0 1,A A
, and AW are n × n orthogonal matrices, and 0 1,Σ Σ

, and WΣ  are 

diagonal matrices. The orthogonality of 0 1,A A
, and AW ensures that the p × n 

matrices 0 1,VA VA
 and WVA

 have orthonormal columns. Given the uniqueness 

of the spectral decomposition of a symmetric matrix, the expressions in (9) are 

the spectral decompositions of 
0 1

,
X X

K K , and 
W

K , where the columns of 

0 1,VA VA
, and WVA

 are the eigenimages, and the diagonal elements of 0 1,Σ Σ
, 

and WΣ  are the eigenvalues.  

3 Estimation 

Denote 
0 0

1( , , ) , ( (1), ,
W

X X

ij ij ijN k k   η ψ
 

0 1 1 1( )) , ( (1), , ( ))X X X X

k l l lp p   ψ
, 

and 
( (1), , ( ))W W W

m m m p  ψ
. Let 0

0 0 0

1( , , )X X X

NΨ ψ ψ
 be the 0p N

 matrix of 

eigenfunctions obtained by binding the column vectors 1

0 1 1 1

1, ( , , )X X X X

k NΨψ ψ ψ
, 

and 1( , , )
W

W W W

NΨ ψ ψ
. Let 0 1

0 0 0 1 1 1

1 1diag{ , , }, diag{ , , }X X X X X X

N N    Λ Λ
, and 

1diag{ , , }
W

W W W

N Λ
 be the 0 0 1 1,N N N N 

, and W WN N
 diagonal matrices of 

eigenvalues, respectively.  

The most common method for modeling the baseline hazard function is to 

assume that it is piecewise constant as follows: 0 ( ) gh t h
, for 

1 , 1, , ,g gs t s g G    
 where 0 10 Gs s s   

 define the intervals for 0 ( )h t
 and 

are frequently selected according to the quantiles of the observed time Ri with 

maxG i is R
 for 1, ,i I . We define rig = 1 if 1( , ]i g gR s s

 (i.e., subject i fails or is 

censored in the gth interval) and 0 otherwise.  

Let θ  be the vector that contains all the unknown parameters, 

1 1 1( , , ), ( , , ) , ( , , )
i

T T T T
i i iJ I I    Y Y Y Z Z Z Δ

, and 1( , , )T

IR RR
. Based on 

the proposed model, the observed-data likelihood function can be written as 

follows:  
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1

( , , , | ) ( , | , , , ) ( | , , ) ( | ) ( | ) ,
I

ii i i i i i i i i i i

i

p p R p p p d d


 R Δ Y Z Z Yθ ξ ζ θ ξ ζ θ ξ θ ζ θ ξ ζ

 (10)  

which does not have an explicit form due to model complexity. The detailed form 

of (10) is provided in Appendix 2 of Supplementary Material.  

3.1 Estimation procedures 

3.1.1 Two-stage procedure 

A naive method for avoiding the intractable likelihood (10) is the use of a two-

stage procedure, which is implemented in two stages as follows: (i) obtain the 

best linear unbiased estimator of eigenscores based on model (4): 

1 1 1 1( , ) { } { } { } ( )[ ]
W X W

i i i i ii i ivec
        B Λ B Λ B Λ Vξ ζ

, where 
1 0 1 1 0 1

0 1 0 1 1 1( , ), ( ) , ( ) , ( , , ) , , diag( , ), ( , , )
i i i i

W XW W W X W W W X W X X
i iJ i i i iJ J i i iJT T               B 1 B T B B Ψ Ψ Ψ Ψ B Ψ Ψ Ψ Ψ T Λ I Λ Λ Λ Λ V V V

, and 
1( )W W W

ijij

  V Ψ Ψ Ψ Y
 and (ii) estimate model (5) by replacing iξ  and iζ  by 

iξ  and iζ . However, as shown by Prentice (1982), such a two-stage procedure 

leads to considerable bias in the joint analysis of longitudinal and survival data 

when the measurement error of the longitudinal observation is large. In the 

proposed joint model with imaging data, the longitudinal images are modeled 

through equation (4), which includes a term 1

( )
WN

W

ijm m

m

v 



 to accommodate 

subject-visit-specific deviations from the subject-specific mean image. When the 

repeatedly collected images vary markedly across visits, this term tends to be 

large and plays a role similar to measurement error. Thus, applying a two-stage 

procedure to the proposed model is problematic even though the observed 

images are perfectly scanned. We provide a theoretical justification below from a 

frequentist perspective to show that the parameter estimators obtained using the 

two-stage approach are biased. Given that the main issue in a two-stage 

approach originates from the subject-visit-specific term, for notation simplicity, we 

keep ijη  and iξ  but exclude iζ  (and thus 1β ) in the model and assume a 
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balanced design with Ji = J in Theorem 1 and its proof (see Appendix 3 of 

Supplementary Material).  

Theorem 1. For a joint model defined in (4) and (5), let 
* * *

0( , )α β γ  and 

0( , )α β γ
 be the true parameters and the maximum likelihood estimator 

obtained from a two-stage approach, respectively. Under the regularity conditions 

(C1)-(C2) as stated in the Appendix 2 of Supplementary Material, we have 

*( )E α α .  

3.1.2 Bayesian joint estimation procedure 

Given the inferiority of the two-stage estimation procedure for the proposed joint 

model, we propose a Bayesian approach to jointly estimate all unknowns. To 

conduct a Bayesian inference of the joint model defined by (4)–(5), we must 

specify prior distributions for all unknown parameters in θ . For 0 1,β β
, and γ , we 

assign normal priors as follows: 0 1

2 2

0 0 1 1~ ( , ), ~ ( , )N NN N  0 I 0 Iβ β
, and 

2~ ( , ),qN 0 Iγ
 where Ia denotes the a-dimensional identity matrix, 

2 2

0 1,  
, and 

2

  are chosen to be very large when prior knowledge about 0 1,β β
, and γ  is 

unavailable. For variance components 
0 1,

X X

k l 
, and 

W

m , we assume 

independent inverse-gamma priors as follows: For 
0 0 0 1 1 1

0 11, , , 1, , , 1, , , ~ IG( , ), ~ IG( , )X X X X X X

W k k k l l lk N l N m N a b a b   
, and 

~ IG( , ),W W W

m m ma b
 where IG( , )a b  denotes the inverse-gamma distribution with 

hyperparameters a and b. Here, we regard 
0 1,X X

k l 
, and 

W

m  as parameters to 

be estimated. However, a simple empirical Bayes (EB) method, which estimate 
0 1,X X

k l 
, and 

W

m  by diagonalizing the covariance operators as discussed in 

Section 2, has been proved to work as well in practice. The EB estimators 

provide some information in choosing proper hyperparameters in Bayesian 

inference. Specifically, one may choose 
0 0.01X

ka 
 and 

0 00.01X X

k kb 
, where 

0X

k  

can be taken as the EB estimator 
0X

k . Similar specifications hold for 
1 1, ,X X W

l l ma b a
, 
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and 
W

mb
. For the hazard values hgs that are involved in the baseline hazard 

function, we assume independent gamma distribution as follows: For 

1 21, , , ~ Gamma( , ),g g gg G h  
 where 1g

 and 2g
 are hyperparameters. 

Setting 1 2( , ) (0.2,0.4)g g  
 or (0.5,1) results in a flat prior for the hgs (Lee et al., 

2015).  

The Bayesian estimate of θ  can be obtained using the mean or mode of the 

posterior samples drawn from ( | )p Dθ , where ( , , , )D R Δ Y Z  denotes the 

observed data. However, direct sampling from ( | )p Dθ  is intractable because of 

the existence of latent variables 
{ , 1, , }i i I ξ ξ

 and 
{ , 1, , }i i I ζ ζ

. Instead, 

we work on ( , , | )p Dθ ξ ζ  and employ the Gibbs sampler to iteratively simulate 

each unknown from its full conditional distribution. Here, we denote 
1( )A A Λ Λ  

for notation simplicity. Notably, although ijη s are also unknown, we do not 

incorporate them into the set of parameters because they can be automatically 

updated by using 
1 0 1( ) ( )W W W X X

ijij i ij iT    Ψ Ψ Ψ Y Ψ Ψη ξ ζ
. Then, the full 

conditional distributions involved in the Gibbs sampler are provided as follows:  

1

0 1 1

1

1 0 1

0 1

min( , )

0 1

1 1

0 1

1
[ , | others] exp ( ) ( )

2

( ) ( ) ( )

exp( )

1 1
,   1

2 2

[

]

i

k i

k

J

X X W W W W
iji i i ij i

j

W W W X X
ij i ij i i i i i

gG
s R

ig k i i i
s

g k

X X

i i i i

T

T R

r h t dt

i



   



    

 

 

   

     

     

    



 

Y Ψ Ψ Ψ Ψ Ψ Λ

Ψ Ψ Ψ Y Ψ Ψ

Z

Λ Λ

ξ ζ ξ ζ

ξ ζ β ξ β ζ

β ξ β ζ γ

ξ ξ ζ ζ

1

min( , )

0 1 0 1

1 1

0 1 0 0 1 12 2 2

0 1

0 0 2 0

0

1

1

, , ,

[ , , | others] exp exp( )

1 1 1
( ) ,

2 2 2

[ | others] IG / 2 , / 2 ,   1, , ,

[ |

[

]

[ ]

k i

k

gG
s R

ig k i i i
s

g k

i i i i i

I
X X X

k k ik k

i

X

l

I

r h t dt

R

I a b k N

    

 




 

  



      

        

   

 



Z

Z

β β γ β ξ β ζ γ

β ξ β ζ γ β β β β γ γ

1 2 1

1

1

others] IG / 2 , / 2 ,   1, , ,[ ]
I

X X

l il l

i

I a b l N


   
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1

1

2

1 1 1

1 2 0 1

1 1

1

1

[ | others] IG / 2 , / 2 ,   1, , ,

[ | others] Gamma , exp( ) exp

( ) exp ,   1, , .

[ ]

[ { ( )

( ) }]

i

i

g

g

g

JI I
W W W

m i m ijm m W

i i j

n n
R

g g ig i g i i ig i
s

i i

G
s

il i
s

l g

J a b m N

h r r t dt

I g G r t dt g G

 

 




  

 

 

   

       

   

 

  

 

Zβ ξ γ β ζ

β ζ

 

Among the above full conditional distributions, the last four are familiar 

distributions and can be easily sampled from, whereas the first two do not have 

explicit forms and require the use of Metropolis-Hastings (MH) algorithm 

(Metropolis et al., 1953; Hastings, 1970). The MH algorithm can be implemented 

by choosing a multivariate normal distribution with the mean centered at the 

current value and a covariance matrix proportional to the inverse of the Fisher 

information matrix of the posterior distribution as the proposal distribution. A 

small variance parameter is often used to tune the acceptance rate at 

approximately 35%.  

3.2 Dynamic prediction 

Prediction of survival probabilities for a new subject i given a set of longitudinal 

images 
{ } { ; 1, , , }

i

t

i ij i iJj J T t  Y
 and baseline covariates Zi is also of scientific 

interest. We focus on a time frame ( , ]t t  , within which an intervention for 

improving patients’ survival is available. The conditional probability of survival 

time t   given survival up to t can be calculated as 

* * { } * * { }( | ) Pr( | , , , ) Pr( | , , ; ) ( | )t t

i i i i i i i i it t T t T t T t T t p d           Z D Z Dθ θ θ

, where the second part of the integrand is the posterior distribution of the 

parameters given the observed data D . Based on the proposed joint model, the 

first part of the integrand is 
*

* * { } * { }

*

Pr( | , , , ; )
Pr( | , , , ; ) ( , | , , , ; )

Pr( | , , , ; )

t ti i i i

i i i i i i i i i i i

i i i i

T t
T t T t p T t d d

T t




 
    

 
Z D

Z D Z D
Z D

ξ ζ θ
θ ξ ζ θ ξ ζ

ξ ζ θ

, where 
1

min( , )
*

1 1

Pr( | , , , ; ) exp{ k

k

gG
s t

i i i i ig k
s

g k

T t r h


 

   Z Dξ ζ θ
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0 1exp[ ] }i i is ds    Zβ ξ β ζ γ
. Thus, a Monte Carlo estimates of 

( | )i t t 
 can be 

obtained as 

* ( ) ( ) ( ) * ( ) ( ) ( )

1

1
ˆ ( | ) Pr( | , , , ; ) / Pr( | , , , ; )

B
b b b b b b

i i i i i i i i i

b

t t T t T t
B

  


     Z D Z Dξ ζ θ ξ ζ θ

, 

where 
( ) ~ ( , )b Nθ θ , 

( ) ( ) * { } ( )( , ) ~ ( , | , , , ; )b b t b

i i i i i i ip T t Z Dξ ζ ξ ζ θ
, and B is the 

number of Monte Carlo samples. We use the time-dependent integrated area 

under the receiver operating characteristic curve (AUC) to assess the 

performance of the proposed dynamic prediction procedure. The AUC measures 

how well the proposed model can discriminate patients who will experience the 

event from patients who will not (Heagerty and Zheng, 2005; Andrinopoulou et 

al., 2018). Given a randomly selected pair of subjects (i1, i2), the AUC is a 

function of ( , )t   and can be defined as 

1 2 1 2

* *AUC( , ) ( , ) ( , ) |{ ( , ]} { } .( )i i i it P t t T t t T t            
  

4 Simulation study 

4.1 Simulation 1 

We simulate 100 datasets based on model (4)–(5) with [1,50] [1,50] [1,50]    

and ( ) 0v  . We consider two sample sizes: I = 300 and I = 500. Under each 

sample size, we assume 0 1{7,8,9}, 2iJ N N  
, and NW = 4. The eigenimages 

0 1( ), ( )X X

k lv v 
, and 

( )W

m v
 are presented in Figure S2 of Supplementary 

Material. These eigenimages can be regarded as 3D images with voxel 

intensities on the scale of [0,1] , where the voxels within each sub-block are set to 

1, and the outside white voxels are set to 0. The two grey, two green, and four 

red sub-blocks represent 
0 1,X X

k lψ ψ
, and 

W

mψ , respectively. Each of the 

eigenimages is normalized to have norm one. The true eigenvalues are set as 
0 0 1 1

1 2 1 2( , ) ( , ) (1.0,0.5)X X X X    
 and 1 2 3 4( , , , ) (0.25,0.2,0.15,0.1)W W W W    

. Two 

baseline covariates 1 2( , )i i iZ Z Z
 are considered and independently generated 

from N(0, 1) and t(5), respectively, where t(5) denotes the t distribution with a 
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degree of freedom 5. The true population values of the regression coefficient are 

set as 0 1(1, 1) , ( 1,1)    β β
, and (1, 1) γ . The failure time 

*

iT
 is generated 

based on model (5) with three types of baseline hazard functions: (i) 0 ( ) 1h t 
 

(constant); (ii) 0( ) 0.5h t t 
 (linear), and (iii) 

2

0( ) 0.3h t t 
 (nonlinear). The 

censoring time Ci is independently generated from a uniform distribution 1 2[ , ]U c c
, 

which is a common setting in survival analysis (e.g., Tsiatis and 

Davidian, 2004; Lee et al., 2015; Andrinopoulou et al., 2018). In particular, if 
* 1T c , then 

*T C , and thus censoring does not occur. Instead, if 
* 2T c , then 

*T C , leading to censoring. Here, c1 and c2 are chosen to achieve censoring 

rates of 30% and 50%, respectively.  

We unfold each images ijY
 and obtain an ultrahigh dimensional vector of size 

50 50 50 125,000p     . Then, we utilize the HD-FPCA technique described in 

Section 2 to obtain the estimated eigenimages 
0 1ˆ ˆ,X X

k l 
, and 

ˆ W

m
. In modeling 

the baseline hazard function 0 ( )h t
, we set G = 5 and the cut points 0 , , Gs s

 that 

define the sub-intervals as the quantiles of the observed survival time. The 

hyperparameters of the prior distributions discussed in Section 3.1.2 are 

assigned as follows: for , 1,2, 1, ,4k l m  , and 

2 2 2 4 0 1 0 0 1 1

0 1 1 21, ,5, 10 , 0.01, ( , ) (0.2,0.4), 0.01 , 0.01X X W X X X X

k l m g g k k l lg a a a a a b b               

, and 
0.01W W

m mb 
, where 

0 1,X X

k l 
, and 

W

m  are their EB estimators obtained as a 

by-product of the HD-FPCA procedure. We conduct a few test runs to decide the 

number of burn-in iterations required for convergence and find that the MCMC 

algorithm converges within 5,000 iterations. To be conservative, we collect 

10,000 MCMC samples after 10,000 burn-in iterations. We calculate the bias 

(BIAS), root mean square error (RMSE), and standard error (SE) between the 

posterior means of the unknown parameters and their true population values to 

assess the empirical performance of Bayesian estimation. Table 1 summarizes 

the estimation results of regression parameters 0 1,β β
, and γ  on the basis of the 

100 replicated datasets. The BIAS, RMSE, and SE for most of the parameters 
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are fairly small, indicating the satisfactory performance of parameter estimation in 

all the settings under consideration. As expected, the performance is improved 

as either the sample size increases from I = 300 to I = 500 or the censoring rate 

(CR) decrease from 50% to 30%. The Bayesian estimates of the eigenscores 
0 1,X X

k l 
, and 

W

m  are close to the true population values in all simulation 

settings. We report the results obtained in the setting of I = 500, CR 30% , and 

h(t) = 1 in the column “Normal” of Table S1 of Supplementary Material. Moreover, 

we follow the existing literature (Li et al., 2013; Feng et al., 2020) to adopt BIC to 

select N0, N1 and NW (N0 = N1 is assumed for simplicity). Given that the main 

interest is the selection of N0 and N1 that determine the number of imaging 

parameters in model (5), we let N0 = N1 vary from 1 to 5 and fix NW at 4 to avoid 

a tedious model comparison. Additional simulation results (not reported) also 

confirm that the choice of NW hardly affects the estimation of the survival model. 

As shown in Table S2 of Supplementary Material, BIC correctly selects the true 

number of principle components in 99 of 100 replications. The computation time 

for implementing the MCMC algorithm in each replication of Simulation 1 is 4.40 

minutes using a PC Intel Core i7-9700 3.00GHz CPU and 16.0 GB RAM.  

4.2 Simulation 2 

In this section, we compare the empirical performances of the proposed joint 

estimation procedure and the naive two-stage procedure that is discussed in 

Section 3.1.1.  

We consider the 100 replicated datasets generated in the setting of CR 30%  

and 0 ( ) 1h t 
 in Simulation 1 and an additional case of 

1 2 3 4( , , , ) (1,0.75,0.5,0.25)W W W W    
 to examine how the performances of the 

proposed and naive procedures vary with the increased magnitude of the 

subject-visit-specific variation of the imaging part. The proposed method is 

performed in a similar manner as in Simulation 1. The two-stage procedure is 

implemented using the steps described in Section 3.1.1. Table S3 of 
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Supplementary Material presents the estimates of 0 1,β β
, and γ  obtained from 

the proposed and two-stage procedures. The two-stage approach tends to 

produce biased estimation results, and its performance does not improve when 

the sample size increases. Moreover, the bias becomes large when the subject-

visit-specific variation of images increases. This finding agrees with the 

theoretical result of Theorem 1, which indicates that the parameter estimates 

obtained from the two-stage approach are biased even if the longitudinal images 

are perfectly observed. On the contrary, the performance of the proposed 

method significantly improves with the sample size.  

We also conduct simulations under other settings and examine the sensitivity of 

Bayesian results to the model and prior assumptions. The details are provided in 

Appendix 4 of Supplementary Material.  

5 Real Data Analysis 

The proposed method is applied to the ADNI dataset (adni.loni.usc.edu). We 

considered subjects who suffered from MCI at baseline and included only those 

who had at least three longitudinal MRI scans because too few information is 

insufficient to describe individuals’ time-dependent features through model (1). 

The final dataset contained I = 339 subjects who participated 3 to 6 follow-up 

visits, including baseline, 6 months, 12 months, 18 months, 24 months, and 36 

months. The exact visiting time ijT
 may be slightly earlier or later than these 

preassigned date and the maximum visiting time is around 37.14 months. The 

time variable Tij was standardized according to the procedure in Greven 

et al. (2010). Among the 339 MCI subjects included in the current study, 127 of 

them met the inclusion criteria shown in the general procedure manual of the 

ADNI study and were detected as AD during the cohort study, whereas 212 still 

remained at MCI stage. The observed time was calculated as the period from the 

baseline to the date of the first diagnosis of AD if 
1i 
 or the date of last visit if 

0i 
. The censoring rate was approximately 62%.  
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For each subject, the MRI data, which were preprocessed to 133 170 129   

dimension, were collected over time. Besides the longitudinal MRI data and time-

to-AD observations, we also included subjects’ demographic variables and 

biomarkers at baseline. The demographic variables include “gender ( 1iZ
, 1 = 

male)” and “whether or not the subject was married ( 2iZ
, 1 = married).” A 

biomarker variable, APOE- 4  gene, which was identified as important in the 

existing medical research, was included as well. The APOE- 4  was coded using 

two dummy variables: “one APOE- 4  allele carrier ( 3iZ
)” and “two APOE- 4  

alleles carrier ( 4iZ
)”.  

The main purpose of this study is to (1) characterize the dynamic patterns of 

individuals’ MRI images across time, (2) investigate the possibly time-variant 

effects of MRI images on the hazards of AD, and (3) examine the effectiveness 

of the use of longitudinal MRI images for dynamic prediction of AD onset. We 

considered the proposed joint model defined by (4) and (5). For statistical 

inference, we first standardized the longitudinal MRI data and then adopted HD-

FPCA to obtain the eigenimages accordingly. We utilized BIC to determine 

N0, N1, and NW. Although separately fine-tuning N0, N1, and NW is not technically 

involved, it is rather cumbersome. Thus, we simply assumed that 

0 1 WN N N N  
. The BIC values corresponding to N from 1 to 10 are reported 

in Figure S4 of Supplementary Material, and those corresponding to N > 10 are 

considerably large and not reported. The BIC value is the smallest when N = 7. 

Thus, the joint model with the first seven eigenimages was chosen for the 

subsequent analysis. In modeling the baseline hazard function 0 ( )h t
, we chose G 

= 5 and selected cut points 0 , , Gs s
 as the quantiles of the observed survival 

time. Owing to the lack of prior information, the hyperparameters of the prior 

distributions were assigned to reflect flat priors as in Simulation 1. We ran 

several parallel chains with different initial values and found that the MCMC 

algorithm converged within 10,000 iterations. Thus, we collected 10,000 posterior 

samples after 10,000 burn-in iterations for posterior inference. The computation 
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time for implementing the MCMC algorithm in this study is 5.03 minutes using the 

same PC provided in Simulation 1. The Bayesian estimates of parameters 

together with their standard error estimates are presented in Table S6 of 

Supplementary Material. The following findings are obtained.  

For the imaging predictors, we observe several significant effects, such as 

01 05
ˆ ˆ0.138(0.029), 0.138(0.049)  

, and 11
ˆ 0.769(0.246)  

. That is, the 1st and 

5th eigenimages of random imaging intercept and the 1st eigenimage of random 

imaging slope exhibit significant effects on AD hazards. Figure S5 of 

Supplementary Material depicts a full picture of the estimated imaging 

parameters 0 (·)
 and 1(·)

, which are calculated using the estimated coefficients 

01 05
ˆ ˆ, 

, and 11̂
 along with the corresponding eigenimages based on the KL 

decomposition. Several brain regions are detected to be highly associated with 

AD hazards. For example, the positive effect of “lateral ventricles” (Figure 2, the 

top row) is evident, implying that the enlargement of the lateral ventricles is 

positively associated with the development of AD. This finding is consistent with 

the previous medical studies (Nestor et al., 2008). In the brain regions that depict 

negative effects, the magnitudes of the effects of “inferior parietal lobe” (Figure 2, 

the second row) and “inferior temporal gyrus and fusiform gyrus” (Figure 2, the 

third row) are relatively large. This result is in line with the existing research, 

which indicated that AD is negatively correlated to the volume or cortical 

thickness of inferior parietal lobe, inferior temporal gyrus, and fusiform gyrus. 

Moreover, for the brain regions detected as significant in 1(·)
, such as the “

lateral ventricles” (Figure S6, the first row), “precentral gyrus, posterior cingulate 

and pars triangularis” (Figure S6, the second row), and “cerebellum exterior” 

(Figure S6, the third row), they have increasingly positive effects on AD hazards 

over time because 1(·)
 is the parameter of the random imaging slope and thus 

represents a time-dependent effect. Although previous medical researches 

(Canu et al., 2011) suggested that these brain regions are strongly associated 

with the progression of AD, our study further reveals that the volume loss of 
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these regions increases the risk of developing AD in an incremental manner with 

aging.  

For the baseline covariates, gender had a significant negative effect on AD 

hazards, indicating that females have a higher risk of suffering from AD than 

males. This finding agrees with the current medical literature. A surprising result 

was that the APOE- 4  gene, which was found to be an important risk factor of 

AD in previous research (Okuizumi et al., 1994), had an insignificant effect on the 

conversion to AD in our study. One possible explanation is that APOE- 4  gene is 

somehow a confounding variable between certain brain regions and the hazards 

of AD. To verify this guess, we regressed the Bayesian estimates of eigenscores, 

ˆ
ik  and 

ˆ
il
, on the APOE- 4  gene ( 3iZ

 and 4iZ
) for 1, ,7k   and 1, ,7l  . The 

results (not reported) show that APOE- 4  alleles have significant effects on 

2 3 5 6, , ,i i i i   
, and 7i , thereby implying that APOE- 4  alleles are associated with 

AD through certain brain regions. Hence, the effects of APOE- 4  alleles on AD 

hazards become insignificant when the imaging predictors are controlled.  

In addition to the proposed model Mp, we further considered three competing 

models, 1 2,r rM M
, and 3rM

. 1rM
 replaces the longitudinal MRI data incorporated 

in Mp by patients’ longitudinal ventricular volume, which measures four brain 

cavities containing cerebral spinal fluid. Such a scalar measure was used in 

previous medical studies (Nestor et al., 2008) as a marker of AD progression, 

and we included it in 1rM
 for comparison of the prediction capacity between the 

dynamic imaging information and longitudinal scalar measure in AD diagnosis. 

2rM
 and 3rM

 are two reduced models of Mp. 2rM
 is a Cox regression model 

considered by Lee et al. (2015) that only includes the baseline MRI images. 3rM
 

does not include any imaging predictor in the Cox model. We utilized BIC to 

determine the number of eigenimages in 2rM
, and N = 3 was chosen. The 

estimation results of 1 2,r rM M
, and 3rM

 are presented in Table S6 of 

Supplementary Material, together with those of Mp. Similar to the results of Mp, 
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the effects of APOE- 4  alleles are insignificant in 1rM
 and 2rM

 wherein the 

imaging predictors/ventricular volume are controlled, but become significant in 

3rM
 wherein the imaging predictors/ventricular volume are excluded. Although a 

significant positive effect of “pateral ventricles” on AD progression (see Figure S7 

of Supplementary Material) was revealed by 2rM
, other brain regions that were 

identified as important indicators of AD progression by Mp were not detected by 

2rM
.  

Furthermore, we used a Monte Carlo cross-validation method to calculate the 

integrated AUC for the four models at t = 19 and 25 months and δ = 6 and 12 

months. The full dataset was randomly split into a training set trainA
 with 239 

subjects and a test set testA
 with 100 subjects. Such random split was repeated 

100 times. For each split, we fitted all the competing models to the training set, 

estimated the parameters, and then calculated AUC using the test set. The AUC 

value of competing model Mc is calculated by 

1 2 1 2

1 21 2

1 2

* *

* *
,

,

1
AUC ( , ) ( , ) ( , ) |{ ( , ]} { }

({ ( , ]} { })
( )

c

test

test

M i i i i

i ii i

i i

t P t t T t t T t
I T t t T t

      
  



      
    


 A

A

 for {19,25}t   and {6,12}  . Here 
( , )i t 

 corresponds to 
* ( ) ( ) ( ) * ( ) ( ) ( )Pr( | , , ; ) / Pr( | , , ; )train train train train train train

i i i train i i i trainT t T t  A Aξ ζ θ ξ ζ θ
, where 

( )train
θ  is the posterior estimate of θ  based on trainA

 and 
( ) ( ) * ( )( , ) ~ ( , | , ; )train train train

i i i i i trainp T t Aξ ζ ξ ζ θ
. Figure 3 displays the boxplots of AUC 

values based on the 100 random splits for the four models. Overall, Mp 

consistently outperform all the three competing models for all the combinations of 

t and δ. Specifically, Mp, 1rM
, and 2rM

 that incorporate imaging covariates or 

ventricular volume are much superior to 3rM
 that considers baseline covariates 

only. Mp and 2rM
 has noticeably higher AUC values than 1rM

, thereby indicating 

that MRI data, in comparison with ventricular volume, are a more sensitive 

measure to discriminate between subjects who remained at MCI and those who 

progressed to AD. Furthermore, Mp that incorporates the longitudinal images is 
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superior to 2rM
 that includes the baseline images only. This result confirms that 

dynamic MRI images can provide more accurate prediction of MCI-to-AD 

progression compared with cross-sectional MRI images. Such an enhanced 

diagnostic model is crucial in evaluating drug therapy in AD clinical trials and the 

prodromal stages of dementia in subjects with MCI.  

Finally, we conducted additional analyses to check the performance of the tail 

regions of the imaging parameters, the comparison of alternative models with 

other longitudinal or baseline variables, and the plausibility of model 

assumptions. The details are provided in Appendix 5 of Supplementary Material.  

6 Discussion 

The present study can be extended in several directions. First, we use voxel-

based morphometry to extract useful information from the MRI data. Recent 

studies (e.g., Wang et al. 2011) argued that surface-based morphometry may 

exhibit some advantages over voxel measures. However, the surface 

morphometry statistics obtained by Wang at al. (2011) mainly provide the 

morphometric information and cannot identify brain regions of interest. 

Developing new interpretable surface morphometry statistics and investigating its 

utility in detecting AD progression are of great interest in the future research. 

Second, the proposed model assumes that the imaging parameters 0 (·)
 and 

1(·)
 can be fully represented by the eigenfunctions of 0 (·)iX

 and 1(·)iX
, 

respectively. While this assumption may restrict the flexibility of ( )v s and may 

not hold in practice, it can dramatically simplify the analysis and has thus been 

used in a various imaging data analyses (e.g., Kong et al., 2018; Li 

et al., 2018; Feng et al., 2020). Moreover, Wang et al. (2021) demonstrated, 

based on simulation studies, that the estimation obtained under this assumption 

could give a good recovery of the reality even though the assumption is violated. 

Recent works (Wang and Zhu, 2017; Kang et al., 2018) developed a functional 

penalization approach to estimate 0 ( )v
 and 1( )v

 directly. However, the 

Acc
ep

te
d 

M
an

us
cr

ipt



feasibility of adapting their approach to the current complex model framework 

requires further investigation. Third, the proposed joint modeling framework can 

be modified to handle informative dropout without difficulty. Similar to the existing 

literature (Wu et al. 2012), we can regard dropout as another event and jointly 

model time to AD and time to dropout. Shared or correlated random effects can 

be introduced to address possible correlation between the two time-to-event 

outcomes. Another direction is to assume a joint distribution for the time-to-AD 

and dropout processes (Han et al. 2014). Lastly, we unfold the 3D images and 

treat them as one-dimensional functions. This may destroy the underlying spatial 

structure of the image. Extending the existing model to treat MRI data as 3D 

vectors is a promising way to keep complete spatial structure of images. For 

example, tensor regression/partition techniques (Zhu et al., 2011; Zhou 

et al., 2013; Miranda et al., 2018) can be considered to manage MRI data in the 

form of multidimensional array. Incorporating these methods into the framework 

of longitudinal imaging and survival data remains to be addressed in the future 

research.  

Supplementary Material 

In the Supplementary Material, Appendix 1 describes the preprocessing of MRI 

data. Appendix 2 provides the likelihood function in (10). Appendix 3 provides the 

proof of Theorem 1 in Section 3. Appendices 4 and 5 provides additional 

numerical results in the simulation and ADNI study, respectively.  
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Fig. 1 Path diagram of the proposed model, where the left part is the original 

model defined in (1)–(2), and the right part is the model approximated by KL 

decomposition defined in (4)–(5). The fixed image ( )v  is omitted in path 

diagram for presentation simplicity. 
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Fig. 2 The coronal, axial, and sagittal planes of the estimated imaging 

coefficient 0 (·)
, where the upper row is the positive part that is in the brain 

regions of “lateral ventricle”, and the lower two rows are the negative parts that 

are in the brain regions of “inferior parietal lobe” and “inferior temporal gyrus and 

fusiform gyrus”, respectively. All the related regions are marked using red dashed 

squares. Purple and dark blue represent positive effects; orange and red 

represent negative effects; and green represents effects near to zero. 
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Fig. 3 Boxplots of AUC under Mp, 1 2,r rM M
, and 3rM

 at {19,25}t   months and 

{6,12}   months in the ADNI study. 

Table 1 Estimation of parameters in the Cox model in Simulation 1 
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