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A B S T R A C T   

White matter lesions (WML) in the brain are thought to be related to ischemic processes, demyelination, and 
axonal degeneration. The presence of WML predict cognitive decline, dementia, stroke, and death. Lesion pro-
gression increases these risks, making WML significant clinical biomarkers for investigation. To analyze WML 
objectively, consistently, and efficiently, automated WML segmentation methods for neurological MRI have been 
the focus of extensive research efforts. There have been many unsupervised and traditional machine learning 
methods proposed over the years. Recently, deep learning architectures have been utilized for WML segmen-
tation with promising results. In this work, we evaluate seven WML segmentation tools for multicentre fluid 
attenuated inversion recovery (FLAIR) MRI. Two traditional methods were evaluated, one unsupervised method 
and the other a traditional machine learning approach. The traditional methods were compared to five deep 
learning-based approaches. FLAIR MRI have the advantage of highlighting WML lesions robustly and are used 
routinely in neurological workflows. Automated WML segmentation tools for FLAIR MRI could optimize clinical 
workflows and improve patient care. The WML segmentation algorithms were evaluated on a multicentre, multi- 
disease FLAIR MRI database acquired with varying scanners and protocols. In total 252 imaging volumes (~13 K 
image slices) with annotations, from 5 multicentre datasets (33 imaging centres) were used to train, validate and 
test the WML segmentation methods. Two clinical datasets, which include dementia and vascular disease pa-
thologies, and three open-source datasets were used. To examine clinical utility of each algorithm and establish 
proof of effectiveness, algorithms were evaluated over several dimensions related to accuracy, generalizability, 
and robustness to pathology. This work presents a framework for evaluating the efficacy of WML segmentation 
algorithms for improved reliability, patient safety and clinical trials. Of all methods, SC U-Net was found to be 
the best algorithm for WML segmentation in terms of highest Dice similarity coefficient (DSC) over most di-
mensions (mean DSC = 0.71 over all volumes). Deep learning methods outperformed traditional methods, 
especially in lower lesion loads, but were not able to generalize across all disease categories or datasets.   

1. Introduction 

White matter lesions (WML), or leukoaraiosis, is routinely found in 
the aging brain and are established cerebral vascular disease (CVD) 
markers (Wardlaw et al., 2015, Pantoni, 2010, Azizyan et al., 2011). 
WML represent increased and altered water content in hydrophobic 

white matter fibers and tracts. Changes in white matter vasculature 
likely contributes to WML pathogenesis (Gorelick et al., 2011). WML 
may be the result of ischemic injury from decreases in regional cerebral 
blood flow (Pantoni and Garcia, 1997). Demyelination and axonal 
degeneration have also been suggested as probable mechanisms 
(Wardlaw et al., 2015). Typically, WML manifest as multifocal, diffuse 
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periventricular or subcortical lesions of varying morphologies (Marek 
et al., 2018). The presence of WML is associated with cognitive decline, 
dementia, stroke, death, and lesion progression increases these risks 
(Debette and Markus, 2010, Alber et al., 2019). Therefore, WML are 
significant clinical biomarkers for investigation. 

In T2-weighted and fluid-attenuated inversion recovery (FLAIR) 
magnetic resonance images (MRI), WML appear as hyperintense signals 
in the cerebral white matter (Marek et al., 2018). FLAIR MRI is preferred 
for WML analysis (Azizyan et al., 2011, Badji and Westman, 2020, 
Wardlaw et al., 2013), since the high signal from the cerebrospinal fluid 
(CSF) in T2 is suppressed, thus highlighting white matter disease (Lao 
et al., 2008). This is due to increased water content secondary to 
ischemia and demyelination and much more robustly seen in FLAIR than 
with T1/T2 (Gorelick et al., 2011). Characterization of WMLs is typically 
performed by a radiologist using visual rating systems such as the 
Fazekas scale (Fazekas et al., 1993) or by manual segmentation (Cal-
igiuri et al., 2015). The Fazekas scale grades lesions by size, location and 
confluence but is subjective (Caligiuri et al., 2015). Manual segmenta-
tion is time-consuming, laborious, and has high inter and 
intra-variability (Caligiuri et al., 2015). For objective, consistent, and 
efficient WML analysis, automated WML segmentation methods have 
been the focus of extensive research efforts in recent decades. 

Several unsupervised methods for WML segmentation have been 
proposed in the literature, including clustering and thresholding (Cal-
igiuri et al., 2015). Jack et al. proposed a thresholding method for seg-
menting WML from FLAIR MRI based on step-wise regression (Jack 
et al., 2001). Statistical measures from the image histogram were used to 
find thresholds for separating cerebrospinal fluid (CSF), normal brain 
tissue (i.e. GM/WM) and WML. Admiraal-Behloul et al. proposed a 
two-level segmentation scheme (i.e. adaptive and reasoning) which 
combined information from proton density (PD), T2-weighted and 
FLAIR images (Admiraal-Behloul et al., 2005). In the adaptive stage, 
intensity values were mapped to linguistic variables such as bright and 
dark which was used with a fuzzy inference system to derive a label for 
each voxel (Admiraal-Behloul et al., 2005). Seghier et al. proposed a 
fuzzy classification algorithm for lesion segmentation based on outlier 
detection (Seghier et al., 2008) that identified outlier voxels in 
normalized GM and WM probability maps and had a high sensitivity for 
detecting lesions with varying characteristics (Seghier et al., 2008). 
Khademi et al. proposed an unsupervised method for segmenting WML 
with sub-voxel precision from FLAIR images by modeling the partial 
volume artifact (Khademi et al., 2011, Khademi et al., 2014, Khademi 
and Moody, 2015). 

Supervised machine learning methods have also been prominent in 
the literature for WML segmentation. Anbeek et al. proposed a super-
vised method for segmenting WML from multi-modal MR images using a 
k-Nearest Neighbour (k-NN) classifier (Anbeek et al., 2004). The method 
incorporated both intensity and spatial information from registered 
T1-weighted (T1-w), inversion recovery (IR), proton density (PD), 
T2-weighted (T2-w) and FLAIR images. Lao et al. combined support 
vector machines (SVM) and AdaBoost (Lao et al., 2008) with a derived 
attribute vector (AV) comprising local intensity and spatial features 
obtained from FLAIR, PD, T2-w and T1-w images. AdaBoost was used to 
address the large class imbalance issue in WML segmentation by 
ensuring that classifier weights were more impacted by misclassified 
cases. In (De Boer et al., 2009), de Boer et al. proposed a method for 
segmenting CSF, GM and WM using an atlas-based k-NN classifier on 
multi-modal MRI data. The resultantGM segmentation was used to 
automatically find a threshold for segmenting WML in FLAIR MRI (De 
Boer et al., 2009). In the work by Simoes et al. (Simões et al., 2013), 
WML were segmented from 3-D FLAIR volumes using Gaussian mixture 
models (GMMs) which models each volume by three distinct classes: 
CSF, GM/WM and WML. Voxel-wise class probabilities were determined 
and subsequently thresholded to derive class-labels for each voxel 
(Simões et al., 2013). Knight et al. (2018) proposed a voxel-wise 
regression technique to segment WML in FLAIR MRI that built upon 

the open-source Lesion Segmentation Tool (LST) (Schmidt, 2017). A 
spatially parameterized logistic regression classifier was used to segment 
lesions on a per voxel basis. Grifftanti et al. proposed the Brain Intensity 
AbNormality Classification Algorithm (BIANCA), which manipulates 
different options for weighting spatial information, local spatial in-
tensity averaging and different parameters for the number and location 
of training points in a k-NN classifier (Griffanti et al., 2016). 

In light of these results, numerous deep learning (DL) architectures 
have been proposed for WML segmentation. Several of the top com-
petitors in the MICCAI WML Segmentation Challenge used deep learning 
methods to robustly segment WML of presumed vascular origin, with the 
first-place team applying an ensemble of three U-Nets with different 
initializations (Kuijf et al., 2019, Ronneberger et al., 2015, Li et al., 
2018a). Guerrero et al. proposed UResNet2 for simultaneous segmen-
tation and differentiation of WML and stroke lesions (Guerrero et al., 
2018). Conventional convolution blocks were replaced with residual 
blocks to improve stability and convergence (Guerrero et al., 2018). By 
training on 2-D patches, the authors were able to segment WML and 
stroke lesions at the same time. In (Moeskops et al., 2018), authors use 
multiple MRI modalities and CNNs with different patch sizes to capture 
multiresolution information for WML segmentation. A conventional 
U-Net CNN was applied on FLAIR MRI to segment WML and several 
other hyperintense pathologies in the brain (Duong et al., 2019). 
Recently, Wu et al. proposed an architecture called the Skip-Connection 
U-Net (SC U-Net) that added four additional skip connections to the 
original architecture (Wu et al., 2019). The authors compared SC U-Net 
to the U-Net proposed by Li et al. (2018a), without the use of ensembles, 
and found that SC U-Net outperformed U-Net on the WML Segmentation 
Challenge dataset (Kuijf et al., 2019). These works further demonstrate 
that deep learning can be successfully used for WML segmentation. 

It is difficult to directly compare WML segmentation methods since 
they are typically evaluated on different datasets using different evalu-
ation criteria (Caligiuri et al., 2015). The MICCAI WML Segmentation 
Challenge was developed to address this by allowing participants to 
directly compare techniques on a robust, open-source dataset using a 
standardized set of evaluation criteria (Kuijf et al., 2019). Since then 
there have been comparisons of WML algorithms, such as in (Heinen 
et al., 2019) where the performance of five automated WML segmen-
tation methods were evaluated in a multicentre FLAIR and T1 dataset. 
The methods mainly consisted of traditional machine learning (ML) al-
gorithms, including K-NN and LST. Performance is reported for sixty 
volumes from six different centres. Using similar (traditional) WML 
segmentation methods, in (de Sitter et al., 2017), the authors investigate 
five WML segmentation tools for multiple sclerosis (MS) lesion seg-
mentation using FLAIR and T1 images. In total 70 patients from 6 cen-
tres were used to evaluate the methods. Many works have compared on 
small or moderate sized datasets that may not reflect the natural vari-
ability of clinical datasets. In (Vanderbecq et al., 2020), the authors 
considered seven open source traditional WML segmentation methods 
for T1 and FLAIR and studied performance on research and clinical 
datasets. In (Frey et al., 2019), the authors provide a meta-review of the 
current WML segmentation methods applied in large-scale MRI studies. 

In this work, we evaluate seven WML segmentation tools for a large 
multicentre FLAIR MRI dataset. Two traditional methods (unsupervised, 
machine learning) and five deep learning-based approaches utilizing 
CNN architectures are selected and implemented due to their promise 
for WML segmentation in FLAIR MRI. Specifically, 2D patch-based ap-
proaches for U-Net and U-Net variants are evaluated in this work as the 
top performing architecture in the MICCAI challenge was based on 2D U- 
Nets (Li et al., 2018a). 2.5D and 3D architectures were not explored due 
to memory constraints and loss of lesion continuity due to thick slices in 
FLAIR MRI (DiGregorio et al., 2021). Although there are a variety of 
WML segmentation methods, most are dependent on a secondary T1 
MRI or multiple sequences and cannot be directly translated to FLAIR 
(DiGregorio, 2018). FLAIR has the advantage of highlighting WML le-
sions better than other sequences (Azizyan et al., 2011, Gorelick et al., 
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2011, Badji and Westman, 2020, Wardlaw et al., 2013, Lao et al., 2008) 
and is used routinely in neurological workflows. In (Narayana et al., 
2020), using FLAIR as a sole input to a CNN model was shown to provide 
similar WML segmentation performance as compared to models trained 
with other or multimodal sequences, and FLAIR on its own showed a 
lower false positive rate in the low lesion load cases. Therefore, auto-
mated WML segmentation tools using DL for FLAIR MRI could be 
valuable tools for clinical workflows. 

Although many proof of concept biomarkers exist (tested in single 
centres with limited variability), there are only a few that are technically 
validated in large multicentre datasets to establish “proof of effective-
ness” (Smith et al., 2019) which is a barrier to translation. Technical 
validation includes tests related to feasibility, accuracy, reproducibility 
and repeatability (Smith et al., 2019, Sullivan et al., 2015, Obuchowski 
et al., 2015), and should precede clinical validation, otherwise it is 
difficult to determine if biomarker changes are from the biological 
process or technical variability of the biomarkers (Smith et al., 2019). 
Biomarkers should be investigated on smaller, more controlled datasets; 
then scaled to large multi-centre sets to prove effectiveness. To examine 
the performance of each algorithm on clinical datasets and establish 
proof of effectiveness, the WML segmentation algorithms are evaluated 
over several dimensions related to accuracy, generalizability and 
robustness to pathology on a multicentre, multi-disease FLAIR MRI 
database acquired with varying scanners and protocols. In total 252 
imaging volumes (~13 K image slices) with annotations, from 5 multi-
centre datasets (33 imaging centres) were used to train, validate and test 
the WML segmentation tools. There are three open-source datasets 
(MICCAI, ADNI, MRBrains) and two clinical datasets (CAIN, CCNA) 
which includes both dementia and vascular disease pathologies. The 
methodology presented to evaluate the effectiveness of a tool is novel 
and presents a unique framework for evaluating the efficacy of WML 
segmentation algorithms for robustness and reliability which translates 
into improved patient safety and more sensitive clinical trials. 

2. Materials and methods 

2.1. Data 

Experimental data for this work comes from 5 multicentre FLAIR 
MRI datasets. The first dataset is from the Alzheimer’s disease Neuro-
imaging Initiative (ADNI) (Jack et al., 2008) and includes 900 subjects 
with longitudinal follow up (4126 imaging volumes). The second data-
base is from the Canadian Atherosclerosis Imaging Network (CAIN) 
(Tardif et al., 2013), a pan-Canadian clinical study on vascular disease. 
There are 400 subjects in CAIN with follow up for a total of 871 volumes. 
The third dataset is from the Canadian Consortium on Neuro-
degeneration in Aging (CCNA), a pan-Canadian clinical study to analyze 
different types of dementia (Chertkow et al., 2019, Mohaddes et al., 
2018). Currently, the FLAIR data from CCNA contains imaging volumes 
for 380 subjects, acquired at 20 imaging centers. Sixty volumes from the 
MICCAI WML Segmentation Challenge (Kuijf et al., 2019) are used, and 
7 vol from the Challenge on MR Brain Segmentation at MICCAI 2018 
(MRBrains). MICCAI and MRBrains have WML annotations for all the 
volumes. To generate annotations for CAIN, CCNA and ADNI, WML were 
manually segmented using ITK-SNAP1 (Yushkevich et al., 2006) by three 
medical students trained by the same radiologist. There was a standard 
protocol employed and several review sessions before annotating began. 
One rater employed a semi-automated intensity-based region growing 
tool from ImageJ that fine-tuned boundaries due to partial volume 
averaging. It was a minor correction step that resulted in few pixel 
changes. In total there are 252 ground truth volumes, with 135 CAIN, 20 
ADNI, 30 CCNA, 7 MRBrains and 60 from MICCAI. Each subject (im-
aging volume) is unique. Each dataset contains FLAIR MRI acquired in 

the axial plane at 3 T from General Electric (GE), Philips, and Siemens 
scanners. Ground truth datasets were stratified by center to ensure there 
was broad representation in the data from multiple centres and scanner 
models which could have varying acquisition protocols. Table 1 contains 
the demographic and imaging acquisition parameters for the sampled 
ADNI, CAIN, and CCNA volumes demonstrating the diversity of the data. 
The average and standard deviation of lesion load (LL) in mL is also 
reported, to highlight differences in the ground truth datasets. 

2.2. Reliability of manual reference segmentation 

To demonstrate the robustness of the WML manual segmentation 
protocol and training of the raters, an inter-rater agreement experiment 
was completed that included two raters and 20 unique FLAIR imaging 
volumes with varying WML loads. Both raters received the same training 
and conducted the WML annotations on the same 20 volumes. Both 
raters were blinded to each other’s results. A secondary dataset of 10 
subjects was used to compare the manual segmentations from a single 
rater to that of the semi-automated correction in ImageJ. To measure 
inter-observer variability, the DSC, intraclass correlation coefficient 
(ICC), IAVD and EF are reported. ICC estimates and their 95 % confi-
dence intervals were calculated based on a mean-rating (k = 2), 
absolute-agreement, 2-way random-effects model. To quantify agree-
ment between the semi-automated and manual approach, a Bland- 
Altman plot was also used. 

2.3. Pre-processing 

Intensity standardization was performed to remove variability 
caused by the multicentre effect (Zhong et al., 2012, Reiche et al., 2019) 
for all deep learning methods and the unsupervised partial volume 
averaging (PVA) technique. The lesion prediction algorithm (LPA) has a 
built-in preprocessing pipeline so standardization was not applied for 
this method. For the unsupervised and deep learning methods, all vol-
umes were preprocessed using (Reiche et al., 2019), which performs 
denoising, bias field correction, and intensity standardization. Imaging 
volumes are denoised with 3 × 3 median filtering followed by homo-
morphic filtering for bias field correction. The MICCAI dataset had bias 
field correction already applied so it was not used for this dataset. In-
tensity standardization is achieved through a novel scaling factor that 
aligns the histogram modes of volumes to that of an atlas. As shown in 
(Reiche et al., 2019), the intensity intervals of tissues in 350 K FLAIR 
MRI are more consistent across multicentre data using this approach. 
Skull-stripping is performed on the volumes using U-NET for intracranial 
volume (ICV) segmentation (DiGregorio et al., 2021). 

2.4. WML segmentation algorithms 

Two categories of algorithms were evaluated. The first category of 
algorithms was based on traditional approaches, including image pro-
cessing and machine learning (ML) and included the partial volume 
averaging (PVA) modeling method and lesion prediction algorithm 
(LPA). The second category is based on DL and CNNs: U-Net, SC U-Net, 
MulitResUNet, UResNet2, and Tiramisu. 

2.4.1. Partial volume average (PVA) modeling 
An artifact found in magnetic resonance images (MRI) called partial 

volume averaging (PVA) has received much attention in the image 
processing community since accurate segmentation of cerebral anatomy 
and pathology is impeded by this artifact. For robust WML segmenta-
tion, a partial volume (PV) fraction estimation approach was developed 
for cerebral MRI that measures the proportion of each tissue in every 
voxel. The PV fraction is estimated directly from each image using a 
global edge metric that was shown to be proportional to the PV fraction. 
The estimated PVA fraction is used to compute intensity-based class 
memberships that are applied to segment anatomy and pathology with 1 www.itksnap.org. 
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subvoxel accuracy. The PVA method was applied to FLAIR MRI lesions 
(Khademi et al., 2011, Khademi et al., 2014) and to segment normal 
anatomy (GM, WM) in T1 images (Khademi and Moody, 2015). The 
partial volume fraction assigns a value of 1 to voxels that are pure WML, 
0 for voxels that do not contain any WML tissue, and an intermediate 
value for mixture (PVA) voxels (Caligiuri et al., 2015, Khademi et al., 
2011). WML are segmented by thresholding this map. 

2.4.2. Lesion prediction algorithm (LPA) 
The lesion prediction algorithm (LPA) is an open-source WML seg-

mentation tool that only requires a FLAIR image and does not require 
parameters from the user. The method was built by training a logistic 
regression model with the data of 53 MS patients with severe lesion 
patterns (Schmidt, 2017). The features that are considered are intensity 
and spatial location. A novel approach for fitting large-scale regression 
models was used to estimate the high dimensional model. The LPA al-
gorithm utilizes a built in preprocessing pipeline, including intensity 
normalization, so additional preprocessing was not applied before 
applying LPA. The open source Matlab code is available from the au-
thor’s personal website ("T – Lesion segmentatio, 2021). 

2.4.3. U-Net 
U-Net was proposed in 2015 and has been a mainstay in medical 

image segmentation research because of its ability to adapt to variable 
biomedical data (Ronneberger et al., 2015, Hwang et al., 2019, Thakur 
et al., 2020). The encoding path with units of convolutional and max 
pooling layers perform feature extraction. The decoding path contains 
units of convolutional and transposed convolutional layers and skip 

connections to recapture spatial context (Long et al., 2015). U-Net 
contains 5 levels where the filter depth is doubled during each down-
sampling block (via max pooling) and halved during each upsampling 
block (via transposed convolution). In this work, U-Net was imple-
mented with batch normalization layers succeeding convolutional layers 
(Ioffe and Szegedy, 2015) to accelerate convergence and improve 
generalization via a modest regularization effect. The structure of the 
U-Net encoding and decoding units used in this work are shown in Fig. 1. 

2.4.4. SC U-Net 
The skip connection U-Net (SC U-Net) proposed in (Wu et al., 2019) 

adds additional paths (skip connections) between the shallow and deep 
layers of a CNN architecture. The outputs from each max-pooling layer 
in the encoder are inputs for each transposed convolution layer in the 
decoder. Skip connections ease training by improving information and 
back-propagation flow (Wu et al., 2019, Drozdzal et al., 2016). This has 
been shown to diminish the vanishing gradient problem that commonly 
occurs when training deep networks (Drozdzal et al., 2016). The SC 
U-Net architecture shown in (Wu et al., 2019) was implemented. 

2.4.5. UResNet2 
Semantic segmentation architectures can be equipped with residual 

connections; a type of skip connection that has demonstrated strong 
performance in image recognition tasks (He et al., 2016a). Residual 
connections enable direct information flow between network layers and 
ease optimization via identity mappings and after addition activations 
(He et al., 2016a). In this work, U-Net was modified to have residual 
connections as in the implementation of (Guerrero et al., 2018) which 

Table 1 
FLAIR MRI ground truth datasets used for experimentation. Repetition time (TR), echo time (TE), inversion time (TI), and pixel spacing are represented by the range 
found in the data. Sex reported as percetage of women F (%) and age and LL reported as averages over the cohorts.  

Patient Information 

Database Disease Volumes Images Patients Centres Age ± SD (yrs.) F (%) LL±SD (mL) 

ADNI Dementia 20 700 20 14 76.0 ± 8.2 47 11.8 ± 10.1 
CAIN Vascular 135 6480 135 8 71.7 ± 6.0 27 12.2 ± 12.3 
CCNA Dementia 30 1440 30 7 77.5 ± 6.0 33.3 22.8 ± 18.8 
MICCAI Vascular 60 3580 60 3 – – 17.6 ± 17.4 
MRBRAINS Normal/WML 7 336 7 1 – – 22.0 ± 24.3 
Total All 252 12.5 K 252 33 – – 15.0 ± 15.2 

Acquisition Parameters 

Database GE/Philips/Siemens Mag Field (T) TR (ms) TE (ms) TI (ms) Pixel Spacing (mm) Slice Thickness (mm) 

ADNI 7/6/7 3 9000–11,000 90–154 2250–2500 0.8594 5 
CAIN 17/100/18 3 9000–11,000 117–150 2200–2800 0.4295–1 3 
CCNA 2/3/25 3 9000–9840 125–144 2250–2500 0.9375 3 
MICCAI 20/20/20 3 4800–11,000 82–279 1650–2500 0.9583–1.2 3 
MRBRAINS 0/7/0 3 11,000 125 2800 0.958 3 
Total 46/136/70 1.5–3 4800–11,000 82–279 1650–2800 0.4295–1.2 3–5  

Fig. 1. Encoding/decoding units for U-Net, and MultiResUNet. Encoding units reside between max pooling layers and decoding units reside between transposed 
convolutional layers. 
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was shown to outperform other deep-learning methods for WML seg-
mentation by a significant margin. UResNet2 replaces the encoding 
units of U-Net with residual elements containing two convolutional el-
ements which was shown to improve convergence speeds (Guerrero 
et al., 2018). 

2.4.6. MultiResUNet 
The multiple resolution U-Net (MultiResUNet) was proposed in 

(Ibtehaz and Rahman, 2020) as an architecture better suited for 
analyzing images at multiple scales. In U-Net, the encoding/decoding 
units contain successive 3 × 3 convolutional layers, which are equiva-
lent to a single 5 × 5 convolution (Szegedy et al., 2016). MultiResUNet 
expands on this concept by replacing all encoding/decoding units with 
“MultiRes” blocks; units that concatenate the outputs of 3 successive 3 
× 3 convolutional layers and bind them with a residual connection. This 
efficiently captures features at the 3 × 3, 5 × 5, and 7 × 7 scales. 
MultiResUNet also replaces all skip connections with “Res” paths, se-
quences of residual convolutional layers. The authors theorized the 
non-linear operations within these modified skip connections would 
reduce the semantic gap between shallow encoder and deep decoder 
features. The “MultiRes” block from (Ibtehaz and Rahman, 2020) is 
modified to follow the “batch normalization after addition” layer 
structure (He et al., 2016b). Fig. 1 shows these “MultiRes” units. 

2.4.7. Tiramisu 
The Tiramisu architecture is a U-Net like network modified to 

contain dense connections (Jégou et al., 2017) where each layer is 
connected to every other layer in a feed-forward manner to grant the 
network direct access to input and loss function gradients and ease 
training (Huang et al., 2017). This often results in performance gains due 
to an avoidance of redundant feature learning and some provided reg-
ularization which reduces overfitting (Li et al., 2018b). The Tiramisu 
architecture strategically confines dense connections to the encoding 
and decoding units to avoid excessively large feature maps and low-level 
information loss (Jégou et al., 2017). In this work, we use the Tiramisu 
network proposed in (Jégou et al., 2017) which contains two transition 
blocks and two dense blocks in the encoding and decoding paths. 

2.5. Evaluation metrics 

To evaluate the performance of the WML segmentation algorithms 
several metrics are used. The Dice similarity coefficient (DSC) (Wu et al., 
2019) is used to measure spatial overlap between the predicted WML 
mask (Seg) and corresponding manual ground truth (GT): 

DSC =
2|GT ∩ Seg|
|GT| + |Seg|

where the DSC ranges between 0 and 1, and a value of 1 implies perfect 
overlap. To investigate the degree of over-segmentation, the extra 
fraction (EF) was computed: 

EF =
FP

TP + FN  

where TP are the true positives, FP are the false positives, and FN is the 
false negatives of the automated ICV estimation as compared to the 
ground truth (Anbeek et al., 2004). Over-segmentation (i.e., inclusion of 
regions that are not WML) results in higher EF rates. Average volume 
difference in this work is measured using the absolute log-transformed 
volume difference (lAVD) (Kuijf et al., 2019). lAVD quantifies the dif-
ference between the ground truth (VGT) and predicted volume (Vseg) by: 

lAVD =

⃒
⃒
⃒
⃒ log

Vseg

VGT

⃒
⃒
⃒
⃒

where smaller lAVD implies a better segmentation. 

Hausdorff distance (HD) quantifies local differences between the 
predicted WML mask and ground truth by the distance between two 
subsets of points in a metric space: 

HD95 =maxxεGT minyεBM
⃦
⃦x − y

⃦
⃦

where smaller distances imply a greater degree of similarity. The 95th 
percentile HD was used to improve robustness and reduce sensitivity to 
noise. To consider variability in the metrics, the coefficient of variation 
is computed, as 

CoV =
σmetric

μmetric  

where σmetric and μmetric are the standard deviation and mean of a per-
formance metric in an experiment. Bland-Altman plots were used to 
measure the volume difference between manual and automatically 
predicted volumes as a function of lesion load. 

2.6. Experimental design 

For a tool to be clinically adopted, it must be accurate, generalize to 
new datasets and scanners and robust to challenges in data (such as 
pathology). As a result, several dimensions related to the effectiveness of 
WML segmentation will be assessed: (1) accuracy, (2) generalization 
capabilities and (3) robustness to pathology. 

2.6.1. Data splits 
Datasplit1 is a 75/25 training/validation to testing ratio of all 252 

FLAIR MRI volumes resulting in 189 vol for training/validation, and 62 
vol for testing. Stratified splitting was used so the proportions of CAIN, 
ADNI, CCNA, MICCAI and MRBrains volumes in the training, validation, 
and test sets mirrored that of the overall population. Sampling was 
completed to stratify across each scanner type (GE, Siemens, and Phi-
lips) where possible. Using the training/validation volumes, 64 × 64 
patches are extracted with 50 % overlap and 20 % of the patches were 
allocated for validation. This resulted in roughly 126 K training and 32 K 
validation patches. During test time, each test volume is patched, pre-
dictions are computed and the predicted WML volume is reconstructed. 
This process was repeated for each fold using four fold cross validation 
(with no overlap in testing data across the folds). This ensured every 
imaging volume of the 252 was tested on through one of the folds. 
Datasplit1 examines performance in an ideal scenario where training 
data is available for each dataset and can be used to establish ideal 
performance benchmarks. 

Datasplit2 is used to mimic real-world models where a single dataset 
could be used to generate ground truths and train models. MICCAI data 
was used exclusively for training with a 80/20 split with 48 vol for 
training/validation. Patches were sampled for the 48 training and 20 % 
of the patches were used for validation, resulting in roughly 22 K 
training and 6 K validation patches. The remaining (held out) 20 ADNI, 
135 CAIN, 30 CCNA, 7 MRBrains and 12 MICCAI volumes were used for 
testing. Since the datasets are of different pathology, centres and scan-
ners this experiment can be used to examine generalizability. The 
datasplits and data processing pipeline for deep learning models can be 
seen in Fig. 2. 

2.6.2. Accuracy 
The average accuracy of all methods is investigated for models 

trained and tested from datasplit1 and datasplit2 and is conducted to 
collect descriptive statistics. Results generated from datasplit1 models 
were emphasized since it represents the ideal setup of increased data 
diversity. Accuracy included evaluation metric distributions, means, 
coefficient of variation (CoV), as well as correlations between the true 
and predicted volumes. 
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2.6.3. Generalization 
To maximize translation opportunities, WML segmentation algo-

rithms should be robust across different centres, datasets and scanning 
devices. Evaluation metrics generated from datasplit1 and datasplit2 are 
used to assess generalization across scanner vendors, and unseen data-
bases. See example images from different databases and scanner vendors 
in Fig. 3. 

2.6.4. Robustness to pathology 
WML segmentation algorithms may have variable performance 

depending on the lesion load or disease severity. For clinical use, tools 
ideally would have equal performance (robustness) across varying de-
grees of pathology. In these experiments WML segmentation perfor-
mance is measured over varying levels of disease. datasplit1 was used 
for all experiments and only traditional (PVA, LPA) and top CNN 
methods are compared. To compare results across different lesion loads, 
the ground truth lesion loads were stratified by low (<5 mL), medium 
(5–15 mL), or high (>15 mL) (de Sitter et al., 2017) as shown in Table 2. 
Example images for each lesion category are shown in Fig. 4. To 
investigate WML segmentation performance as a function of overall 
neurodegeneration, the Montreal Cognitive Assessment score (MoCA) 
was used to categorize patients into cognitively normal and impaired, as 
shown in Table 3. MoCA is a clinical screening tool used to gauge 
cognitive impairment and overall neurodegeneration through various 
cognitive tests (Nasreddine et al., 1581). 

2.7. Statistical analysis 

To compare algorithm performance over different co-variates (i.e., 
scanner vendor, dataset, pathology level) statistical analysis is 
completed. A single evaluation metric (DSC) was chosen to simplify 
analysis as it is a strong indicator of overall performance and is inter-
pretative. For each group, the mean DSC was statistically compared 
across groups using analysis of variance (ANOVA). ANOVA is used to 
determine whether an algorithm has similar performance (DSC outcome 
variables) over different predictor variables (dataset, scanner, pathol-
ogy). ANOVA was selected based on descriptive statistics and goodness- 
of-fit-tests for normal distributions (i.e., Kolmogorov-Smirnov, Cramer- 

von Mises, Anderson-Darling) on DSC values across all WML segmen-
tation methods. DSC values underwent reflection with a single loga-
rithmic transformation to improve linearity and homogeneity of 
variance prior to analysis (Dobson and Barnett, 2018). When ANOVA 
tests were significant, Tukey-Kramer post-hoc analysis for multiple 
comparisons were used to determine the sources of differences. Adjusted 
DSC was used as the primary outcome variable. 

2.8. Implementation details 

For all deep learning (DL) methods, the generalized dice loss was 
used (Sudre et al., 2017), Adam Optimizer with a learning rate of 1e-4 
over 75 epochs, batch size of 64 (except for 32 for the Tiramisu 
network) and the images were patched into 64 × 64 regions with 50 % 
overlap, based on the findings of (Bernal et al., 2019). Moreover, 64 ×
64 patches provided the best performance likely because they offer a 
more localized representation for lesions, while not being too small of an 
image size for the input. Slight data augmentations were applied for 
rotation, scaling, shearing, scaling and translation (Li et al., 2018a). For 
each architecture, the filter sizes were implemented as described in their 
respective papers. The number of trainable parameters for each model 
are: 8.23 M, 7.94 M, 2.11 M, 8.26 M, and 9.22 M for U-Net, SC U-Net, 
UResNet2, MultiResUnet and Tiarmisu, respectively. Models were 
trained on a computer with a NVIDIA Tesla P100 GPU with 16 GB of 
RAM. All presented results pertain to the test sets in the data splits (see 
Section 2.6.1). Traditional methods (PVA and LPA) were applied on the 
entire test volumes (without patching). The loss graphs for each of the 
methods and the datasplits are shown in Fig. A & B. in the Appendix 
showing convergence. 

Fig. 2. Data splits and processing pipeline for training and testing the deep learning models. All methods use the same subsets of data.  

Fig. 3. Sample images from different datasets and scanner vendors.  

Table 2 
Number of volumes with low, medium, or high lesion loads from datasplit1.  

Pathology Categorization Volume No. Test Subjects 

WML Low <5 mL 68 
Medium 5–15 mL 99 
High >15 mL 85  
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3. Results 

3.1. Reliability of manual segmentations 

The ICC, IAVD, DSC, and EF of the manual segmentations for two 
separately trained raters across 20 of the same patients were computed 
to measure inter-rater variability. Across the 20 vol (approximately 
1000 imaging slices) with manual annotations from both raters, the 
results showed very good volume agreement between the two raters 
with an ICC of 0.98 (95 % confidence interval with values ranging be-
tween 0.87 and 0.99) and mean lAVD = 0.25 ± 0.17, which indicates 
excellent reliability (Koo and Li, 2016). The regression plot for the 
volumes of the two raters is shown in Fig. C in the Appendix, which 
shows high correlation between the computed WML volumes for each 
value, with an R value of 0.99. Voxel level inter-rater agreement was 
also good with a mean DSC of 0.71 ± 0.11 and mean EF of 0.19 ± 0.17. 
Average mean lesion volume across both raters for the 20 patients was 
14.45 ± 13.48 mL with a median of 7.18 mL and volumes per patient 
ranged from 1.07 mL to 41.70 mL which is a wide range of lesion loads. 
These experiments show the repeatability and reliability of the manual 
segmentation protocol and results. For the 10 subjects that had both 
manual and semi-automated corrected ground truths, the mean DSC =
0.6 ± 0.097, mean lAVD = 0.32 ± 0.21, mean EF = 0.66 ± 0.28. Average 
lesion volume for the manually rated 10 patients was 10.98 ± 7.59 mL 
with a median of 8.48 mL and volumes per patient ranged from 4.14 mL 
to 24.61 mL. As per (Dadar et al., 2017), a DSC > 0.5 is deemed to be 
very good agreement for WML segmentation in low lesion loads, since 
DSC values are smaller (and error is more noticeable) for objects with a 
high surface to volume ratio, as is the case for subjects with small lesion 
loads. As shown by Figure D in the Appendix, the average DSC of the 
subjects with≤5 mL (low lesion loads) is 0.51 indicating very good 
agreement. Additionally, in higher lesion loads > 5 mL, mean DSC =
0.65 which also indicates good agreement. Figure D in the Appendix also 
shows the Bland-Altman plot indicating a slight bias of − 3.99 mL with 
95 % confidence intervals of limits of agreement 2.39 to − 10.36. 

3.2. Accuracy 

Fig. 5 shows sample WML segmentations for a slice from each dataset 
generated by datasplit1 models along with the respective DSC. DL 
methods detect WML with higher accuracy and precision compared to 
traditional methods. PVA segments confluent lesions, but has trouble in 
regions with diffuse (lower intensity) pathology. LPA detects a moderate 

number of lesions, but over-segments in some volumes – especially 
ADNI. In contrast, DL methods detect small, punctate lesions, diffuse and 
confluent pathology across all datasets, and seem to correlate closely 
with ground truth images. 

The average evaluation metrics over all four folds and both data 
splits is shown in Table 4. The distributions of DSC and EF are shown in 
Fig. 6. All DL methods generated top performance over all metrics and 
data splits, with the top DSC performance for SC U-NET in both data 
splits (datasplit1: DSC = 0.71, datasplit2: DSC = 0.56), followed by U- 
Net (datasplit1: DSC = 0.70, datasplit2: DSC = 0.55) and MultiResUNet 
(datasplit1: DSC = 0.70, datasplit2: DSC = 0.55). The standard deviation 
of the metrics for the DL systems are also similar (and lower than 
traditional approaches) across the board. The traditional methods suffer 
from lower performance for both data splits with PVA DSC = 0.37 and 
0.36 for datasplit1 and datasplit2, respectively, and LPA with higher 
performance with DSC = 0.46 and 0.41 for datasplit1 and datasplit2. All 
DL methods experienced deterioration in performance in datasplit2 
while PVA and to some degree LPA maintained similar performance 
across data splits. In terms of EF, which measures the false positive rate, 
the DL methods consistently had the lowest EF (U-Net: EF = 0.32 for 
datasplit1 and SC U-Net: EF = 0.35 for datasplit2), lowest lAVD (U-Net, 
UResNet2, SC U-Net) and MultiResUNet had the lowest HD over both 
data splits. Traditional methods had larger EF, AVD and HD in general. 
Of all DL methods, Tiramisu had the worst performance over most 
metrics. 

A common challenge of WML segmentation algorithms is segmen-
tation in low lesion load scenarios. To examine performance of each 
method across lesion loads, DSC was stratified as a function lesion load 
ranges in Fig. 7, where increments of 5 mL were used to finely sample 
regions with low and moderate lesion loads. As can be seen all methods 
have lower DSC in low lesion loads that increase for larger lesion loads. 
The performance of DL methods are steadily higher than the traditional 
methods especially in the lower lesion load ranges (with similar per-
formance in high lesion loads). The difference in performance between 
traditional and DL methods is less in datasplit2 due to a decrease in 
performance of the DL methods in this split. DSC values from the DL 
methods are also more variable in datasplit2. 

Bland-Altman plots were generated to examine percent volume dif-
ference between ground truth and segmentation, as a function of the 
mean volume in Fig. 8. Traditional methods have much wider spread in 
the volume difference compared to DL methods with some large outliers 
especially in the larger lesion loads. In datasplit1, the DL methods have 
means close to 0 and spreads that are roughly the same (~15), with the 
exception of Tiramisu which has the largest spread of 17.29. In data-
split2, the mean difference increased for the DL methods, and the spread 
has increased compared to datasplit1. 

DL methods are performing similar to one another (but better than 
traditional methods even in datasplit2). Fig. 9 shows the averaged pre-
dictions for the DL methods and Fig. 10 has zoomed in regions. As can be 
seen, many of the DL methods predict the majority of the same lesions, 

Fig. 4. Example slices from subjects with low, medium and high lesion loads.  

Table 3 
Number of normal and impaired volumes from datasplit1.  

Pathology Categorization MoCA No. Test Subjects 
Cognitive Level Normal ≥26 82  

Impaired <26 91  
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Fig. 5. Example WML segmentations and DSC volume scores across all methods from datasplit #1 models. Green overlays: ground truth (GT) annotations, red 
overlays: traditional methods, and turquoise overlays: deep learning systems. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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as shown by the brightest values in the heat map. There are small dif-
ferences in the boundaries of these methods, and some small lesions. To 
take a closer look at the performance of the DL methods for WML seg-
mentation, additional analysis is done here to choose the top three 
methods to analyze further. Table 5 summarizes the mean and CoV of 
the DSC. The mean DSC is highest for SC U-Net in both data splits (DSC 
= 0.706 in datasplit1 and DSC = 0.558 in datasplit2) followed by 
MultiResUNet (DSC = 0.705 in datasplit1 and DSC = 0.553 in data-
split2) and U-Net (DSC = 0.704 in datasplit1 and DSC = 0.550 in 
datasplit2). CoV is lowest for SC U-Net, UResNet2 and MultiResUNet 
(datasplit1) and lowest for SC U-NET, U-Net and MultiResUNet in 
datasplit2. 

Fig. 11 contains the DSC distribution versus lesion load category for 
datasplit1 and datasplit2, which also is summarized in Table 6. 
Considering both datasplit1 and datasplit2, in the lower lesion loads, the 
top performer is SC U-Net (DSC = 0.61 in datasplit1 and DSC = 0.44 in 
datasplit2) followed by U-NET and MultiResUNet, and over all lesion 

loads, similar trends are seen (i.e top performance is obtained by SC U- 
Net, U-Net or MultiResUNet). Additional EF, lAVD and H95 metrics are 
included for all five deep learning methods for datasplit1 and datasplit2 
in Figs. 11 and 12 and summarized in Table 6. In low lesion loads, there 
is higher EF for UResNet2 and Tiramisu with mean EF = 0.876 and 
0.750, respectively, in datasplit1, indicating the best methods in terms 
of false positives in lower lesion loads are U-Net, MultiResUnet and SC 
U-Net. In datasplit2 the EF for UResNet2 and U-Net are similar, although 
the spread in UResNet2 is higher. These trends are supported by volume 
differences over both splits. In larger lesion loads the performance is 
comparable. The H95, which quantifies similarity in the boundaries 
between segmentation and ground truth lesions, is lowest for U-Net, 
MultiResUNet and SC U-Net especially in the lowest lesion loads, indi-
cating that small lesions are being detected with good precision. In 
general, when comparing from datasplit1 and datasplit2, the perfor-
mance is much more variable in lower lesion loads in datasplit2 (indi-
cating the models struggle to detect smaller lesions) but in larger lesion 

Table 4 
Average evaluation metrics across WML segmentation methods for both data splits. Metrics are shown as mean ± standard deviation. For each metric, ↑ means a higher 
value is better and ↓ means a lower value is better. Bold is best.   

DSC (%) ↑ EF (%) ↓ lAVD (%) ↓ HD (mm) ↓  

datasplit1 datasplit2 datasplit1 datasplit2 datasplit1 datasplit2 datasplit1 datasplit2 

PVA 0.37 ± 0.21 0.36 ± 0.20 5.89 ± 27.49 3.40 ± 17.08 0.71 ± 0.95 0.63 ± 0.77 29.74 ± 13.07 31.38 ± 13.68 
LPA 0.46 ± 0.21 0.41 ± 0.20 1.95 ± 9.65 3.04 ± 14.07 0.61 ± 0.66 0.68 ± 0.74 22.23 ± 13.08 24.98 ± 12.69 
U-Net 0.70 ± 0.13 0.55 ± 0.19 0.32 ± 0.57 0.71 ± 1.0 0.27 ± 0.28 0.41 ± 0.37 8.44 ± 10.91 22.87 ± 18.58 
SC U-Net 0.71 ± 0.13 0.56 ± 0.17 0.33 ± 0.81 0.35 ± 0.49 0.27 ± 0.28 0.42 ± 0.33 8.34 ± 11.34 21.20 ± 16.85 
Res U-Net 0.70 ± 0.13 0.52 ± 0.18 0.39 ± 1.04 0.63 ± 0.84 0.27 ± 0.29 0.53 ± 0.41 8.47 ± 11.27 22.14 ± 17.48 
MultiResUNet 0.70 ± 0.13 0.55 ± 0.18 0.34 ± 0.64 0.47 ± 0.6 0.28 ± 0.27 0.44 ± 0.37 8.33 ± 11.15 21.18 ± 16.95 
Tiramisu 0.69 ± 0.13 0.53 ± 0.21 0.38 ± 0.75 1.03 ± 1.34 0.29 ± 0.28 0.55 ± 0.46 12.54 ± 12.89 23.05 ± 18.38  

Fig. 6. DSC and EF distributions across all WML segmentation methods. Left: datasplit1. Right: datasplit2.  
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loads the performance is improved, and more consistent (lower standard 
deviation). Since U-Net, MultiResUNet and SC U-Net have the highest 
overlap (DSC), and perform well in terms of false positives, and volume 
differences, especially in lower lesion loads, these three DL methods are 
analyzed further. 

3.3. Generalization 

This section analyzes method performance across scanner vendors 

and datasets for both datasplit1 and datasplit2. Results are focused on 
the top three DL methods (SC U-Net, MultiResUNet, U-Net) and the 
traditional methods (PVA, LST). Fig. E (Appendix) contains the perfor-
mance metrics for all DL methods. datasplit1 had testing data from the 
same distribution as the training set (i.e. all databases are represented in 
the training pool). Datasplit #1 contained 46 GE scans, 136 Philips 
scans, and 70 S scans and all data was tested through one of the folds. 
Models trained using datasplit2 had training data from a single dataset 
(MICCAI) and test volumes from ADNI, CCNA, CAIN, MICCAI and 

Fig. 7. DSC as a function of lesion load ranges for datasplit1 (left) and datasplit2 (right).  

Fig. 8. Bland Altman plots for datasplit1 (left) and datasplit2 (right).  
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MRBrains to investigate how methods generalize to datasets within and 
outside their training distribution. The test set for datasplit2 contained 
31 GE scans, 119 Philips scans, and 54 S scans. The training set had 16 
GE, 16 Philips and 16 S scans from MICCAI in datasplit. 

Table 7 and Fig. 13 summarizes DSC as a function of scanner vendor 
and data split. Over both datasplit1 and datasplit2 SC U-Net has the best 
mean DSC performance across GE, Philips and Siemens for datasplit1 
with DSC = 0.69, 0.70, 0.74, respectively, and for Philips in datasplit2 
with DSC = 0.51. U-Net has the best performance in datasplit2 for GE 
and Siemens (DSC = 0.64 and DSC = 0.68) and MulitResUnet had the 
lowest variance in DSC for GE and Philips (datasplit1). Deep learning 
performs better than traditional methods over all scanner vendors with 
an average improvement of 34 % and 21 % for datasplit1 and datasplit2 
(respectively) compared to PVA, and an average improvement of 24 % 
(datasplit1) and 17 % (datasplit2) compared to LPA. There is less per-
formance improvement using DL in datasplit2 since traditional methods 
have similar performance across scanners and data splits, but the DL 
methods drop off in performance for datasplit2. In datasplit1, DL 
methods have similar performance across the scanners, with Siemens 

having the best segmentation performance overall. Using datasplit2 the 
performance for the DL methods across scanner vendors is lower and 
more variable, with the most noticeable deterioration in Philips scans. 
Traditional methods exhibit variability across scanners in datasplit1 and 
datasplit2. The lowest performance for PVA was found in GE scanners, 
followed by Siemens and then Philips was the highest. The CoV of 
traditional methods across scanner types and data splits is similar but 
higher than the DL methods by more than double in datasplit1. DL 
methods have lower CoV compared to traditional methods and the 
lowest CoV in Siemens scanners for both datasplit1 and datasplit2. In 
datasplit1, across the DL methods, the most variability (highest CoV) in 
DSC comes from the GE scanner, while in datasplit2, the highest CoV is 
from the Philips scanner. 

ANOVA was used to test similarity in DSC means across scanner 
groups for all the methods (PVA, LPA, U-Net, SC U-Net, Tiramisu, 
UResNet2, MultiResUNet). In datasplit1, except for the PVA method 
(traditional), all methods had significant ANOVA tests (p < 0.05) indi-
cating differences in algorithm performance between vendors (see 
Table A in Appendix). Post-hoc analysis revealed the source of most 
differences (p < 0.05) was performance between GE versus Philips scans 
and GE versus Siemens scans. U-Net had significant differences across all 
three scanner vendors and Tiramisu and UResNet2 only had differences 
between GE and Philips. In datasplit2, similar trends are noted in that 
PVA (traditional method) has been found to have statistically similar 
DSC means across the scanner vendors, and this time so does LPA. All of 
the DL methods were found to have significantly different DSC means, 
which post hoc analysis revealed that differences were mainly between 
GE vs Philips. and Philips vs. Siemens. Differences in performance be-
tween GE and Siemens scans was not significant across all DL methods 
indicating consistent performance in these two scanner types. 

To analyze generalization abilities of each method, the DSC perfor-
mance was compared across datasets. Fig. 14 contains graphs of the DSC 
distributions, mean DSC and DSC CoV for WML segmentation methods 
in datasplit1 and datasplit2 (right) as a function of dataset. The metrics 
are summarized in Table 8 for the traditional methods and the top three 

Fig. 9. Heatmaps representing average prediction across all DL methods for images in Fig. 5. Top: original with ground truths, bottom: averaged WML prediction 
over 5 DL methods. 

Fig. 10. Heatmaps representing average prediction across all DL methods. Zoomed in regions from circles in Fig. 9.  

Table 5 
Mean, standard deviation and CoV DSC for DL-based WML segmentation 
methods for both data splits. Bold is the best.    

U-Net SC-U- 
Net 

Res U- 
Net 

MultiResUNet Tiramisu 

datasplit1 DSC 0.704 
±

0.134 

0.706 
±

0.132 

0.703 
±

0.128 

0.705 ±
0.129 

0.687 ±
0.133 

datasplit2 DSC 0.550 
±

0.190 

0.558 
±

0.175 

0.522 
±

0.183 

0.553 ±
0.179 

0.532 ±
0.205 

datasplit1 CoV 
DSC 

0.190 0.186 0.182 0.184 0.194 

datasplit2 CoV 
DSC 

0.346 0.314 0.350 0.323 0.385  
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DL methods. The performance for all DL methods is shown in Fig. F 
(Appendix). SC U-Net had the top performance over most datasets in 
datasplit1 (MICCAI: DSC = 0.78, CAIN: DSC = 0.67, ADNI: DSC = 0.71) 
and datasplit2 (CAIN: DSC = 0.50). The other top two performers were 
U-Net in datasplit2 (MICCAI: DSC = 0.79, CCNA: DSC = 0.69, ADNI: 
DSC = 0.67, MRBrains: DSC = 0.62) and MulitResUNet in datasplit1 
(CCNA: DSC = 0.73, MRBrains: DSC = 0.65). In general, for all DL 
methods, there was a drop in mean DSC performance in datasplit2 as 

compared to datasplit1 over all datasets except for MICCAI which was 
included in both training sets. In the MICCAI dataset, the top performing 
DL methods had DSC>0.75 in datasplit1 and slightly higher with 
DSC>0.78 for datasplit2. MICCAI had the best test performance across 
all methods and datasplits except for PVA. The next best performing 
dataset across the methods is CCNA (30 vol), followed by ADNI (20 vol). 
Across both datasplits and most methods, CAIN (135 vol) has lowest 
performance, with noticeable DSC degradation in datasplit2 in the DL 

Fig. 11. DSC and EF versus lesion load category for the deep learning methods. Left: datasplit1. Right: datasplit2.  

Table 6 
Mean DSC, EF, IAVD and H95 for DL-based WML segmentation methods for both data splits. Bold is the best.    

Low LL Medium LL High LL   

datasplit1 datasplit2 datasplit1 datasplit2 datasplit1 datasplit2 

DSC U-Net 0.611 ± 0.143 0.400 ± 0.178 0.680 ± 0.102 0.520 ± 0.153 0.803 ± 0.086 0.716 ± 0.108 
SC-U-Net 0.613 ± 0.141 0.437 ± 0.162 0.684 ± 0.098 0.527 ± 0.147 0.804 ± 0.085 0.699 ± 0.120 
Res U-Net 0.603 ± 0.131 0.392 ± 0.174 0.684 ± 0.092 0.496 ± 0.146 0.803 ± 0.081 0.665 ± 0.138 
MultiResUNet 0.610 ± 0.135 0.416 ± 0.161 0.685 ± 0.097 0.527 ± 0.142 0.801 ± 0.085 0.702 ± 0.123 
Tiramisu 0.589 ± 0.132 0.376 ± 0.194 0.661 ± 0.104 0.499 ± 0.168 0.793 ± 0.085 0.707 ± 0.119 

EF U-Net 0.669 ± 0.975 1.613 ± 1.580 0.237 ± 0.206 0.530 ± 0.438 0.142 ± 0.102 0.231 ± 0.190 
SC-U-Net 0.716 ± 1.476 0.765 ± 0.802 0.237 ± 0.203 0.256 ± 0.182 0.146 ± 0.101 0.146 ± 0.116 
Res U-Net 0.876 ± 1.916 1.400 ± 1.250 0.260 ± 0.204 0.483 ± 0.458 0.169 ± 0.120 0.205 ± 0.209 
MultiResUNet 0.712 ± 1.112 1.021 ± 0.897 0.246 ± 0.204 0.357 ± 0.308 0.142 ± 0.111 0.181 ± 0.157 
Tiramisu 0.750 ± 1.352 2.198 ± 1.992 0.265 ± 0.217 0.836 ± 0.786 0.206 ± 0.145 0.368 ± 0.354 

IAVD U-Net 0.360 ± 0.372 0.727 ± 0.497 0.298 ± 0.257 0.362 ± 0.244 0.181 ± 0.170 0.230 ± 0.197 
SC-U-Net 0.366 ± 0.396 0.451 ± 0.354 0.295 ± 0.250 0.449 ± 0.326 0.180 ± 0.166 0.342 ± 0.296 
Res U-Net 0.400 ± 0.419 0.761 ± 0.439 0.269 ± 0.232 0.488 ± 0.351 0.174 ± 0.163 0.408 ± 0.400 
MultiResUNet 0.370 ± 0.363 0.586 ± 0.395 0.289 ± 0.247 0.431 ± 0.363 0.189 ± 0.171 0.322 ± 0.312 
Tiramisu 0.370 ± 0.375 0.946 ± 0.574 0.320 ± 0.272 0.507 ± 0.356 0.192 ± 0.154 0.294 ± 0.223 

H95 U-Net 14.97 ± 15.28 34.96 ± 21.49 8.58 ± 9.17 23.64 ± 16.33 3.18 ± 3.21 11.97 ± 11.51 
SC-U-Net 15.66 ± 16.60 32.71 ± 18.47 7.90 ± 8.46 22.11 ± 15.38 3.09 ± 3.21 10.57 ± 9.50 
Res U-Net 15.59 ± 16.97 33.12 ± 20.72 8.48 ± 7.79 22.67 ± 15.68 2.89 ± 2.54 12.51 ± 10.39 
MultiResUNet 15.54 ± 16.84 32.98 ± 20.40 7.99 ± 7.59 21.14 ± 14.13 3.07 ± 2.87 11.68 ± 10.61 
Tiramisu 22.01 ± 15.98 34.20 ± 21.49 13.38 ± 10.52 23.91 ± 16.71 4.21 ± 4.48 12.79 ± 12.43  
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methods. Mean DSC performance for MRBrains (7 vol) is low as well. In 
terms of traditional methods, PVA and LPA are both relatively consistent 
methods, despite their poor performance. LPA outperforms PVA on the 
MICCAI and MRBrains datasets, whereas PVA outperforms LPA on 
ADNI, and has similar performance in CAIN and CCNA. This is most 
likely due to LPA being trained on subjects with MS lesions, whereas 
ADNI, CAIN and CCNA are subjects with vascular and dementia disease 
(different pathologies). The CoV is variable across the datasets and over 
all methods, with lower CoV for the DL methods, especially in datasplit1. 
The highest CoV is for the MRBrains dataset in the DL methods. In 

datasplit2, the CoV has increased in the DL methods, with the CoV of 
CAIN being much higher than the other datasets, followed by MRBrains 
and CCNA. 

To quantify the variability in performance across datasets, ANOVA 
testing was completed for all methods for datasplit1 and datasplit2. 
These results are summarized in Table C and Table D in the Appendix. 
The null hypothesis that the mean DSC is the same across datasets was 
rejected (p < 0.05) for all methods in datasplit1 and datsplit#2 except 
for the PVA method (which is a traditional method). In datasplit1, post- 
hoc analysis revealed the main differences in the DL methods are be-
tween CAIN and MICCAI. In datasplit2, post hoc analysis shows there are 
more differences across datasets and methods in this split. All methods 
had differences in mean DSC for ADNI vs. CAIN, CAIN vs. CCNA, CAIN 
vs. MICCAI. SC U-Net, UResNet2, and MultiResUNet had additional 
differences between CCNA vs. MICCAI, and UresNet2 and Tiramisu had 
additional DSC differences in CAIN vs. MRBrains. Overall, U-Net, Mul-
tiResUNet and SC U-Net had the least amount of differences across 
datasets. 

3.4. Robustness to pathology 

In this section, algorithm robustness to pathology is analyzed for 
mainly datasplit1 since this represents the ideal training scenario. Only 
the top three DL methods (U-Net, MultiResUNet, SC U-Net) along with 
the traditional methods (PVA, LST) are compared. DSC performance is 
analyzed as a function of WML lesion load category (low, medium, high) 
and impairment (MoCA≥26, MoCA<26). All 252 vol were used to 
categorize lesion loads through the four folds. Several example seg-
mentations for each of the groups and methods are shown in Fig. 15. LPA 
oversegments especially in low lesion loads and PVA misses small, faint 
lesions in multiple categories. The DL systems seem to consistently 
detect small lesions, and majority of the lesions seen in the ground truth 

Fig. 12. IAVD and H95 versus lesion load category for the deep learning methods. Left: datasplit1. Right: datasplit2.  

Table 7 
Mean DSC for WML segmentation methods on both data splits as a function of 
scanner. Bold is best.    

PVA LPA U-Net SC-U- 
Net 

MultiResUNet 

GE datasplit1 0.361 
±

0.149 

0.476 
±

0.205 

0.686 
±

0.149 

0.687 
±

0.153 

0.686 ±
0.147  

datasplit2 0.404 
±

0.193 

0.403 
±

0.186 

0.635 
± 
0.167 

0.619 
±

0.181 

0.615 ±
0.178 

Philips datasplit1 0.378 
±

0.211 

0.423 
±

0.199 

0.693 
±

0.135 

0.695 
±

0.133 

0.693 ±
0.127  

datasplit2 0.345 
±

0.195 

0.397 
±

0.183 

0.470 
±

0.180 

0.513 
± 
0.174 

0.507 ±
0.175 

Siemens datasplit1 0.364 
±

0.212 

0.503 
±

0.237 

0.738 
±

0.115 

0.741 
± 
0.107 

0.739 ±
0.107  

datasplit2 0.379 
±

0.204 

0.446 
±

0.226 

0.679 
± 
0.125 

0.622 
±

0.143 

0.621 ±
0.155  
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delineations are detected for all lesion groups and cognitive status. 
DSC distributions, mean DSC and DSC CoV as a function of WML 

lesion load category (low, medium, high) for datasplit1 are shown in 
Fig. 16 and summarized in Table 9. The average DSC for the DL methods 
are higher in all lesion categories with DSC>0.61 for low, DSC>0.68 for 
medium and DSC>0.80 for high. Of all methods, SC U-Net is the highest 
average DSC in two out of the three categories (low and high) with 
MultiResUNet being the highest for the medium lesion load (although 
only slightly higher than SC U-Net). The MultiResUNet had the lowest 
standard deviation for both low LL and medium LL cases. The traditional 
methods suffer especially in low lesion loads with DSC, with average 
DSC of 0.2 and 0.26 for PVA and LPA respectively. Performance of the 
traditional methods increases with lesion loads but is still lower than the 
DL methods. Although the DL methods are performing the best, there is 
still lower DSC performance in lower lesion loads. The CoV over all 

lesion loads is much lower in the DL methods indicating that there is 
more consistency in the predictions across lesion loads. The CoV is 
higher in the low lesion load category for all methods. The ANOVA 
testing results for DSC performance across lesion load levels is shown in 
Table E and Table F (Appendix) for datasplit1 and datasplit2, respec-
tively. For all methods, both DL and traditional methods have significant 
differences in DSC means across the low, medium and high lesion loads 
categories across datasplit1 and datasplit2. 

The same analysis is performed on test volumes that are normal and 
impaired. The DSC distributions, mean DSC and DSC CoV as function of 
cognitive status for datasplit1 is shown in Fig. 17 and summarized in 
Table 10. MultiResUNet has the top DSC performance in impaired and 
non-impaired subjects (DSC = 0.69 and DSC = 0.67, respectively), 
which is tied with SC U-Net for non-impaired subjects (may be due to 
low lesion loads). Over all methods, the performance went down for 

Fig. 13. DSC distributions, mean DSC and DSC CoV for WML segmentation methods for datasplit1 (left) and datasplit2 (right) as a function of scanner vendor.  

A. Khademi et al.                                                                                                                                                                                                                               



Neuroimage: Reports 1 (2021) 100044

15

impaired volumes, which likely contain more prevalent pathology, 
except for PVA which had a slight improvement in performance (and 
had the same performance in the impairment group over datasplit1 and 

datasplit2). The 2D CNN methods had higher DSCs with lower variance 
over MoCA groups compared to traditional methods, with almost 2x 
performance gains. The CoV is at least two-fold lower for DL methods 

Fig. 14. DSC distributions, mean DSC and DSC CoV for WML segmentation methods across datasets. datasplit1 (left) and datasplit2 (right).  

Table 8 
Mean DSC (+/− std) for WML segmentation methods on both data splits as a function of dataset. Bold is the best.    

PVA LPA U-Net SC-U-Net MultiResUNet 
MICCAI datasplit1 0.370 ± 0.252 0.629 ± 0.211 0.773 ± 0.123 0.777 ± 0.119 0.769 ± 0.121  

datasplit2 0.343 ± 0.244 0.625 ± 0.224 0.790 ± 0.109 0.785 ± 0.104 0.777 ± 0.109 
CAIN datasplit1 0.352 ± 0.194 0.382 ± 0.169 0.672 ± 0.128 0.673 ± 0.128 0.672 ± 0.126  

datasplit2 0.342 ± 0.193 0.383 ± 0.172 0.477 ± 0.171 0.504 ± 0.164 0.498 ± 0.164 
ADNI datasplit1 0.446 ± 0.169 0.363 ± 0.172 0.701 ± 0.102 0.714 ± 0.086 0.713 ± 0.095  

datasplit2 0.444 ± 0.166 0.339 ± 0.167 0.673 ± 0.102 0.659 ± 0.117 0.654 ± 0.122 
CCNA datasplit1 0.408 ± 0.205 0.479 ± 0.204 0.727 ± 0.128 0.727 ± 0.127 0.731 ± 0.121  

datasplit2 0.415 ± 0.204 0.463 ± 0.211 0.689 ± 0.139 0.627 ± 0.153 0.631 ± 0.169 
MRBrains datasplit1 0.365 ± 0.227 0.543 ± 0.271 0.639 ± 0.214 0.640 ± 0.184 0.647 ± 0.172  

datasplit2 0.352 ± 0.213 0.562 ± 0.275 0.619 ± 0.183 0.618 ± 0.176 0.618 ± 0.187  
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(and similar for impaired and normal subjects) compared to traditional 
methods that had more variability in performance. 

ANOVA testing was completed to test differences across normal and 
impaired groups for datasplit1 and datasplit2. Results are summarized in 
Table G and Table H (Appendix). In datasplit1, there were no significant 
differences in DSC means across MoCA groups for all traditional and DL 
methods (p > 0.05). In datasplit2, there were no significant differences 
across methods except for Tiramisu and U-Net. 

There were no significant differences in DSC means across MoCA 
categories over all the methods for datasplit1. However, in datasplit2, 
there were significant differences across MoCA categories for U-Net and 
Tiramisu, indicating these models had difficulty generalizing in brains 
with differing levels of neurodegeneration. Note that MoCA was not 
available for MICCAI, MRBrains and 12 vol from CAIN, ADNI and CCNA. 
Therefore, the MoCA results only consider a subset of the total ground 
truth dataset. To investigate further, consider the frequency of lesion 
load category vs. MoCA in Fig. 18. Low, medium and high lesion load 
categories are found across different MoCA ranges (i.e., MoCA<26, 
MoCA≥26). Perhaps the average performance across lesion load groups 
is averaging out and making the mean performance similar for impaired 
and normal subjects. The MoCA score is a subjective rating and there 
could have been overlaps between normal and impaired patients which 
can also skew results. 

3.5. Post-hoc exploratory analysis 

A few outliers were examined by investigating the largest volume 
difference (maximum lAVD) on the fourth fold. A single volume was 
found to be an outlier across all methods. The ground truth and pre-
dictions for each method is shown in Fig. 19. As can be seen, PVA is too 
conservative on the lesion boundaries and faint lesions, which could 
indicate the PVA threshold is too high for this volume. LPA also grossly 
oversegmented the lesions and is likely due to different scanner types 
and intensity characteristics of the test data as compared to the training 
data, which is related to MS disease. DL methods show high correlation 
with the GT. As this is a low lesion load case (~5 mL), any pixel dif-
ferences result in large errors. 

We also investigated segmentation performance as a function of rater 
for datasplit1 and datasplit2 in Fig. 20. Rater1-3 is developed by the 
authors (CAIN, ADNI, CCNA) and as shown by Section 3.1, there was 
high agreement across raters for the WML ground truths. Rater4 is from 
MICCAI and Rater5 is from MRBrains competition and were developed 
by experts. In datasplit1, there is relatively high performance across all 
the methods, with the highest performance for Rater4, which is the 
MICCAI competition annotations developed through consensus. In 
datasplit2, there is much more variability in DSC performance over 
raters, and there is lower performance for Rater3, which corresponds to 
CAIN volumes from the Philips vendor. The lower performance on 
Rater3 in datasplit2 is likely attributed to differences in pixel resolutions 

Fig. 15. Example segmentations and volume DSC scores for different levels of pathology and cognitive status. Green is the ground truth, red for traditional algorithm 
predictions, and turquoise are the top DL predictions. Top to bottom: ADNI (low LL), MICCAI (medium LL), CAIN (high LL), CAIN (normal), ADNI (impaired). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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as this data is higher resolution (0.43 mm × 0.43 mm pixels) compared 
to the MICCAI training data which has 1 mm × 1 mm pixel dimensions. 
Physical dimension mismatch between training and testing datasets 
have been known to cause generalization issues in medical imaging and 
DL (Mahbod et al., 2021, Sabottke and Spieler, 2020, Liu et al., 2020). 
This is due to the fact that CNNs employ a fixed receptive field, i.e. 3 × 3, 
which determines the physical dimensions of the underlying objects that 
are analyzed. If the training data is not the same resolution as the test 
set, the scale of the objects analyzed would be different, and the model 

would learn features which will not generalize as well to other resolu-
tions. Therefore, if the classifier is not exposed to examples from higher 
resolution data, it will not learn that representation. This was clearly 
demonstrated in datasplit1 results, which shows the classifier was able 
to learn the higher resolution representation when it is included in the 
training dataset. Similarly note that the held-out testing data for Rater1 
and Rater2 in datasplit2, which has a median pixel size of 0.8594 mm ×
0.8594 mm resolution, has better performance compared to Rater3, and 
this may be due to the fact that the resolutions in these raters are much 
more similar to the MICCAI training data resolution (1 mm × 1 mm). 

To further investigate the impact of the annotations from Rater3, 
examine the WML segmentation performance that compares predictions 
to expert ground truths from MICCAI and MRBrains. In datasplit1 
(trained on all data including Rater3) predictions on expert datasets had 
excellent performance with mean DSC = 0.78 in MICCAI and mean DSC 
= 0.64 in MRBrains. The performance in datasplit2 is roughly the same 
with DSC = 0.79 (MICCAI) and DSC = 0.62 (MRBrains) and since there 
is no drastic change in performance across datasplits we conclude that 
Rater3 is not negatively impacting results. Another issue is that the data 
is from the Philips scanner, and only 20 vol of Philips were in the 
training dataset. This is something we found in another work (DiGre-
gorio et al., 2021), since after intensity standardization there is a slight 
misalignment of tissue intensities in the Philps scans, which could also 
be creating biases (see Discussion). Lastly, a semi-automated correction 
was used to touch up the manual segmentations for Rater3, which could 
add some bias, but we doubt this to be a major concern. As shown by the 
inter-rater agreement studies, there is very good agreement between the 
semi-automated and manual gold standard. This is supported by the 
high performance of the classifier over all other raters in datsplit1, 
which was trained using all the data including from Rater3. If Rater3’s 
annotations were detrimental to the system we would see degradation in 

Fig. 16. DSC distributions, mean DSC and DSC CoV across WML segmentations methods for datasplit #1 vs. WML load.  

Table 9 
Mean DSC for WML segmentation methods on both data splits as a function of 
LL. Bold is best.    

PVA LPA U-Net SC-U- 
Net 

MultiResUNet 

Low LL datasplit1 0.204 
±

0.132 

0.259 
±

0.154 

0.611 
±

0.143 

0.613 
±

0.141 

0.610 ±
0.135 

datasplit2 0.204 
±

0.132 

0.259 
±

0.154 

0.400 
±

0.178 

0.437 
±

0.162 

0.416 ± 
0.161 

Medium 
LL 

datasplit1 0.328 
±

0.159 

0.393 
±

0.158 

0.680 
±

0.102 

0.684 
±

0.098 

0.685 ± 
0.097 

datasplit2 0.323 
±

0.161 

0.369 
±

0.145 

0.520 
±

0.153 

0.527 
±

0.147 

0.527 ±
0.142 

High LL datasplit1 0.562 
±

0.147 

0.641 
±

0.150 

0.803 
±

0.086 

0.804 
± 
0.085 

0.801 ±
0.085 

datasplit2 0.550 
±

0.135 

0.593 
±

0.148 

0.716 
± 
0.108 

0.699 
±

0.120 

0.702 ±
0.123  
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performance by including them in the training pool, which was not 
observed. It is therefore postulated that scanner manufacturer, acquisi-
tion parameters and perhaps the annotations contributed to the reduc-
tion in DSC for datasplit2 for Rater3. 

MICCAI has the highest overall performance again in datasplit2, 
probably because of the quality of annotations and also being trained on 
that dataset. Although there may be similarities between datasets that 
classifiers are learning and exploiting to achieve good performance in 
the respective datasets, classifiers may also be learning the annotating 
pattern of the dataset. This means the classifier learns based on the 
experience of a single set of delineations. Results from datasplit1 and 
datasplit2 clearly demonstrate that including annotations from multiple 
raters results in the best performance. This is because WML are hard to 

define and are done so based on a largely subjective criteria. Therefore, 
including more annotations from different raters can help to create more 
diversity in the training data which is better for learning wider repre-
sentations. Expert annotations are costly and often only partially 
available and as algorithms get more data hungry it is becoming more 
commonplace to use annotations provided by two or more raters. Also, 
note MRBrains, despite being developed by experts, decreased in per-
formance in datasplit2, which further supports the hypothesis that the 

Fig. 17. DSC distributions, mean DSC and DSC CoV across WML segmentations methods for datasplit1 as a function of cognitive level (impaired: MoCA < 26, 
normal: MoCA≥26). 

Table 10 
Mean DSC for WML segmentation methods as a function of cognitive level. Bold 
is the best.    

PVA LST U-Net SC-U- 
Net 

MultiResUNet 

Normal datasplit1 0.376 
±

0.209 

0.412 
±

0.168 

0.687 
±

0.134 

0.688 
±

0.133 

0.688 ± 
0.132 

datasplit2 0.366 
±

0.207 

0.412 
±

0.170 

0.499 
±

0.191 

0.523 
± 
0.179 

0.519 ±
0.182 

Impaired datasplit1 0.384 
±

0.183 

0.375 
±

0.190 

0.666 
±

0.127 

0.667 
±

0.128 

0.671 ± 
0.122 

datasplit2 0.384 
±

0.183 

0.359 
±

0.188 

0.591 
±

0.160 

0.570 
±

0.153 

0.542 ±
0.166  

Fig. 18. Number of FLAIR imaging volumes with particular lesion load cate-
gories and MoCA. 
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systems could be partially learning annotation patterns and should be 
exposed to more raters. 

4. Discussion 

Although many structural biomarkers are extracted from T1 MRI, 
most WML segmentation algorithms require FLAIR MRI as a primary 
data input (Khademi et al., 2011, (Heinen et al., 2019, García-Lorenzo 
et al., 2013). In (Narayana et al., 2020), the FLAIR sequence was 
demonstrated to be the most crucial for lesion segmentation. Despite 
this, it is common to analyze FLAIR via multi-modal approaches that 
co-register FLAIR to T1 or T2 MRI (Soltanian-Zadeh and Peck, 2001, 
Khademi et al., 2020). This multiparametric approach prolongs scan 
times, increases acquisition costs, and can introduce registration errors 
across sequences (Narayana et al., 2020, Soltanian-Zadeh and Peck, 
2001, Khademi et al., 2020) for WML segmentation approaches. Since 
FLAIR is routinely acquired clinically and highlights vascular disease 
with high sensitivity, there is benefit in developing methods that operate 
on this single sequence. Not only are there less integration hurdles using 
a single sequence, but also, WML based measurements can be readily 
used to augment neurological workflows. The results of this work 
demonstrate the value of FLAIR-based WML segmentation algorithms 
for multicentre, multi-disease data and presents a novel evaluation 
framework to establish proof of effectiveness. In contrast with some 

single center studies, a large multicenter dataset and comprehensive 
validation experiment was used in this work. 

Descriptive and statistical analyses were used to analyze perfor-
mance metrics across different dimensions related to accuracy, gener-
alizability (scanners, datasets) and robustness (pathology levels). 
Investigating algorithms in larger groups of patients from multiple sites 
and over several dimensions is necessary to establish proof of effec-
tiveness of computational tools and biomarkers. We believe in this 
manuscript, we have demonstrated proof of effectiveness, which is a 
prerequisite to clinical translation. To date, many proof of concept al-
gorithms have been developed for neuroimaging (Akkus et al., 2017, 
Bernal et al., 2019) but there is a lack of performance testing across 
important dimensions in multicentre datasets to determine clinical 
feasibility. Therefore, the methodology and experiments presented in 
this work bridges that gap. The evaluation framework can be used on 
other tools to establish proof of effectiveness, to determine the optimal 
method for the task, to inform design decisions for method improve-
ment, and to predict performance on new, prospective datasets. These 
evaluations translate into more reliable tools and ultimately better pa-
tient care. 

In general, DL methods outperform traditional methods in terms of 
accuracy. In datasplit1, the performance was higher than traditional 
methods by 40 %, although the margin was narrowed between these two 
families of methods in datasplit2 (DL methods had a drop in 

Fig. 19. Example outlier predictions determined by maximum lAVDAVD on the fourth fold in datasplit1. Green: ground truth, red: traditional methods, turquoise: 
deep learning methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 20. DSC performance of the DL methods as a function of rater for datasplit1 and datasplit2.  
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performance while the performance of PVA and LPA remained relatively 
the same in datasplit2). The lower performance of DL methods in 
datasplit2 can be associated with the fact the training and testing dis-
tributions are different, which is a known challenge of deep learning 
(Zech et al., 2018). In terms of the lower performance of PVA and LPA; 
this indicates that intensity alone is not a strong enough feature for high 
segmentation performance, which may be due to diffuse regions of 
partial ischemia/demyelination, acquisition noise, and false positives 
such as CSF flow through. CNNs on the other hand are capable of 
modeling complex relationships between pixels and use non-linear 
boundaries for excellent segmentation performance (Guerrero et al., 
2018). DL methods may be better suited for WML segmentation since 
WML are heterogeneous (variability in intensity, size, shape, texture) 
that could be better modeled using high dimensional approaches. Of all 
methods, SC U-Net exhibited the best mean performance over all test 
sets and dimensions including across lesion loads (low and high), 
scanners (GE, Siemens, Philips) and across datasets (MICCAI, CAIN, 
ADNI), with U-Net and MultiresUnet as runner ups. SC U-Net uses skip 
connections to maintain copies of higher resolution features in deeper 
layers which may help important features, such as those related to 
smaller lesions, persist in the network. MultiresUnet was also a leading 
method, likely due to the multiresolutional feature extractors (filters). In 
terms of comparison to literature, the proposed approach is comparable 
to the top performing models from the WMH segmentation challenge, 
with the SC U-Net architecture achieving a mean DSC of 0.78 and 0.79 
on the MICCAI dataset for datasplit 1 and 2 respectively. The top 10 
models from the challenge achieved a mean DSC of 0.78 or greater, with 
the top performing model achieving a DSC of 0.81 (Kuijf et al., 2019). 
The performance across U-Net variants was very similar to that of U-Net 
(see Fig. 11) and likely is due to the underlying U-Net model capturing 
majority of the information needed to robustly predict lesions on a 
per-voxel basis. In Figs. 9 and 10, it is seen that there is agreement in the 
predicted lesion masks across different U-Net variants. This highlights 
the potential for aggregation networks and ensemble systems for WML 
segmentation. For example, Stack-Nets, proposed by Li et al. achieved 
state-of-the-art performance on the MICCAI dataset (Li et al., 2019). 
Stack-Nets uses aggregated multi-scale U-Nets with multiple convolu-
tional layers at different receptive fields (Li et al., 2019). In future work, 
a similar approach can be implemented by aggregating predictions from 
top performing U-Net variants to achieve better performance. 

Statistical analysis of performance metrics across scanners and 
datasets found that the PVA method was able to provide the same mean 
performance across all scanner types and datasets, for dataplit1 and 
datasplit2, which indicates the PVA method is able to generalize across 
scanners and centres. That can largely be attributed to the intensity 
standardization framework and PVA-based model. LPA was able to 
generalize across many scanners and datasets, as well. In contrast, 
ANOVA testing showed the mean performance of DL methods varied for 

many scanner comparisons, with similar means found for Philips versus 
Siemens for many methods in datasplit1 and similarity in performance 
across scanners except if Philips was one of the comparisons in data-
split2. In datasplit1, GE was represented least in the training data, which 
may explain differences in performance when comparing Siemens or 
Philips to the performance of GE. In datasplit2 the Philips scanner has 
the lowest DSC performance and the most differences with other ven-
dors. There could be a number of reasons for these performance trends. 

Firstly, upon inspection of the standardized intensity histograms, 
there are slight differences between Philips and the other two scanners 
(which are similar to one another); see Fig. 21. Although intensity 
standardization creates a more consistent intensity interval over all, 
there is a slight misalignment in the CSF regions in Philips images as 
compared to GE and Siemens scanners. Since periventricular WML are 
neighbouring CSF regions, differences in contrast in these regions could 
cause performance degradation for Philips scans, especially in datasplit2 
where there are less Philips training examples. Perhaps the reconstruc-
tion algorithms, contrast characteristics or noise profiles of GE and 
Siemens scanners are more similar to one another as compared to Philips 
allowing the systems to predict equally as well on both GE and Siemens 
scanner types. Additionally, as discussed in the rater analysis, the subset 
of data from Rater3 was composed of mainly Philips samples with higher 
pixel resolutions compared to all the other data from the training 
dataset. This likely limited generalization to these images due to the 
differing resolutions in the training and testing sets. CNNs employ a 
receptive field that is a fixed size for all images. If the underlying reso-
lution of the images are changing, the physical dimensions of what is 
analyzed by the CNN changes also. If this representation is not present in 
the training set, the model will not learn it and performance suffers. In 
datasplit1 there is more Philips data in the training pool which lets the 
classifier effectively learn those patterns in the data (despite the in-
tensity misalignment and differing pixel resolutions). However, in 
datasplit2 the classifier was not exposed to this data and therefore, the 
classifier could not effectively learn those patterns. These findings 
highlight the importance of evaluating tools using a two-datasplit 
strategy to fully appreciate the benefits and challenges of each 
approach. Many commercial and research systems are developed using a 
single dataset from a single institution. In this scenario, when translating 
tools to other centres there will be a performance reduction related to 
acquisition parameters and scanner type. Ideally, any model would be 
retrained on a dataset that includes some samples from the centre that it 
will be deployed at but this is not always practical. In datasplit1 there is 
similar mean DSC performance across the datasets, indicating that 
having a mix of the testing data distribution in the training set (and a 
more diverse representation) is critical for optimal performance. Scan-
ner vendors have been shown to induce differences in many automated 
algorithms (Reiche et al., 2019, DiGregorio et al., 2021, Khademi et al., 
2020) and therefore, future efforts should be pursued to balance 

Fig. 21. Average intensity histograms over all 252 testing volumes for Philips, GE, Siemens scanners. Original (left) and standardized (right).  
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datasets, improve normalization techniques and investigate domain 
adaptation especially for DL methods. 

In terms of generalization performance across datasets, the MICCAI 
dataset had the best performance in both datasplits for SC U-Net. In 
datasplit2, the high performance could be attributed to the training pool 
being strictly from MICCAI despite the number of training samples being 
lower. MICCAI annotations are also developed by experts, through 
consensus. Therefore high performance may be related to the annotating 
pattern, but as shown by the results for Rater5, which was developed by 
experts as well, there is still a drop in performance, so this is not the 
complete piece of the puzzle. This could indicate a preference for DL 
methods to predict better on datasets they are trained upon and that 
there are intra-dataset similarities (or bias) related to data characteris-
tics and annotating patterns that DL systems are able to learn. It is 
challenging to delineate lesion boundaries precisely due to partial vol-
ume averaging, or diffuse (ischemic/demyelinating) pathology. There-
fore, including multiple raters allows for multiple representations to be 
learned. Also, since it is common practice for less experienced raters to 
provide most of the annotated data, while having access to only a few 
expert annotations, this work demonstrates that combining our anno-
tations (CAIN/ADNI/CCNA developed by medical students) with the 
ones from experts (MICCAI/MRBrains) is more beneficial for DL sys-
tems. As found in another work, the authors explored the impact of rater 
style on deep learning and found that training on a single rater leads to 
models that are strongly biased to only that single expert, which impedes 
generalization (Lucena et al., 2018). To combat this, the authors propose 
“silver” standard ground truths that are found using automated ap-
proaches that have been previously validated. Results showed that they 
outperformed (i.e., larger Dice coefficients) over state-of-the-art 
methods without using gold standard annotations for training CNNs 
indicating likely that using a larger sample is more beneficial, even if the 
annotations are not developed by experts. We found similar conclusions 
in this work and deduce it is better to include multiple raters in the 
training set to remove some of the bias that would be introduced by 
using only a single rater. 

One of the important areas to be evaluated for WML segmentation 
tools is the ability to operate robustly over all lesion loads. There is 
growing evidence that certain lesion patterns have different etiological 
origins (Jung et al., 2020) and may differentiate between diseases such 
as dementia and CVD. In one of the lesion patterns identified in (Jung 
et al., 2020), there are periventricular lesions and in other patterns there 
are small punctate lesions in the deep WM. Tools should operate equally 
in these scenarios to quantify disease across neurodegenerative pop-
ulations. As shown in the results, DL approaches stand out compared to 
traditional approaches in terms of performance, especially in the low 
lesion load categories. As visually seen, DL predictions are detecting 
small lesions that were hard to detect for years with traditional ap-
proaches. This is likely due to traditional approaches’ large dependence 
on mainly intensity as a feature, while DL methods incorporate higher 
level features that may permit for detection of all types of lesions. Dif-
ferences in neurodegeneration, as it manifests in the brain (atrophy, 
large ventricles, ischemia, lacunes, etc.), can arise with different disease 
levels and a robust tool should generalize across all levels. Despite the 
high performance, ANOVA tests revealed significant differences in DSC 
means across lesion load groups (low, medium and high) for DL as well 
as traditional approaches, for both datasplit1 and datasplit2, indicating 
that each of the tools’ performance is highly dependent on lesion load. 
There were no significant differences across MoCA categories over all 
the methods for datasplit1. However, in datasplit2, there were signifi-
cant differences across MoCA categories for U-Net and Tiramisu, indi-
cating these models had difficulty generalizing in brains with differing 
levels of neurodegeneration. 

Regarding study limitations, there are few that can be mentioned. 
Firstly, it is possible that architectures with more parameters (i.e., Dense 
U-Net) have even greater potential in a scenario where more training 
data is available. Also, the number of scanners by vendor type could be 

better balanced in future works as well. Currently, each centre from each 
dataset was roughly sampled equally, and because there was unequal 
distribution of scanner vendors across the centres, the result was un-
balanced. However, this results in a diverse representation of acquisition 
parameters and scanner models which is still a benefit of the work. 
Another limitation is the amount of data available to perform inter-rater 
variability analysis. In the future, more samples will be generated. 
Additionally, in terms of comparison to other works, LPA was trained on 
MS data and on a moderately small sample size, which likely plays a 
large role in the reduced performance (and false positives shown in 
Fig. 19). While it was not our intention to fine-tune this method, it is 
possible to retrain this system which could possibly improve perfor-
mance. Another limitation was the sample size of the manual segmen-
tation comparisons, although the trends and analysis shows that there is 
good agreement between the raters. As was shown, using multiple raters 
increased performance significantly, likely through increased training 
data diversity and sample size - which is a strong benefit of this work. In 
the future we hope to include more annotations from additional raters. 
The last limitation is that we mainly investigated DSC and volume 
metrics to examine algorithm performance. In the future, we want to 
examine performance as a function of lesion size and location, which we 
believe are also important to investigate. 

5. Conclusions 

WML are important markers related to dementia and cerebrovascu-
lar disease (CVD) and automated tools can be used to measure them in 
an accurate, objective and efficient manner. In this work, seven WML 
segmentation techniques were evaluated for multicentre FLAIR MRI. 
Two methods consist of traditional approaches, which include a partial 
volume averaging technique and the lesion prediction algorithm (LPA) 
which uses regression on a per-voxel basis. The other five methods are 
based on CNNs and variants of the U-Net family, including U-Net, SC U- 
Net, UResNet2, MultiResNet and Tiramisu (dense nets) architectures. To 
train and test the algorithms, 252 FLAIR MRI volumes from 5 multi-
centre datasets (CAIN, ADNI, CCNA, MRBrains, MICCAI) from 33 cen-
tres with vascular and dementia pathology are utilized. Four folds were 
used to test over all 252 vol and performance is reported over all vol-
umes. A second data splitting strategy was used to examine how algo-
rithms generalized when trained on a single dataset and tested on the 
others. Algorithms are compared over a variety of dimensions related to 
clinical utility and safety, namely, accuracy, generalization across 
scanners and datasets, and robustness over different levels of disease. 
The evaluation framework may be used to determine the proof of 
effectiveness of computer-generated biomarkers related to WML seg-
mentation and other tasks. Over all dimensions, deep learning methods 
consistently outperformed traditional methods, with SC U-Net obtaining 
top performance with a mean DSC = 0.71 over all 252 vol 
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Appendix

Fig. A. Training and validation loss curves for all methods for each fold of datasplit 1.  

Fig. B. Training and validation loss curves for all methods for datasplit 2.   
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Fig. C. Regression plot of rater 2 vs rater 1 WML volume.  

Fig. D. Bland-Altman plot and DSC vs Rater 1 vol for analyzing reliability of semi-automated ground truth protocol.   
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Fig. E. DSC distributions, mean DSC and DSC CoV for WML segmentation methods vs. scanner vendor. datasplit1 (left) and datasplit2 (right).   
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Fig. F. DSC distributions, mean DSC and DSC CoV for WML segmentation methods as a function of dataset. datasplit1 (left) and datasplit2 (right).   

Table A 
ANOVA analysis of effect of scanner vendor on algorithm performance for datasplit1 (F-value and Pr > F). Null hypothesis is that DSC means are the same across 
vendors. Post-hoc analysis compared DSC across groups for significant tests and bold p-values indicate significant differences between scanners (α = 0.05). Post-hoc 
results reported as differences between transformed DSC means of the two groups, and the p-value: diff (p-val).  

Method PVA LPA U-Net SC-U-Net UResNet2 Tiramisu MultiResU 

F-Value 0.19 3.97 3.13 3.48 4.08 5.99 3.35 
Pr > F 0.828 0.0201 0.0454 0.0323 0.0181 0.0029 0.0367 
GE vs. Philips  − 0.04 (0.3016) 0.005 (0.9637) 0.006 (0.9594) 0.008 (0.8667) − 0.004 (0.9524) 0.005 (0.9535) 
GE vs. Siemens  0.02 (0.7029) 0.04 (0.1075) 0.039 (0.0840) 0.044 (0.0411) 0.044 (0.0481) 0.038 (0.0891) 
Philips vs. Siemens  0.06 (0.0186) 0.03 (0.0577) 0.034 (0.0423) 0.036 (0.0320) 0.048 (0.0024) 0.033 (0.0487)   
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Table B 
ANOVA analysis of effect of scanner vendor on algorithm performance for datasplit2 (F-value and Pr > F). Null hypothesis is that DSC means are the same across 
vendors. Post-hoc analysis compared DSC across groups for significant tests and bold p-values indicate significant differences between scanners (α = 0.05). Post-hoc 
results reported as differences between transformed DSC means of the two groups, and the p-value: diff (p-val)  

Method PVA LPA U-Net SC-U-Net UResNet2 Tiramisu MultiResUNet 

F-Value 1.29 1.43 34.29 10.28 11.67 38 10.57 
Pr > F 0.2788 0.2418 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
GE vs. Philips   − 0.1 (<0.0001) − 0.07 (0.0048) − 0.09 (0.0006) − 0.13 (<0.0001) − 0.07 (0.0050) 
GE vs. Siemens   0.03 (0.4640) 0.005 (0.9999) − 0.02 (0.8449) 0.03 (0.4895) 0.005 (0.9951) 
Philips vs. Siemens   0.15 (<0.0001) 0.07 (0.0003) 0.08 (0.0004) 0.16 (<0.0001) 0.07 (0.0002)   

Table C 
ANOVA analysis of effect of dataset on algorithm performance for datasplit1 (F-value and Pr > F). Null hypothesis is that DSC means are the same across datasets. Post- 
hoc analysis compared DSC across groups for significant tests and bold p-values indicate significant differences between datasets (α = 0.05). Results reported as 
differences between transformed DSC means of the two groups, and the p-value: diff (p-val).  

Method PVA LPA U-Net SC-U-Net UResNet2 Tiramisu MultiResU 

F-Value 1.12 22.19 7.85 8.73 6.41 7.26 7.74 
Pr > F 0.3477 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
ADNI vs. CAIN  0.01 (0.9937) − 0.02 (0.9005) − 0.03 (0.6908) − 0.03 (0.6479) − 0.05 (0.3249) − 0.03 (0.6797) 
ADNI vs. CCNA  0.08 (0.1894) 0.02 (0.9241) 0.01 (0.9888) 0.01 (0.9934) 0.01 (0.9770) 0.02 (0.9769) 
ADNI vs. MICCAI  0.19 (<0.0001) 0.06 (0.1199) 0.05 (0.1827) 0.04 (0.4721) 0.03 (0.6844) 0.05 (0.2905) 
ADNI vs. MRBrains  0.13 (0.1407) − 0.04 (0.8711) − 0.05 (0.7312) − 0.04 (0.8836) − 0.015 (0.9983) − 0.05 (0.7845) 
CAIN vs. CCNA  0.07 (0.0683) 0.04 (0.1722) 0.04 (0.1701) 0.04 (0.1733) 0.06 (0.0515) 0.05 (0.1172) 
CAIN vs. MICCAI  0.18 (<0.0001) 0.08 (<0.0001) 0.08 (<0.0001) 0.07 (<0.0001) 0.08 (<0.0001) 0.08 (<0.0001) 
CAIN vs. MRBrains  0.12 (0.1254) − 0.02 (0.9828) 0.03 (0.9758) − 0.01 (0.9996) 0.035 (0.9197) − 0.02 (0.9893) 
CCNA vs. MICCAI  0.11 (0.0013) 0.04 (0.4317) 0.04 (0.3106) 0.03 (0.6581) 0.02 (0.8218) 0.03 (0.5626) 
CCNA vs. MRBrains  0.047 (0.8850) − 0.06 (0.5164) 0.06 (0.4836) − 0.05 (0.7124) − 0.025 (0.9824) − 0.07 (0.5003) 
MICCAI vs. MRBrains  − 0.063 (0.7541) 0.1 (0.0719) 0.1 (0.0458) − 0.08 (0.2286) − 0.045 (0.7671) − 0.1 (0.0896)   

Table D 
ANOVA analysis of effect of dataset on algorithm performance for datasplit2 (F-value and Pr > F). Null hypothesis is that DSC means are the same across datasets. Post- 
hoc analysis compared DSC across groups for significant tests and bold p-values indicate significant differences between datasets (α = 0.05). Results reported as 
differences between transformed DSC means of the two groups, and the p-value: diff (p-val).  

Method PVA LPA U-Net SC-U-Net UResNet2 Tiramisu MultiResUNet 

F-Value 1.71 8.49 24.88 15.3 22.31 26.59 15.19 
Pr > F 0.1481 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
ADNI vs. CAIN  0.03 (0.8618) − 0.13 (<0.0001) − 0.11 (0.0005) − 0.15 (<0.0001) − 0.17 (<0.0001) − 0.11 (0.0006) 
ADNI vs. CCNA  0.08 (0.1202) 0.01 (0.9896) − 0.02 (0.9599) − 0.07 (0.1536) − 0.03 (0.9209) − 0.02 (0.9933) 
ADNI vs. MICCAI  0.19 (<0.0001) 0.09 (0.1361) 0.1 (0.0915) 0.08 (0.2249) 0.07 (0.5072) 0.09 (0.1176) 
ADNI vs. MRBrains  0.15 (0.0287) − 0.04 (0.9447) − 0.03 (0.9791) − 0.03 (0.9396) − 0.02 (0.9947) − 0.03 (0.9900) 
CAIN vs. CCNA  0.05 (0.1626) 0.14 (<0.0001) 0.09 (0.0010) 0.08 (0.0016) 0.14 (<0.0001) 0.1 (0.0003) 
CAIN vs. MICCAI  0.16 (<0.0001) 0.22 (<0.0001) 0.21 (<0.0001) 0.23 (<0.0001) 0.24 (<0.0001) 0.2 (<0.0001) 
CAIN vs. MRBrains  0.12 (0.0522) 0.09 (0.1329) 0.08 (0.3115) 0.12 (0.0410) 0.15 (0.0065) 0.08 (0.2720) 
CCNA vs. MICCAI  0.11 (0.0414) 0.08 (0.2230) 0.12 (0.0112) 0.15 (0.0004) 0.1 (0.1199) 0.1 (0.0307) 
CCNA vs. MRBrains  0.07 (0.6022) − 0.05 (0.8015) − 0.01 (0.9999) 0.04 (0.9391) 0.01 (0.9999) − 0.01 (0.9996) 
MICCAI vs. MRBrains  − 0.04 (0.9428) − 0.13 (0.0972) − 0.13 (0.1046) − 0.11 (0.1430) − 0.09 (0.5078) − 0.12 (0.1551)   

Table E 
ANOVA analysis of effect of lesion load on algorithm performance for datasplit1 (F-value and Pr > F). Null hypothesis is that DSC means are the same across lesion 
loads. Post-hoc analysis compared DSC across groups for significant tests and bold p-values indicate significant differences between lesion loads (α = 0.05). Post-hoc 
results reported as differences between transformed DSC means of the two groups, and the p-value: diff (p-val).  

Method PVA LPA U-Net SC-U-Net UResNet2 Tiramisu MultiResU 

F-Value 131.44 94.42 68.1 68.77 85 84.6 72.34 
Pr > F <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Low LL vs. High LL 0.24 (<0.0001) 0.22 (<0.0001) 0.14 (<0.0001) 0.14 (<0.0001) 0.15 (<0.0001) 0.15 (<0.0001) 0.15 (<0.0001) 
Med LL vs. High LL 0.15 (<0.0001) 0.17 (< 0.0001) 0.09 (<0.0001) 0.09 (<0.0001) 0.09 (<0.0001) 0.1 (<0.0001) 0.09 (<0.0001) 
Low LL vs. Med LL 0.09 (< 0.0001) 0.05 (0.0074) 0.05 (0.0004) 0.05 (0.0002) 0.06 (<0.0001) 0.05 (<0.0001) 0.06 (<0.0001)   
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Table F 
ANOVA analysis of effect of lesion load on algorithm performance for datasplit2 (F-value and Pr > F). Null hypothesis is that DSC means are the same across lesion 
loads. Post-hoc analysis compared DSC across groups for significant tests and bold p-values indicate significant differences between lesion loads (α = 0.05). Post-hoc 
results reported as differences between transformed DSC means of the two groups, and the p-value: diff (p-val).  

Method PVA LPA U-Net SC-U-Net UResNet2 Tiramisu MultiResU 

F-Value 86.04 79.36 68.73 52.47 48.29 62.29 61.45 
Pr > F <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Low LL vs. High LL 0.21 (< 0.0001) 0.21 (<0.0001) 0.21 (<0.0001) 0.18 (<0.0001) 0.19 (<0.0001) 0.23 (<0.0001) 0.19 (<0.0001) 
Med LL vs. High LL 0.13 (<0.0001) 0.15 (<0.0001) 0.14 (<0.0001) 0.12 (<0.0001) 0.12 (<0.0001) 0.15 (<0.0001) 0.12 (<0.0001) 
Low LL vs. Med LL 0.07 (<0.0001) 0.06 (0.0004) 0.07 (<0.0001) 0.06 (0.0023) 0.07 (0.0010) 0.08 (0.0002) 0.07 (0.0001)   

Table G 
ANOVA analysis of effect of cognitive impairment on algorithm performance for datasplit1 
(F-value and Pr > F). Null hypothesis is that the DSC means are the same across normal and 
impaired subjects. Bold values indicate significant differences exist across groups (α =
0.05).  

Method Metric F-Value Pr > F 

PVA DSC 0.09 0.7680 
LPA DSC 0.67 0.4154 
U-Net DSC 0.13 0.7208 
SC-U-Net DSC 0.09 0.7652 
UResNet2 DSC 0.05 0.8279 
Tiramisu DSC 0.02 0.8989 
MultiResUNet DSC 0.04 0.8464   

Table H 
ANOVA analysis of effect of cognitive impairment on algorithm performance for datasplit2 (F- 
value and Pr > F). Null hypothesis is that the DSC means are the same across normal and 
impaired subjects. Bold values indicate significant differences exist across groups (α = 0.05).  

Method Metric F-Value Pr > F 

PVA DSC 0.01 0.9207 
LPA DSC 1.20 0.2738 
U-Net DSC 4.13 0.0436 
SC-U-Net DSC 1.21 0.2724 
UResNet2 DSC 3.29 0.0713 
Tiramisu DSC 4.89 0.0283 
MultiResUNet DSC 1.10 0.2964  
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