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Abstract

Motivation: The flexibility of a Bayesian framework is promising for GWAS, but current

approaches can benefit from more informative prior models. We introduce a novel Bayesian

approach to GWAS, called Structured and Non-Local Priors (SNLPs) GWAS, that improves over

existing methods in two important ways. First, we describe a model that allows for a marker’s

gene-parent membership and other characteristics to influence its probability of association with

an outcome. Second, we describe a non-local alternative model for differential minor allele rates at

each marker, in which the null and alternative hypotheses have no common support.

Results: We employ a non-parametric model that allows for clustering of the genes in tandem with

a regression model for marker-level covariates, and demonstrate how incorporating these add-

itional characteristics can improve power. We further demonstrate that our non-local alternative

model gives symmetric rates of convergence for the null and alternative hypotheses, whereas com-

monly used local alternative models have asymptotic rates that favor the alternative hypothesis

over the null. We demonstrate the robustness and flexibility of our structured and non-local model

for different data generating scenarios and signal-to-noise ratios. We apply our Bayesian GWAS

method to single nucleotide polymorphisms data collected from a pool of Alzheimer’s disease and

cognitively normal patients from the Alzheimer’s Database Neuroimaging Initiative.

Availability and implementation: R code to perform the SNLPs method is available at https://

github.com/lockEF/BayesianScreening.

Contact: kapla271@umn.edu

1 Introduction

Detecting associations between particularly influential genetic variants

and a complex pathogenesis is of major interest within chronic disease

research, and innovations in genome-wide association studies (GWAS)

are desirable. A common practice in GWAS is massive univariate linear

modeling, where each genetic marker (i.e. single nucleotide polymorph-

ism, or SNP) is independently fit as a linear predictor to explain the

variability in a given phenotype. Due to the large number of tests con-

ducted in a genome-wide analysis (GWA), procedures that correct

Type-I error rate cut-offs for multiple comparisons are commonly

used. These strategies include controlling the family-wise error rate or

false discovery rate (Benjamini and Hochberg, 1995; Holm, 1979;

Hochberg and Tamhane, 1987). In GWAS, the massive number of tests

requires a very stringent Type-I error rate correction. Kamboh et al.

(2012) conducted a meta-analysis of GWAS on around 2.5 million
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SNPs with a Bonferroni correction to control family-wise error rate,

and detected six SNPs associated with Alzheimer’s disease. Then, they

mapped the critical values of each marker against the location of that

marker on its corresponding gene (Kamboh et al., 2012). The location

of the SNPs within a gene correlated with the significance level from

their associated tests. This example suggests that a more informed

data-dependent correction may yield increased power to detect

marker-phenotype associations.

More contemporary research on multiple testing has incorporated

a Bayesian perspective. Bayesian approaches to multiple testing follow

two noticeable patterns: selection or shrinkage. Bayesian model selec-

tion uses posterior probabilities to select among different hypotheses

given the data, and multiple testing can be treated with a hierarchical

model on the prior probabilities for multiple related tests (Scott and

Berger, 2010). Bayesian hierarchical modeling of effect sizes is similarly

useful under multiple testing scenarios, by appropriately shrinking

effects toward the null value. Bayesian hierarchical selection and

shrinkage have both been considered in the GWAS context, and a key

challenge is to incorporate additional characteristics for a more descrip-

tive and powerful approach to multiple testing. These additional char-

acteristics, such as the genomic position of a marker and its functional

annotation, have been shown to influence a marker’s association with

a given phenotype of interest (Kamboh et al., 2012; Lewinger et al.,

2007; Zablocki et al., 2017). Yi et al. (2014) considered Bayesian

model shrinking in the GWAS context and used additional marker level

characteristics to influence the shrinkage of the parameters, and col-

lected the few markers with high signal. Lewinger et al. (2007) intro-

duced a fully Bayesian scheme for marker selection in which additional

characteristics, such as SNP annotation, influence the prior probability

of the null hypothesis for each marker. Alternatively, Zablocki et al.

(2014) described a Bayesian framework that allows covariates to

modulate a false discovery rate adjustment; Zablocki et al. (2017) fol-

lowed up their work by relaxing distributional assumptions and uses B-

splines for a more flexible modeling approach. Lock and Dunson

(2017) described a hierarchical model in which the prior probability of

association for a given marker depends on its parent gene, and the

gene-level effects are modeled flexibly with a non-parametric Dirichlet

Process (DP) prior. We build on this hierarchical DP structure in this

work, to allow for clustering of the parent gene effect while also incor-

porating functional information on the markers.

For Bayesian model selection, results are often sensitive to the speci-

fication of priors under the null and alternative hypotheses, and thus

these must be considered carefully. Classical frequentist hypotheses

specifications often have a point null while the alternative is anything

but that point null. However, in the Bayesian framework it is often the

case that the null hypothesis is a point null while the alternative hy-

pothesis is a more diffuse distribution. A local alternative prior includes

the null in its support. It has been shown that the asymptotic rates of

evidence in favor of either hypothesis differs exponentially under such

a scenario (Johnson and Rossell, 2010; Lock and Dunson, 2015). Non-

local priors (henceforth NLP) were introduced by Johnson and Rossell

(2010, 2012) to resolve this issue with Bayesian alternative hypothesis

specification, and they are commonly used for model selection in a re-

gression context. The use of NLPs in GWAS for multivariate regression

modeling and a continuous outcome was explored by Sanyal et al.

(2019). We introduce a NLP for two-sample tests with categorical data

that is appropriate for GWAS screening studies. NLPs are sensitive to

user-specified hyperparameters, and in this article we explore the influ-

ence of these hyperparameters and propose a method of marginal likeli-

hood maximization to select the hyperparameters in our context.

Our primary methodological contributions are twofold: (i) to in-

corporate prior knowledge on markers to estimate probabilities of

phenotype associations more accurately and improve interpretation,

and (ii) to introduce a NLP model for the two-sample testing context

for Bayesian GWAS applications. For (i), we build on Lock and

Dunson (2017) and extend the non-parametric Bayesian method for

parent-gene clustering to incorporate additive effects for additional

marker-level data. For (ii), we use a probit link function to model the

difference in minor allele rates between two samples via a NLP. We

describe extensive simulation studies to assess both contributions,

demonstrating improved performance while also highlighting caveats

in their implementation. Lastly, we illustrate our proposed model on

the SNP level data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) and discuss the SNPs and genes that are found to be

associated with Alzheimer’s disease (www.adni-info.org).

2 Model

2.1 GWA modeling framework
In this section we describe our general framework for Bayesian

GWAS and discuss our contributions. There are many different forms

of genetic marker data, however, we focus on the minor allele propor-

tion of presence (either one or two minor alleles present) for given

SNPs (henceforth minor allele rates). The SNPs may be grouped by

the gene region that they fall within (i.e. their gene-parent). We con-

sider the common scenario of screening for markers that are associ-

ated with the lack of or presence of a given phenotype (represented by

0 and 1, respectively). Denote N0
ij and N1

ij as the total number of con-

trol and case study participants, respectively, for genetic marker j

within parent i. Denote the number of individuals with the minor al-

lele present in each group as s0
ij and s1

ij, which follow a binomial distri-

bution with underlying minor allele rates p0
ij and p1

ij, respectively, as

opposed to the minor allele frequencies. That is,

s0
ij � BinðN0

ij ; p
0
ijÞ and s1

ij � BinðN1
ij ; p

1
ijÞ;

where Binðn;pÞ denotes the Binomial distribution with total count

parameter n and probability of success p. We specify null and alter-

native hypotheses, H0
ij and HA

ij , that define prior models for p0
ij and

p1
ij. Then the marginal likelihoods under each hypothesis can be used

to find the posterior probability of association for each marker. Let

pij be the prior probability of HA
ij , then

PðHA
ij js0

ij; s
1
ijÞ ¼

pij � Pðs0
ij; s

1
ijjHA

ij Þ
pij � Pðs0

ij; s
1
ijjHA

ij Þ þ ð1� pijÞ � Pðs0
ij; s

1
ijjH0

ijÞ
(1)

where Pðs0
ij; s

1
ijjH0

ijÞ and Pðs0
ij; s

1
ijjHA

ij Þ refer to the marginal likelihood

under the null and alternative hypotheses for marker j within parent

i, respectively. If there is not prior information on the SNPs then pij

has been set to 0.5, reflecting that either hypothesis has 50% of

being true a priori (Stephens and Balding, 2009).

In Section 2.2 we discuss implementing non-local priors for the like-

lihoods under H0
ij and HA

ij in Equation (1). In Section 2.3 we elaborate

on using a structured model for pij in Equation (1) that incorporates

marker-level covariates and the parent gene of each marker.

2.2 Incorporating non-local hypotheses
In our model we incorporate the non-local prior to enforce dissimilarity

in a genetic marker’s minor allele rates between the patient classes,

under the alternative hypothesis. Under H0
ij : p0

ij ¼ p1
ij ¼ pij � Uð0; 1Þ,

that is, we assume that the probability of a minor allele is the same for

both groups, with a uniform prior over the unit interval. Under HA
ij :
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p0
ij ¼ Uða0ij � a1ijÞ; p1

ij ¼ Uða0ij þ a1ijÞ, where a0ij � Nð0; 1Þ and

a1ij � NLPðs; k; vÞ where

NLPða1js;k; vÞ ¼
ksv=2

Cðv=2kÞ ½a
2
1�
�ðvþ1Þ=2 exp � ða1Þ2

s

� ��k
" #

: (2)

Here, U denotes the cumulative distribution function of a stand-

ard normal distribution while Nð�; �Þ means the Normal distribution

with a mean and a variance parameter, respectively. Note that if

hypothetically a1ij ¼ 0, then the alternative model is equivalent to

the null. However, a1ij ¼ 0 is not within the support of the prior;

this is the key characteristic of the non-local prior as it enforces p0
ij

and p1
ij to be unequal. The specification of the hyperparameters

fs;k; vg is discussed in Section 3.2.1.

To our knowledge, there has not been an investigation of non-

local priors within our context. However, non-local alternative pri-

ors generally yield exponential rates of convergence toward a true

null or true alternative (Johnson and Rossell, 2010), whereas local

alternative priors do not. We verify this with a simple simulation

study in Section 4.3.

In addition to the non-local alternative model, we consider a

straightforward local model following Stephens and Balding (2009).

Under H0
ij : p0

ij ¼ p1
ij ¼ pij � Uð0; 1Þ and under HA

ij : p0
ij � Uð0;1Þ

and p1
ij � Uð0;1Þ are treated independently. Although p1

ij and p0
ij are

independent under the alternative, the alternative still supports the

possibility that p0
ij ¼ p1

ij, which is consistent with the null hypothesis.

This is the key distinction between the local and non-local models;

the former does not explicitly enforce inequality while the latter

does. The marginal likelihoods under the null and local alternative

have closed forms and are supplied in Section 3.1.

2.2.1 Exploring the non-local density

Here we investigate the implication of the hyperparameter settings

for the non-local density on the magnitude of the difference in minor al-

lele rates between classes. First, recall that Uða0 � a1Þ ¼ p0 and

Uða0 þ a1Þ ¼ p1, and thus a1 ¼ 1
2 U�1ðp1Þ � U�1ðp0ÞÞ
�

. This provides

a natural point of comparison to the local model, wherein the minor al-

lele rates p0 and p1 follow independent U(0, 1) distributions; under these

assumptions, a1 ¼ 1
2 ðU

�1ðp1Þ � U�1ðp0ÞÞ � Nð0; 1
2Þ. Figure 1 shows

the density for a1 under different specifications of the non-local alterna-

tive prior, and for the local alternative. The value of s largely controls

the range of support for the non-local prior and the size of the ‘gap’ with

negligible density near 0; the value of V controls the variability near the

boundaries of this gap. As s changes but is rather small, the density of

the non-local parameter a1 also substantially changes. In comparison,

the local model is rather diffuse over this support. The effect of the

hyperparameters in the non-local density illustrate the sensitivity to the

values of s and V, and we caution against arbitrarily selecting their val-

ues. We devised a likelihood maximization scheme, described in Section

3.2.1, to empirically nominate a candidate set of values V, s and k.

2.3 Incorporating structured dependence
Here we describe our approach to incorporate genomic structure

and prior information to infer pij in Equation (1). Our approach gen-

eralizes to any constructed likelihood per marker under each hy-

pothesis, Pðs0
ij; s

1
ijjH0

ijÞ and Pðs0
ij; s

1
ijjHA

ij Þ, such as those in Section 2.2.

Let X ¼ ½Xb;Xh� be a design matrix of additional prior data for each

marker. In our context, Xb includes categorical indicators giving the

functional classification for each SNP, and Xh is a gene-parent affili-

ation matrix (i.e. an ANOVA design matrix of gene affiliation for each

SNP) and H ¼ ½b; h�. We use a probit link to model the marker prior

probabilities as a function of covariates: pij ¼ UðxT
ij HÞ, where U is the

standard normal CDF. We place a N(0, 1) prior on the coefficients b.

For the gene-level effects hi, we use a flexible Dirichlet process prior with

concentration parameter a and a N(0, 1) base distribution. We denote

this distribution using the stick-breaking construction: xja � GEM

ðaÞ; /k �
i:i:d

Nð0; 1Þ, with Sijx �MultðxÞ and hijSi; f/kg � Fð/ki
Þ,

where Multð�Þ denotes the multinomial distribution, and GEM is the

distribution for the stick-breaking construction of a Dirichlet pro-

cess with concentration parameter a (Pitman et al., 2002). To flex-

ibly infer the concentration of the gene effects we use a Cða;bÞ prior

on a, where Cða; bÞ is the gamma distribution with shape and scale

parameters a and b. We set a ¼ b ¼ 1:1 for these hyperparameters.

Lastly, we truncate the number of stick-breaks for the DP model at

20 (Sethuraman, 1994).

We point out certain aspects of our model that build off

existing work on covariate modulated prior probabilities for

GWAS. Without gene-level effects (h ¼ 0) our model is analogous to

that in Lewinger et al. (2007), who used a logit rather than a probit

link for the prior probabilities pij. We used a probit link primarily to

facilitate efficient posterior computation (see Section 3.2).

Moreover, without additional marker level covariates (b ¼ 0), our

model is analogous to that in Lock and Dunson (2017), who used a

Dirichlet process prior with U(0, 1) base distribution to model gene-

level posterior probabilities. As U(0, 1) is equivalent to a N(0, 1) dis-

tribution with a probit link, we have directly extended the gene-level

model of Lock and Dunson (2017) to allow for additional marker

covariates.

3 Estimation

3.1 Marginal likelihood estimation
Under the null hypothesis for the non-local and local models of

Section 2.2 the marginal likelihood is

Pðs0
ij; s

1
ijjH0

ijÞ ¼ bð1þ s1
ij þ s0

ij; 1þ s1
ma;ij þ s0

ma;ijÞ
N0

ij

s0
ij

 !
N1

ij

s1
ij

 !
;

where bð�; �Þ denotes the Beta coefficient, and the subscript ma

denotes major allele count: s0
ma;ij ¼ N0

ij � s0
ij and s1

ma;ij ¼ N1
ij � s1

ij.

The marginal likelihood under the alternative hypothesis for the

local model is also calculated directly:

Pðs0
ij; s

1
ijjHA

ij Þ ¼

bð1þ s1
ij; 1þ s1

ma;ijÞbð1þ s0
ij; 1þ s0

ma;ijÞ
N0

ij

s0
ij

 !
N1

ij

s1
ij

 !
:

Fig. 1. Non-local densities with varying parameter values V and small s with

k¼1. The distribution for a1 under the local alternative hypothesis is provided

for comparison
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Under the non-local alternative the marginal likelihood is

Pðs0
ij; s

1
ijjHA

ij Þ ¼
ð ð

Binðs0
ij; N0

ij ; p
0
ijÞ � Binðs1

ij; N1
ij ; p

1
ijÞ

�Nða0ij; 0; 1Þ �NLPða1ij; s; v; kÞ@a0ij@a1ij;

where p0
ij ¼ Uða0ij � a1ijÞ and p1

ij ¼ Uða0ij þ a1ijÞ. We compute this

intractable integral via a two-step Monte Carlo approach. First, we

generate T values for each of a0 and a1 from their prior; that is, we

generate a0 from a N(0, 1) distribution, and a1 from the specified

NLP via a Metropolis-Hastings approach. For each simulated pair

ðaðtÞ0 ; a
ðtÞ
1 Þ we compute p0ðtÞ ¼ UðaðtÞ0 � aðtÞ1 Þ and p

1ðtÞ
ij ¼ UðaðtÞ0 þ aðtÞ1 Þ,

and approximate the marginal likelihood empirically:

Pðs0
ij; s

1
ijjHA

ij Þ �
1

T

XT

t¼1

Binðs0
ij; N0

ij ; p
0ðtÞÞ � Binðs1

ij; N1
ij ; p

1ðtÞÞ:

3.2 Posterior estimation
We compute the full posterior under the structured prior using a

Gibbs sampling approach, with a latent variable augmentation for

the probit link as described in Albert and Chib (1993). That is, we

introduce Zij as latent variables that depend on the model indicators

Yij: Zij � NðxT
ij H; 1Þ with xT

ij H ¼ xT
ij bþ hi, where Yij ¼ 1 if Zij > 0

and Yij ¼ 0 otherwise. To sample from the DP model on the gene

effects we use its stick-breaking construction (Sethuraman, 1994),

and sample from the full conditionals as described in Dunson

(2010). The full Gibbs sampling scheme proceeds as follows:

(1) Designate Alternative Markers:

The prior probability of association for marker j within parent i is

pij ¼ UðxT
ij HÞ and U is the Normal CDF:

Then the posterior probability of association is

PðHA
ij js0

ij; s
1
ijÞ ¼

pijPðs0
ij; s

1
ijjHA

ij Þ
pijPðs0

ij; s
1
ijjHA

ij Þ þ ð1� pijÞPðs0
ij; s

1
ijjH0

ijÞ

and Yij � BernðPðHA
ij js0

ij; s
1
ijÞÞ:

(2) Update DP parameters for h0:

(A) First we allocate each gene-parent effect hi to one of the DP

atoms h, denoted by Si ¼ h, from a closed form multinomial condi-

tional posterior with probabilities:

PrðSi ¼ hj�Þ ¼
fVhPl<hð1� VlÞg

Qni

j NðZij � xT
ðbÞijb; h0h; 1ÞPH

r¼1fVrPs< rð1� VsÞg
Qni

j NðZij � xT
ðbÞijb; h0r; 1Þ

;

where h ¼ 1; . . . ;H, ni are the number of markers assigned to gene i,

h0h is the effect for atom h and H is the number of stick-breaks.

(B) We update the stick-breaking weights from the conjugate

posterior distribution:

ðVhj�Þ�
ind

Beta 1þ
XG
i¼1

IðSi ¼ hÞ; aþ
XG
i¼1

IðSi > hÞ
 !

;

where I(A) is the indicator function (if A is true then I(A) ¼ 1, and

I(A) ¼ 0 otherwise), G is the number of genes and VH ¼ 1.

(C) Update the DP atoms (random intercepts for each cluster) by

sampling from their Normal posteriors

ðhhj�Þ�
ind

N
1þ

P
i:Si¼h

Pni

j¼1 Zij � xT
ðbÞijb

1þ
P

i:Si¼h ni
;

1

1þ
P

i:Si¼h ni

 !
:

(D) Reassign hi ¼ h0Si
.

(3) Update DP concentration a via a Metropolis-Hastings step with

a Cð1:1;1:1Þ prior.

(4) Update additional regression parameters b via

ðbj�Þ � Nðb̂; ðIb þX0bXbÞ�1Þ

where b̂ is the conditional posterior mean

b̂ ¼ ðIb þX0bXbÞ�1X0bðZ�XhhÞ:

(5) Update Latent Variable Z by a truncated normal distribution de-

pending on Yij.

Zij � NþðxT
ij H; 1Þ if Yij ¼ 1; Zij � N�ðxT

ij H; 1Þ if Yij ¼ 0;

where Nþð�Þ and N�ð�Þ refer to truncated from the left and right at

0, respectively.

We take the mean over Gibbs samples to obtain point estimates

for model parameters and to obtain the posterior probability of as-

sociation for each marker.

3.2.1 Log-marginal likelihood maximization for non-local param-

eter determination

We select the non-local alternative hyperparameters for given data

through a computationally efficient marginal likelihood empirical

maximization technique. Given a dataset, we compute the marginal

likelihoods under the null and alternative hypotheses for each mark-

er, as explained in Section 3.1. Then we designate for marker ij,

IðHA
ij Þ ¼ 1 if Pðs0

ij; s
1
ijjHA

ij Þ > Pðs0
ij; s

1
ijjH0

ijÞ, and IðHA
ij Þ ¼ 0 otherwise.

The likelihood for all markers is computed as

Pðs0
ij; s

1
ijÞ ¼ Pðs0

ij; s
1
ijjHA

ij ÞIðHA
ij Þ þ Pðs0

ij; s
1
ijjH0

ijÞð1� IðHA
ij ÞÞ (3)

We then take the average of log-likelihood over all markers,

given the NLP parameters. We evaluate this expression over a grid

of V and s values while holding k¼1, and the pair of NLP parame-

ters yielding the highest average of the log-likelihood is the chosen

set of parameters for the subsequent full analysis that incorporates

the hierarchical estimation of the prior probability of association.

4 Simulation studies

4.1 Structured prior: gene-parent effects only
Here we describe a simulation study in which the prior probability

that a marker is associated with a given phenotype depends on its

gene-parent. We consider several scenarios, with varying levels of

sparsity in the number of associated markers and the gene structure.

We design our simulation studies to explore the performance of our

proposed method with respect to these different levels of associ-

ation. Namely, we consider four cases where the prior probabilities

are drawn from (i) an all null distribution, (ii) a bimodal distribution

in which 80% of genes have no association and the markers in the

remaining 20% are all associated, (iii) a Betað0:2;1Þ distribution for

parent prior probabilities and (iv) a uniform distribution for the par-

ent prior probabilities. For each scenario, we simulate data accord-

ing to the local model in Section 2.2, with 100 case and control

20 A.Kaplan et al.



samples each (N0 ¼ N1 ¼ 100), 500 parent genes, and the number

of markers for each gene uniformly generated between 2 and 30.

Under each scenario, we compare three structured prior models:

(i) our proposed hierarchical DP model, (ii) a separate model where

parent level effects are modeled separately with independent N(0, 1)

distributions (i.e. the parent probabilities are independent U(0, 1)

after probit transformation) and (3) a joint model where all markers

share the same prior probability, irrespective of their parent gene,

with a U(0, 1) prior on this probability.

Table 1 gives the mean absolute error (MAE) for the inferred gene-

level probabilities and the marker-level posterior probabilities for each

scenario. Our hierarchical DP model outperforms the separate and

joint approaches for the Betað1;0:2Þ and Bimodal scenarios. The

Uniform generative model matches the separate inference model, how-

ever, the results for the DP model are comparable to the separate model

under this scenario and both substantially outperform the joint model.

Similarly, the joint model is appropriate for the All null case because all

parent genes have the same signal, yet the DP model is again compar-

able while substantially outperforming the separate model. Together,

these scenarios reflect the advantages of implementing a flexible prior

that accommodates different distributions of parent-gene effects, such

as the DP. Moreover, the difference in the marker MAEs illustrate how

a well-specified prior for the parent-gene effects can lead to more accur-

ate posterior probabilities for the markers.

4.2 Structured prior: gene-parent and covariate effects
We evaluate the addition of covariates in the hierarchical setting by

simulating true marker associations that are influenced by the

assigned gene-parents as well as six additional covariates (six cat-

egorical variables that reflect SNP annotation). We simulated data

as in the Uniform scenario of Section 4.1, but with Cð2; 1Þ effects

for the six additional marker-level variables. We perform 20 replica-

tions of the simulation, and we compare our model with covariates

to the same model with covariate effects set to 0. In the cases consid-

ered above, we estimate Bayesian credible interval coverage of the

parent and covariate effects (when applicable) and mean absolute

error (MAE) in marker posterior probability for comparing models

under similar data settings. All simulations are done with 2000 col-

lected samples with 1000 burn-in for convergence to the posterior

distributions.

When gene effects are drawn from a standard normal distribution,

the addition of marker-level covariates lowered MAE in marker poster-

ior probability by about 0.03 (Table 2). We highlight that under similar

circumstances, for a model that is misspecified when covariates truly

contributed to posterior probabilities of marker association, the MAE

of that model was around 0.1719. Coverage for gene-parent effects

were less than the nominal under either setting. This likely reflects the

discrepancy of the generative model (with independent and distinct

gene effects) and our DP model (which assumes some clustering of the

genes). However, as shown in Section 4.1, the accuracy of the results

under the DP model is comparable to those under the generative

model. We did not explore the estimation accuracy of our model for

continuous marker-level covariates.

4.3 Non-local alternative: asymptotic rates
We generate p0 and p1 under either the null model or the non-local al-

ternative model, and generate data s0 and s1 for a specified sample size

N0 ¼ N1 ¼ N. We calculate marginal likelihoods under each hypoth-

esis via importance sampling (see Section 3.1). Figure 2 shows the log

Bayes factors for increasing sample size N, demonstrative of exponen-

tial convergence under both the null and the alternative.

4.4 Non-local alternative: sensitivity and comparison
To evaluate the non-local alternative model, we simulate data as in the

Uniform scenario of Section 4.1, but using the non-local alternative of

Section 2.2 to generate minor allele counts. As potential hyperpara-

meters for the non-local model, we consider all possible combinations

of the values V : f2:0;2:50;3:0;3:50;4:0g and s : f0:10; 0:45; 0:80;

1:15; 1:50g, with k¼1, For estimation we also consider the same par-

ameter combinations for the non-local model, as well as the local alter-

native model. We collect the 80% and 90% credible coverage and the

mean absolute error in marker posterior probability of association for

twenty simulations of each scenario.

Table 1. Mean absolute error (MAE) in gene parent probabilities,

and marker posterior probabilities, for four different simulation

scenarios and three models for the marker prior probabilities

All null Bimodal Beta(0.2, 1) Uniform

Parent MAE

DP 0.0002 0.0011 0.0705 0.1196

Separate 0.1085 0.1220 0.1101 0.1176

Joint 0.0003 0.3150 0.1870 0.2587

Marker MAE

DP 0.0008 0.0193 0.0531 0.1531

Separate 0.0286 0.0487 0.0697 0.1531

Joint 0.0004 0.1151 0.0762 0.2052

Table 2. Adding covariates with parent hierarchical structure: the

model with local priors

Number of markers Number of genes

500 1000

Parent with 6 categorical effects

15 0.1363 6 0.0043 0.1389 6 0.0030

30 0.1348 6 0.0033 0.1316 6 0.0042

50 0.1259 6 0.0027 0.1281 6 0.0038

Parent effects only

15 0.1642 6 0.0012 0.1625 6 0.0006

30 0.1551 6 0.0009 0.1552 6 0.0006

50 0.1518 6 0.0010 0.1512 6 0.0004

Note: The true parent effects are drawn from a N(0, 1). True categorical

effects are drawn from a Cð2; 1Þ distribution. Each model is applied to simu-

lated data with matching data generation specifications (with and without 6

categorical effects, respectively). These measures are mean absolute errors

over 20 simulations 6 their standard errors.

Fig. 2. Non-local prior and asymptotic rates of convergence: Data were gener-

ated with non-local parameters s ¼ 2; V ¼ 4 and k ¼ 1.
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Figure 3 displays the marker MAE for each generative scenario

and for each estimation model. The results show that the non-local

alternative generally performs substantially better when the true gen-

erative model is non-local, even if the hyperparameters are misspeci-

fied. For s ¼ 0:10 and 0.45, s reflects possible effect sizes in associated

probabilities, before transforming to the probit scale. Most often, for

data generated with s ¼ 0:10, the model with the specified ŝ ¼ 0:10

outperforms models that use other values for ŝ with respect to mean

absolute error. This pattern is also exhibited with s ¼ 0:45 for the data

and the specified model parameter. However, our model exhibits a flip

in performance once the true s is large enough, when the true s changes

from 0.10 to 0.45. For the case that the data were truly generated from

an NLP distribution with s larger than 0.45, the local model performs

consistently worse than the non-local model. This reflects that larger s
values imply easier detection of associated markers by the non-local

prior, as V and s can be viewed as a joint effect size modulator for the

difference between p0
ij and p1

ij (See Equation 2). As V grows and s
shrinks, we approach a scenario where there is little difference between

p0
ij and p1

ij, thus approaching the behavior of the model specified under

the local prior. With smaller values of V, the model not considering

non-local priors improved slightly in terms of the three aforementioned

statistics for true s set at its smallest value.

We also consider the robustness of the non-local alternative prior

when data are generated under the local model. The resulting MAE

for marker posterior probabilities under different specifications of

the non-local prior are shown in Table 3. The non-local prior gave

comparable performance to the (correctly specified) local prior,

under certain values of its hyperparameters, demonstrating the ro-

bustness of the non-local model even when the generative distribu-

tion under the alternative does not have a non-local density.

4.5 Non-local alternative: hyperparameter selection
We evaluate our marginal likelihood maximization technique to deter-

mine the true set of hyperparameters for the NLP. First, we generate

data with half of the markers from the null and half of the markers from

a non-local alternative, with 15 000 total markers, N0 ¼ 100 controls

and N1 ¼ 100 cases. After generative data, we empirically estimate the

NLP parameters as described in Section 3.2.1. We ran 30 simulations

for each combination of: V: 2.0, 2.50, 3.0, 3.50, 4.0; s: 0.10, 0.45, 0.80,

1.15, 1.50; and k¼1, for data generation and modeling.

The proposed log-likelihood maximization method detected the

appropriate set of parameters in most of the cases over the thirty

simulations (see Table 4). s is accurately estimated in most of the

simulations; smaller values of s are estimated to be the true value

more often than for larger values of s. This reflects that the degree

to which the case and control proportions of minor allele presence

differ can be quite small and be estimated quite accurately for this

method. In general, the estimated values for V̂ were less accurate,

but still tended to be correct in a majority of simulations.

5 Application to ADNI data

The Alzheimer’s Disease Neuroimaging Initiative is a multi-center ef-

fort in identifying genomic, metabolomic, and neurological markers

that associate with Alzheimer’s disease progression. We obtained our

samples from the ADNI1 period of this initiative. These samples were

genotyped using the Illumina Human610-Quad BeadChip and

GenomeStudio v2009.1 was used to process the intensity data (www.

adni-info.org). We collected 584 994 SNPs without functional annota-

tion from 179 patients with Alzheimer’s disease (AD) and 214 with

cognitively normal status (CN). Then we used the BioMart package

in R version 3.4.1, to gather marker consequences and gene assign-

ments for each SNP (R Core Team, 2017). We omitted SNPs that had

duplicate entries to rid of the ambiguity in gene and marker conse-

quence assignments. The counts of SNP consequence categories are: 77

splice cites, 497 50UTR, 4861 30UTR, 3324 non-synonymous, 1716

synonymous and 267 550 introns. We omitted intergenic SNPs from

this analysis. There are 18 957 unique genes for 278 025 SNPs, and we

Fig. 3. Non-local model implemented on non-local data: Mean Absolute Error (MAE) is shown for each pair of the parameter settings that generated the data and the

parameter specifications for the model, V ¼ f2:0; 2:5; 3:0; 3:5; 4:0g and s ¼ f0:10; 0:45; 0:80; 1:15; 1:50g. The � refers to the results from the Local Model for comparison

Table 3. Non-local prior implemented on local generated data:

MAE for marker posterior probabilities are shown for non-local

prior specifications V and s

s / V 2.0 2.5 3.0 3.5 4.0

0.10 0.1508 0.1565 0.1636 0.1717 0.1809

0.45 0.1582 0.1548 0.1520 0.1499 0.1481

0.80 0.1751 0.1710 0.1669 0.1639 0.1607

1.15 0.1887 0.1840 0.1799 0.1762 0.1728

1.50 0.2002 0.1943 0.1908 0.1871 0.1831

Note: The local model had a MAE of 0.1551.
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apply our model onto this data. For up-to-date information, please go

to adni.loni.usc.edu.

We applied our proposed hierarchical gene-parent and marker-

level covariate adjusted model with non-local priors to the 278 025

SNPs from ADNI to identify markers that have high posterior prob-

ability of association with AD. From the SNP annotations collected

from BioMart, we created an ANOVA-like binary matrix for SNP

annotation (i.e. synonymous, intronic, etc.). For our analysis, we

designated intronic SNPs as the reference group. We applied our

maximum log-likelihood strategy to determine the optimal set of

non-local prior parameters to model the ADNI data. We evaluated

the mean log-likelihoods of the data over a large grid of values for s
and V, where s : 0:001; 0:01;0:05; 0:075;0:1;0:2;0:45;0:8; 1:15; 1:5

and V : 2;3; 4; 5;6; 7; 8;9;10. Following this procedure, we analyzed

the ADNI data with our hierarchical model that employs the previ-

ously determined NLP parameters in the alternative marginal likeli-

hood estimation. 20 000 samples of each of the parameters and the

posterior probability of association for markers were collected after a

burn-in of 10 000 samples.

The maximum log-likelihood strategy for choosing the optimal

set of non-local parameters yielded V̂ ¼ 8 and ŝ ¼ 0:075, with a

mean log-likelihood of �8.23; in comparison, the local model

resulted in a mean log-likelihood of �8.35. Under our chosen non-

local specification, the top SNP was rs2075650 with a posterior

probability of association of 88.14% [see Table 5a for all detected

SNPs with a PPA of at least 10%]. This SNP is located on

TOMM40, near APOE4; this is a gene repeatedly observed to be

significantly associated with Alzheimer’s disease in GWA studies. In

comparison, not one SNP is identified when using Fisher’s exact test

with the various multiple testing corrections. We only report

rs2075650 as a significant marker with a modest expected false dis-

covery rate, and a Holm adjusted P-value cut-off smaller than 10%.

The flexible prior on the marker-gene membership yielded uniform

atom-effect convergence to one or two values around �3.3 over the

collected samples. This reflects that the probability of a random

SNP within a given gene being associated with Alzheimer’s disease is

very small. SNP annotation effects are summarized in Table 5b.

Within Table 5a we include the difference in proportions of minor

allele presence between the case and controls calculated from the

raw data. These values may provide guidance on how to interpret

one SNP’s relationship with Alzheimer’s disease. For instance,

rs2075650 has the highest probability of association and has a posi-

tive risk difference, meaning there were more cases annotated with

minor allele presence, 1 or 2 minor alleles, as compared to the con-

trols. One may infer that this SNP has a noxious role within the

pathogenesis of AD.

6 Discussion

Current research has also aligned with our findings for Alzheimer’s

disease. rs2075650 has been repeatedly noted as a target SNP to be

in association with Alzheimer’s disease with other SNPs along its

gene TOMM40. TOMM40 has been detected to associate with

regions of white matter strength that are observed to integrate mem-

ory with the rest of the brain (Lyall et al., 2014; Kamboh et al.,

2012). Although, we did not find other variants along the neighbor-

hood of TOMM40 and APOE, our model complemented more re-

cent literature on AD pathogenesis. For instance, we identified

rs1461707 where there is an apparent shortage in descriptive re-

search of this variant that resides on a long intergenic non-protein

coding RNA between PIK3C3 and RIT2. Contemporary work sug-

gests that differential expression of regulatory long non-coding

RNA (lncRNA) fill important roles in the neurogenesis of late onset

Table 4. Non-local prior parameter selection results

V / s 0.10 0.45 0.80 1.15 1.50

(a)

2.0 90.00% 93.33% 76.67% 60.00% 76.67%

2.5 33.33% 83.33% 86.67% 76.67% 56.67%

3.0 10.00% 80.00% 80.00% 76.67% 80.00%

3.5 6.66% 80.00% 86.67% 70.00% 80.00%

4.0 0.00% 70.00% 83.33% 80.00% 83.33%

(b)

s / ŝ 0.10 0.45 0.80 1.15 1.50

0.10 147 3 0 0 0

0.45 0 145 5 0 0

0.80 0 2 134 14 0

1.15 0 0 2 123 25

1.50 0 0 0 22 128

(c)

V / V̂ 2.0 2.5 3.0 3.5 4.0

2.0 124 21 2 0 3

2.5 34 92 11 2 1

3.0 30 3 98 10 5

3.5 0 8 39 97 6

4.0 0 1 12 42 95

Note: (a) Percentages for the log-likelihood maximization technique cor-

rectly specifying the non-local parameter values V and s for the data gener-

ation out of 30 simulations for each scenario. (b) Total counts specifying s

correctly and incorrectly; rows and columns correspond to true and chosen s,

respectively. (c) Total counts specifying V correctly and incorrectly; rows and

columns correspond to true and chosen V, respectively.

Table 5. (a) Detected SNPs associated with Alzheimer’s disease

with posterior probability of association (PPA) of 10% or higher;

gene ID, SNP placement on gene, posterior probability of

association (PPA), and difference in proportions of minor allele

presence between cases and controls (risk difference). (b)

Probabilities of associating with Alzheimer’s disease for each SNP

annotation

SNP rsID Gene Consequence PPA Risk

difference

(a)

rs2075650 TOMM40 Intronic 0.8814 0.2550

rs906283 PIEZO2 Intronic 0.2612 �0.1994

rs1461707 LINC00907 Intronic 0.1856 �0.2079

rs11072463 PML Intronic 0.1499 �0.2028

rs7191801 HS3ST4 Intronic 0.1365 �0.2022

rs2883782 MYO3B Intronic 0.1345 0.1734

rs1981542 RP11-556I14.2 Intronic 0.1201 �0.1925

rs708036 FARS2 Intronic 0.1137 0.1916

rs1155490 PREX2 Intronic 0.1074 �0.1697

(b)

Percentile 2.5% 50.0% Posterior

mean

97.5%

30UTR 0.00044% 0.00794% 0.01093% 0.04124%

50UTR 0.00001% 0.01048% 0.04901% 0.36228%

Non-synonymous 0.00095% 0.03277% 0.05830% 0.26069%

Splice-site 0.00002% 0.02068% 0.20888% 1.65663%

Synonymous 0.00087% 0.03988% 0.09586% 0.48173%

Each measure is a cumulative normal measure of the linear expression

UðXbþ �h
ðmÞÞ where �h

ðmÞ
is the average gene effect for MCMC sample m
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Alzheimer’s disease; equally as important, lncRNA have been shown

in animal models to regulate expressions of genes associated with

synaptic plasticity (Deng et al., 2017; Idda et al., 2018; Pereira

Fernandes et al., 2018). rs906283 is located along the PIEZ02; de-

pletion in expression of this gene has been shown to convert acti-

vated to non-responding subsets of dorsal-root ganglia sensory

neurons for adult mice, hinting towards a disruptive relationship

with somatosensory-cellular processes (Coste et al., 2010). One may

hypothesize that low expression of this gene may be associated with

the lack in balance or lack in pain perception that dementia patients

experience, and visual diseases (Vounou et al., 2012). Finally, PML,

the gene that contains rs11072463 has also been acknowledged

from another ADNI GWAS, and noted in other studies to be crucial

in central nervous integrity and activity (Moon et al., 2015).

Altogether, these results indicate possible merit in incorporating

multiple sub-traits of the phenotype of interest within GWA studies.

Supplementing models that evaluate genetic variants’ relation-

ships with a phenotype with the additional information on those

genetic variants have been previously shown to boost detection

power. Additionally, due to the independence between the two com-

ponents of our model, the prior probability modeling can be easily

utilized for other likelihood contexts. We observed in our applica-

tion that markers were assigned multiple gene-parents or consequen-

ces and this issue can be obviated with the integration of the marker

location along the gene. Lewinger et al. (2007) discussed including a

separate modeling step to account for linkage disequilibrium by bor-

rowing information between neighboring SNPs.

We increased efficiency in estimating probabilities of marker-

phenotype associations with the employment of non-local priors.

Appropriately choosing s provides most of the influence in accurate-

ly detecting alternative markers; when true s is small which we ob-

serve in the GWAS context, then fluctuation in V provides negligible

change to alternative marginal likelihood evaluation. We emphasize

that for the data analysis we used a marginal log-likelihood maxi-

mization approach to choose the best fitting value for s. One short-

coming is preset values for s. Fixed choices for s may not yield the

appropriate profile for s that external data can provide. We can ad-

dress this by letting s depend on patient-level clinical characteristics,

similar to the approach by Lee et al. (2017). These additions of

demographic variables encourages us to incorporate estimation of

the marginal likelihoods as additional steps in the entire estimation

scheme, to estimate the effect of patient demographics on SNP pos-

terior probability of association. This is a promising goal that may

alleviate the ambiguity and slight inefficiency in estimating a given

data’s NLP parameters.
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