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Abstract.
Background: Evaluating the risk of Alzheimer’s disease (AD) in cognitively normal (CN) and patients with mild cognitive
impairment (MCI) is extremely important. While MCI-to-AD progression risk has been studied extensively, few studies
estimate CN-to-MCI conversion risk. The Cox proportional hazards (PH), a widely used survival analysis model, assumes a
linear predictor-risk relationship. Generalizing the PH model to more complex predictor-risk relationships may increase risk
estimation accuracy.
Objective: The aim of this study was to develop a PH model using an Xgboost regressor, based on demographic, genetic,
neuropsychiatric, and neuroimaging predictors to estimate risk of AD in patients with MCI, and the risk of MCI in CN
subjects.
Methods: We replaced the Cox PH linear model with an Xgboost regressor to capture complex interactions between predictors,
and non-linear predictor-risk associations. We endeavored to limit model inputs to noninvasive and more widely available
predictors in order to facilitate future applicability in a wider setting.
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Results: In MCI-to-AD (n = 882), the Xgboost model achieved a concordance index (C-index) of 84.5%. When the model
was used for MCI risk prediction in CN (n = 100) individuals, the C-index was 73.3%. In both applications, the C-index was
statistically significantly higher in the Xgboost in comparison to the Cox PH model.
Conclusion: Using non-linear regressors such as Xgboost improves AD dementia risk assessment in CN and MCI. It is
possible to achieve reasonable risk stratification using predictors that are relatively low-cost in terms of time, invasiveness,
and availability. Future strategies for improving AD dementia risk estimation are discussed.

Keywords: Alzheimer’s disease, brain, hippocampal atrophy, machine learning, magnetic resonance imaging, mild cognitive
impairment, proportional hazards model, survival analysis, Xgboost

INTRODUCTION

The course of Alzheimer’s disease (AD) typically
spans three broad stages: a preclinical phase when
patients may appear cognitively normal (CN) [1];
mild cognitive impairment (MCI) [2]; and dementia
which progresses from mild to moderate to severe [3].
The ability to detect AD before the dementia stage is
extremely important for early treatment [4–6], sam-
ple enrichment in clinical trials [7, 8], and disease
management.

Multiple indicators of incipient AD dementia have
been identified [9–11]. In recent years, research
has focused on developing machine learning algo-
rithms that are capable of combining multiple “weak”
predictors of dementia measured simultaneously to
obtain a more accurate risk assessment. The pre-
dominant machine learning approach has been the
use of classification algorithms, where, for example,
MCI subjects are dichotomized as stable or pro-
gressive [12–16]. Classification methods, however,
cannot properly handle censored information and def-
initions of class membership can be subjective. More
recently, survival analysis (SA) has been utilized as
a more appropriate data analytic approach for AD
risk stratification in MCI [17–21]. As compared to
MCI-to-AD progression, few studies have researched
conversion from normal cognition to MCI using SA
methods [22, 23].

The most commonly used SA method in this con-
text has been the Cox proportional hazards (PH)
model [24]. However, the Cox PH model makes two
restrictive assumptions: firstly, that the hazard func-
tions of different individuals have the same shape in
time and differ only by a proportionality factor; and
secondly, that the proportionality factor is a func-
tion of a linear combination of the predictor features.
We hypothesize that relaxing these assumptions will
lead to more flexible models with better prediction
performance.

In the current work, we generalize the linear regres-
sion assumption of the Cox PH model by extreme
gradient boosting regression (Xgboost) [25]. Xgboost
is a recently developed and very successful machine
learning method that is applied to learn a mapping
from the space of the feature vectors to the space of
positive real numbers, representing the proportion-
ality factor in the PH model. Studies have shown
that CN individuals with apolipoprotein E (APOE)
�4 allele are more likely to convert to MCI/AD, but
sex modifies this effect by influencing the conversion
risk more strongly in women [26]. The hippocampal
atrophy rates have been shown to be faster in women
than in men, but only among those with underlying
AD pathology [27]. The right hippocampal parenchy-
mal fraction (HPF) value has been shown to be greater
than the left HPF in CN, and moreover, this right
> left asymmetry is more pronounced in men than in
women [28]. The HPF also non-linearly decreases
with age [28]. Scores in memory tests are higher in
CN and MCI females compared to males but this
sex difference fades with disease progression. This
may suggest a delay in the onset of cognitive decline
or diagnosis and/or a faster trajectory of cognitive
decline in females [29]. Irrespective of diagnosis,
cerebrospinal fluid (CSF) tau-pathology is dispro-
portionately elevated in female carriers of APOE
�4 compared to males. In contrast, male carriers of
APOE �4 have reduced levels of CSF amyloid-� com-
pared to females. We postulated that the decision
tree-based Xgboost learning algorithm may be able to
more accurately capture interactions and non-linear
relationships between AD predictors and risk. There-
fore, we hypothesized that replacing the restrictive
linear regression assumption of the Cox PH model
by gradient boosting regression would lead to signif-
icantly more accurate risk assessments.

In this study, we focused on a set of predictors that
are not prohibitively invasive, expensive to measure,
or limited in availability. Since hippocampal neuronal
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Fig. 1. Cohort selection flowchart.

injury is one the earliest indicators cognitive decline
in CN, estimated to start over a decade before MCI
[30], these predictors included the bilateral HPF, a
marker of hippocampal structural integrity derived
from 3D structural MRI [27, 31]. HPF can be com-
puted efficiently (seconds) and reproducibly from
raw MRI scans without need for any pre-processing,
image analysis expertise, or manual intervention.

In summary, we used a novel SA method based on
Xgboost regression to stratify the risk of progression
from MCI to AD dementia, as well as the risk of con-
version from CN to MCI. Relatively very few studies
have considered the latter problem. We also utilize the
HPF, a novel marker of hippocampal neuronal injury,
which has not been previously used as a marker in SA.
Finally, we endeavored to limit our set of predictors to
those that are relatively less expensive, non-invasive,
and more widely available.

METHODS

Study subjects

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (https://adni.loni.usc.
edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the
progression of MCI and early AD. For up-to-date
information, see https://www.adni-info.org.

The method used for our cohort selection is shown
in Fig. 1. The file ADNIMERGE.csv was accessed
on November 6, 2019. It included 14,451 records
from 2,234 participants. We only retained the records
from the 1,017 participants with a baseline diagno-
sis of MCI. We further restricted the cohort to the

882 participants with at least one follow-up assess-
ment. The final cohort consisted of 346 individuals
(211 males; 135 females) with a subsequent diagnos-
tic progression to AD dementia and 536 individuals
(316 males; 220 females) whose diagnosis remained
MCI.

Baseline diagnostic criteria for individuals with
MCI were: Mini-Mental State Examination (MMSE)
scores between 24–30 (inclusive), a subjective mem-
ory concern reported by subject, informant, or
clinician, objective memory loss measured by edu-
cation adjusted scores on delayed recall of one
paragraph from the Wechsler Memory Scale Logi-
cal Memory II, a Clinical Dementia Rating (CDR)
of 0.5, absence of significant levels of impairment in
other cognitive domains, essentially preserved activ-
ities of daily living, and an absence of dementia.
A potential progression of diagnosis from MCI to
AD dementia was initially triggered by a site physi-
cian, confirmed by a clinical monitor, and finalized by
the consensus of the ADNI Conversion Committee.
The diagnostic criteria for AD were: MMSE scores
between 20–26 (inclusive), CDR of 0.5 or 1.0, and
meeting the NINCDS/ADRDA criteria for probable
AD.

In addition, we selected 100 subjects (53 males;
47 females) with a baseline diagnosis of CN with
at least one follow-up assessment. The diagnosis of
50 subjects remained CN in all their follow-up visits
(right-censored subjects). The remaining 50 subjects
converted to MCI sometime after their baseline visit.
This cohort was used to assess the performance of
our SA model in predicting the risk of CN-to-MCI
conversion.

Predictor variables

In addition to their survival time and diagnosis
status, 14 predictor variables were associated with
each participant at baseline. These are summarized in

https://adni.loni.usc.edu
https://www.adni-info.org
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Table 1
Elements of the 14-dimensional feature space compared between

progressive and right-censored MCI participants

progressive right-censored p
(n = 346) (n = 536)

1 Age (y) 73.9 ± 7.14 72.5 ± 7.67 < 0.01‡
2 Sex (M/F) 211/135 316/220 0.59†
3 Education (y) 15.90 ± 2.76 15.98 ± 2.87 0.52†
4 APOE �4 (+/−) 224/122 224/312 < 0.001†
5 RHPF 0.75 ± 0.10 0.82 ± 0.09 < 0.001‡
6 LHPF 0.74 ± 0.10 0.81 ± 0.09 < 0.001‡
7 B0 (1.5 T/3 T) 210/136 288/248 < 0.05†
8 CDR-SB 1.89 ± 0.95 1.25 ± 0.73 < 0.001‡
9 FAQ 5.09 ± 4.72 1.91 ± 3.04 < 0.001‡
10 ADAS-13 20.37 ± 6.31 14.38 ± 5.91 < 0.001‡
11 ADNI-MEM –0.21 ± 0.53 0.41 ± 0.63 < 0.001‡
12 ADNI-EF –0.12 ± 0.86 0.41 ± 0.85 < 0.001‡
13 ADNI-VS –0.17 ± 0.77 0 ± 0.73 < 0.001‡
14 ADNI-LAN –0.07 ± 0.74 0.33 ± 0.76 < 0.001‡

Non-categorical variable values are shown as mean ± standard
deviation. APOE �4, presence (+) or absence (–) of an �4 allele of
the Apolipoprotein E gene; RHPF, right hippocampal parenchy-
mal fraction; LHPF, left hippocampal parenchymal fraction; B0,

scanner magnetic field strength; CDR-SB, Clinical Dementia Rat-
ing – sum of boxes; FAQ, Functional Activities Questionnaire;
ADAS-13, 13-item AD Assessment Scale–cognitive subscale;
ADNI-MEM, composite score for memory; ADNI-EF, composite
score for executive function; ADNI-VS, composite score for visu-
ospatial functioning; ADNI-LAN, composite score of language.
†chi-squared; ‡Mann Whitney U Test

Table 1 for the MCI subjects and can be divided into
three groups: (1–4) demographic predictors; (5–7)
MRI measures; and (8–14) neuropsychiatric/clinical
test scores. The demographic variables were age, sex,
years of education, and presence/absence of the �4
allele of the APOE gene. The MRI and neuropsychi-
atric/clinical predictors are described below.

Summary statistics by diagnosis status of the 14
predictors are given in Table 1 for the MCI, and
in Table 2 for the CN subjects. Chi-squared tests
were used to determine significant differences in
the observed frequencies for the categorical vari-
ables (sex, APOE �4, B0). Mann–Whitney U tests
were used to compare the distributions of the non-
categorical variables between groups. Statistical tests
were performed using R (version 3.6.3).

MRI-based features

All participants had two back-to-back three-
dimensional (3D) T1-weighted structural MP-RAGE
MRI scans acquired at baseline. The HPF was com-
puted using the KAIBA software of the Automatic
Registration Toolbox (ART) (https://www.nitrc.org/
projects/art). For each participant, the right and left

Table 2
Elements of the 14-dimensional feature space compared between

converted and right-censored CN participants

converted right-censored p
(n = 50) (n = 50)

1 Age (y) 76.0 ± 4.59 75.5 ± 4.42 0.48‡
2 Sex (M/F) 27/23 26/24 1†
3 Education (y) 15.94 ± 2.51 15.80 ± 3.14 0.81‡
4 APOE �4 (+/−) 15/35 11/39 0.49†
5 RHPF 0.80 ± 0.07 0.84 ± 0.05 0.003‡
6 LHPF 0.79 ± 0.07 0.83 ± 0.06 0.007‡
7 B0 (1.5 T/3 T) 47/3 50/0 0.24†
8 CDR-SB 0.01 ± 0.07 0.02 ± 0.10 0.57‡
9 FAQ 0.40 ± 1.11 0.02 ± 1.14 0.007‡
10 ADAS-13 10.68 ± 4.32 8.31 ± 3.71 0.006‡
11 ADNI-MEM 0.86 ± 0.52 1.16 ± 0.54 0.007‡
12 ADNI-EF 0.68 ± 0.71 0.75 ± 0.79 0.58‡
13 ADNI-VS 0.31 ± 0.57 0.12 ± 0.64 0.11‡
14 ADNI-LAN 0.58 ± 0.61 0.89 ± 0.72 0.08‡

Non-categorical variable values are shown as mean ± standard
deviation. APOE �4, presence (+) or absence (–) of an �4 allele of
the Apolipoprotein E gene; RHPF, right hippocampal parenchy-
mal fraction; LHPF, left hippocampal parenchymal fraction; B0,

scanner magnetic field strength; CDR-SB, Clinical Dementia Rat-
ing – sum of boxes; FAQ, Functional Activities Questionnaire;
ADAS-13, 13-item AD Assessment Scale–cognitive subscale;
ADNI-MEM, composite score for memory; ADNI-EF, composite
score for executive function; ADNI-VS, composite score for visu-
ospatial functioning; ADNI-LAN, composite score of language.
†chi-squared; ‡Mann Whitney U Test.

HPF (RHPF and LHPF) were computed from both
scans and averaged separately to obtain a RHPF and
a LHPF for each patient. Details of the HPF com-
putation method have been described elsewhere [27,
31]. Briefly, a standardized volume of interest (VOI)
is defined in the vicinity of each hippocampus using
automatic registration and landmark detection algo-
rithms. Then, the histogram of the voxel intensities
within the VOI is automatically analyzed to estimate
the HPF as the brain tissue fraction that is contained in
the VOI. The MRI scanner’s magnetic field strength
(B0) was used as an additional feature since it has
been shown to slightly affect the HPF [28].

Neuropsychiatric/clinical features

Seven neuropsychiatric/clinical test scores were
downloaded directly from ADNI for each partici-
pant: 1) Clinical Dementia Rating Sum of Boxes
(CDR-SB) [32]; 2) Functional Activities Question-
naire (FAQ) [33]; 3) the 13-item Alzheimer Disease
Assessment Scale-Cognitive Subscale (ADAS-13)
[34]; 4–7) composite scores related to memory
(ADNI-MEM) [35], executive functioning (ADNI-
EF) [36], visuospatial functioning (ADNI-VS), and

https://www.nitrc.org/projects/art
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language (ADNI-LAN) [37], which were derived
from the ADNI neuropsychological battery using
item response theory (IRT). The composite scores
indicate the general competency of patients in each
of the four different cognitive domains. IRT can be
considered as a feature selection method in machine
learning applications [38]. The composite scores
integrate select elements from all cognitive and neu-
ropsychiatric measures available in ADNI, briefly:
ADNI-MEM (MMSE, Logical Memory I and II,
Auditory Verbal Learning, ADAS-Cog); ADNI-EF
(Digit Span, Category Fluency, Digit Symbol, Trails
A & B, Clock Drawing); ADNI-VS (MMSE, Clock
Drawing, ADAS-Cog); ADNI-LAN (MMSE, Cate-
gory Fluency, Boston Naming Test, ADAS-Cog). We
did not perform a separate neuropsychiatric/clinical
feature selection in this research.

Survival analysis

SA, also known as time-to-event analysis, is a col-
lection of statistical techniques used to analyze data
whose response variable is time until an event occurs
[39]. This time is a random variable T referred to as
the “survival time” representing the duration between
the start of monitoring until a designated event is
observed. In the current study, the survival time T was
taken to be the time difference in months between a
subject’s ADNI baseline exam and the visit in which
their diagnostic status changed from MCI to AD
dementia, or from CN to MCI. In SA, the outcome
random variable T is non-negative with a probabil-
ity distribution f (t) that is often skewed. The main
objective of SA is to estimate this distribution using
the survival data.

Survival data

The survival data in the current study comes from
a cohort of 882 individuals who were diagnosed as
amnestic MCI at their baseline ADNI visit and were
followed longitudinally. From these, 346 individuals
were diagnosed as having AD dementia at a follow-
up visit. For these cases, the survival status δi = 1,
where i is the subject index, and the event-time is
recorded as ti and considered to be an observation of
the random variable T. For the remaining 536 sub-
jects, who at their last study visit still did not meet
the diagnostic criteria for AD dementia, the survival
status δi = 0 and their survival time ti was consid-
ered right-censored. That is, we do not know the
actual time-to-event for these individuals and the only

information that we have is that their time-to-event is
greater than ti. Regardless of their survival status, a
14-dimensional feature vector xi was collected from
each subject at their baseline visit. Thus, the entirety
of the survival data in this study was a collection of
ordered triplets {xi, ti, δi)}(i = 1, 2 . . . , 882). Using
these data, we estimated the survival curves under
different conditions as well as fitting proportional
hazards models as described in the following two
subsections.

Survival curves

Survival curves S(t) are functions of time that vary
between 0 and 1. They represent the probability that
the time-to-event is greater than or equal to t, that is:
S(t) = Pr(T ≥ t). Therefore, in terms of the proba-
bility distribution of T, f (t), the survival function is
given by:

S(t) =
∞∫

t

f (τ)dτ

We used the non-parametric method of Kaplan-
Meyer (KM) [40] to estimate the survival curve for
the entire cohort. In addition, to investigate the effect
of each risk factor on survival probability, we esti-
mated KM survival curves for different categorical
groups (e.g., APOE �4+ versus APOE �4–), and for
subgroups obtained by dichotomizing according to
specific threshold values of the continuous variable
(e.g., age > 73 versus age ≤73). Group differences in
KM curves were assessed using the non-parametric
log-rank test [41].

Proportional hazards models

In SA, hazard models are used to estimate the influ-
ence of predictor variables x on survival probabilities.
For this purpose, it is useful conceptually to con-
sider the conditional probability distribution of the
time-to-event random variable f (t|x). Accordingly,
the probability that the time-to-event is greater than
or equal to t given predictors x at baseline is given by
the conditional survival curve S(t|x):

S(t|x) =
∞∫

t

f (τ|x)dτ

The hazard function h(t|x) represents the instanta-
neous danger or hazard of the occurrence of the event
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at time t given x and is defined as:

h(t|x) = f (t|x)

S(t|x)
= lim

�t→0

Pr(t ≤ T ≤ t + �t|T ≥ t, x)

�t

The main assumption in the proportional hazards
(PH) model is that h(t|x) is separable into a prod-
uct of two functions: one that is a function of t only,
denoted by h0(t), and one that is a function of x
only, given by eλ(x), that is: h(t|x) = h0(t)eλ(x). In
the Cox PH model [24], the function λ(x) is mod-
eled as linear combination of the predictor variables,
that is, λ(x) = ∑

kβkx
(k) where x(k) represents the

kth element of predictor array x. The model is fit-
ted by estimating the regression parameters βk using
the survival data by maximizing the partial likelihood
function. Other PH models can be obtained by using
other models for λ(x). In this work, in addition to
fitting the Cox PH model to our data, we utilized
the tree-based Xgboost model [25] to learn the map-
ping λ(x) and refer to the resulting algorithm as the
Xgboost PH model. The Xgboost model amounts to
a weighted sum of regression trees, which are its
non-linear building blocks. Therefore, the model is
capable of capturing non-linear predictor-risk rela-
tionships. Regression trees are split at every node
based on binary/binarized predictor variables (sex,
APOE4, age, etc.). Therefore, the model also suitably
captures interaction effects.

Model training and evaluation

We used the Harrell’s concordance index (C-index)
[42] for comparing Cox PH and Xgboost PH models’
performance as well as selecting the hyperparame-
ters of the Xgboost algorithm. This criterion is one of
the most commonly used accuracy indexes in the SA
domain and can handle censored data. The C-index
has a value between 0 and 1 and can be considered
a measure that indicates how well a model can cor-
rectly rank the survival data. Briefly, all possible pairs
of subjects for whom we can ascertain the ranking
of their time-to-event are presented to the algorithm
which estimates their proportional instantaneous haz-
ard given x at baseline. The C-index is the proportion
of subject pairs in which the model rankings matches
the known time-to-event rankings.

For the MCI data, model performance was esti-
mated using 10-fold cross-validation, dividing the
survival data into 90% training and 10% testing sets.
In Xgboost, the hyperparameters were estimated by
further dividing the training set into 75% for learning

and 25% for validation. We used the model trained
on MCI data to stratify risk in the 100 CN subjects
and computed the C-index for this cohort.

In the Xgboost implementation, it is possible to
start with a predefined model and revise the model
(adjust tree parameters) to adapt to a new set of train-
ing data. This operation is akin to “transfer learning”
in machine learning. It can serve as a backward tran-
sition from the MCI-to-AD model to an CN-to-MCI
model without requiring a large number of training
data. We used this method to adapt the MCI-to-AD
model for CN-to-MCI risk stratification and evalu-
ated its performance using 5-fold cross validation on
the 100 CN subject.

Variable importance

For the Xgboost PH model, the importance of each
input feature in predicting the final results was com-
puted based on the Xgboost gain parameter. For each
predictor, the gain is an indication of how much split-
ting on that feature has improved class discrimination
in the overall model. Variable ranking was performed
by applying the gain calculation algorithm and aver-
aging the values over replications of all the folds.
Finally, the relative importance of each predictor vari-
able was computed by dividing their gain value by the
highest gain (i.e., the gain related to the most effective
feature).

For the Cox PH model, variable importance was
obtained by constructing models on each input fea-
ture separately and subtracting the resulting C-indices
of each from the C-index value of the original model
(which included all variables). The relative impor-
tance of each predictor was calculated by scaling the
differences so that the most informative feature (with
the lowest difference) receives the relative impor-
tance of 1.

RESULTS

Predictor variables in progressive versus
right-censored groups

In this study 882 amnestic MCI subjects were fol-
lowed longitudinally, of whom 346 (39%) progressed
to AD dementia with mean (SD) survival time of
30.2 (24.6) months. The remaining 536 (61%) sub-
jects did not progress to dementia with a mean (SD)
right-censored survival time of 47.8 (33.4) months.

Table 1 shows differences between progressive
and right-censored MCI groups in each of the 14
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(a) (b)

Fig. 2. (a) KM survival curve for the entire MCI cohort. (b) KM survival curves for MCI groups stratified by risk using the Xgboost PH
model. The threshold between high and low risk groups was set to the median hazard level.

predictors that comprise x at baseline. The progres-
sive group was older than the right-censored group
at baseline: 73.9 ± 7.14 versus 72.5 ± 7.67 years
(p < 0.01). The groups did not differ significantly
by sex or years of education. The percentage of
APOE �4+ subjects in the progressive group (64.7%)
was significantly higher than the censored group
(59.0%) (p < 0.001). The progressive group had lower
HPF bilaterally (p < 0.001). A higher proportion of
the progressive group had been scanned at 1.5 T
(p < 0.05). The progressive group had higher (worse)
CDR-SB, FAQ, and ADAS-13 scores (p < 0.001), and
their performance was significantly lower than the
right-censored group in all four composite cogni-
tive measures (ADNI-MEM, ADNI-EF, ADNI-VS,
ADNI-LAN) (p < 0.001).

Table 2 shows differences between converted and
right-censored CN groups in each of the 14 predic-
tors that comprise x at baseline. The groups did not
differ significantly in age, sex, years of education,
percentage of APOE �4 positivity, CDR-SB, ADNI-
EF, ADNI-VS, or ADNI-LAN. The converted group
had significantly lower HPF bilaterally (p < 0.01 for
either side). The converted group had significantly
higher (worse) FAQ (p < 0.01) and ADAS-13 scores
(p < 0.01), and their performance was significantly
lower than the right-censored group in ADNI-MEM
(p < 0.01).

Kaplan-Meyer (KM) survival curves

For the entire cohort (n = 882), the KM estimated
survival curve is shown in Fig. 2a. The estimated
median survival time was 77.2 (95% CI: 65.9–95.9)
months, while the 1st quartile (i.e., time for survival

probability of 0.75) was estimated to be 24.3 (95%
CI: 23.9–25.7) months.

Figure 3 shows the KM survival curves for the
MCI cohort dichotomized with respect to each of
the 14 predictors in x. Dichotomized by median
age (73 years) at baseline, the younger group had
significantly higher survival probabilities (p < 0.001)
(Fig. 3a). There was no difference in survival proba-
bilities between males and females (Fig. 3b). There
was trend level (p = 0.11) higher survival rates in
individuals with more than 16 years of education
(Fig. 3c). APOE �4 + individuals had significantly
lower survival rates compared to the APOE �4–
group (p < 0.001) (Fig. 3d). Dichotomized by thresh-
olding the RHPF at 0.72 and the LHPF at 0.71 (2
standard deviations below mean values estimated in
cognitively normal elderly [28]), groups showed sig-
nificantly different survival rates based on both left
and right HPF values (p < 0.001) (Fig. 3e, f). Individ-
uals scanned at 1.5 T showed trend level (p = 0.095)
lower survival probabilities (Fig. 3g). Dichotomizing
by median values of both CDR-SB and FAQ vari-
ables resulted in groups with significantly different
survival rates (p < 0.001) (Fig. 3h, i). Thresholding
ADAS-13 at 16.7 (approximately 2 standard devia-
tions below mean values found in [28] for cognitively
normal elderly) also resulted in groups with signif-
icantly different survival rates (p < 0.001) (Fig. 3j).
Finally, grouping by positive versus negative val-
ues of each of the four composite cognitive scores
(ADNI-MEM, ADNI-EF, ADNI-VS, ADNI-LAN)
resulted in statistically significant differences in sur-
vival curves (p < 0.001) (Fig. 3k–n). Table 3 shows the
median survival times for each of the 28 subgroups
in Fig. 3.
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Model performance

Both Cox PH and Xgboost PH models use the
entire predictor array obtained from subjects at base-
line to stratify their risk of AD dementia (for the MCI

cohort; n = 882) or risk of conversion to MCI (for
the CN cohort; n = 100). In MCI by 10-fold cross-
validation, the average C-index of the Xgboost PH
model 84.5% was significantly higher than that of
the Cox PH model 83.2% (p = 0.014). Removing the

Fig. 3. (Continued)
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left and right HPF from the dataset, the Xgboost PH
model’s average C-index decreased significantly to
83.7% (p = 0.02).

Figure 4a shows the relative importance of the
14 predictors according to their predictive role in

stratifying dementia risk in the Xgboost PH model.
ADNI-MEM, the composite score related to memory,
was the most informative predictor, followed by FAQ,
ADAS-13, and RHPF, respectively. Figure 4b shows
the relative importance of the 14 predictors in the

Fig. 3. (Continued)
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(m) (n)

Fig. 3. KM survival curves in MCI groups by (a) age, (b) sex, (c) years of education, (d) APOE ε4 status, (e) right HPF, (f) left HPF,
(g) scanner field strength, (h) CDR-SB, (i) FAQ, (j) ADAS-13, (k) ADNI-MEM, (l) ADNI-EF, (m) ADNI-VS, and (n) ADNI-LAN. Age,
CDR-SB, and FAQ are dichotomized by thresholding at median value. RHPF, LHPF, and ADAS-13 are dichotomized by thresholding at 2
standard deviations below normal values derived in [28]. ADNI-MEM, ADNI-EF, ADNI-VS, and ADNI-LAN are dichotomized as positive
versus negative.

Table 3
Median (95% CI) survival times for MCI groups stratified according to each element of the 14-dimensional predictor space

Stratification Higher-risk group Lower-risk group p

1 Age (y) > 73 versus ≤73 57.5 (47.9–70.1) 94.8 (84.8-NA) < 0.001
2 Sex (M/F) F versus M 71.6 (59.8-NA) 84.8 (54.8–96.2) 0.67
3 Education (y) ≤16 versus > 16 70.0 (49.0–96.1) 87.2 (67.8–119.3) 0.11
4 APOE �4 (+/−) +versus – 40.7 (36.1–48.9) 107.3 (96.1-NA) < 0.001
5 RHPF ≤0.71 versus > 0.71 26.2 (24.1–36.3) 94.9 (84.8–119.9) < 0.001
6 LHPF ≤0.71 versos > 0.71 35.6 (24.2–36.9) 96.2 (86.0–119.9) < 0.001
7 B0 (1.5 T/3 T) 1.5T versus 3T 65.1 (50.3–87.2) 94.8 (72.3-NA) 0.095
8 CDR-SB > 1.5 versus ≤1.5 31.4 (24.3–39.3) 98.2 (96.1-NA) < 0.001
9 FAQ > 2 versus ≤2 25.0 (24.1–36.1) 96.1 (67.8-NA) < 0.001
10 ADAS-13 > 16.7 versus ≤16.7 36.6 (24.8–36.2) 120.0 (109.4-NA) < 0.001
11 ADNI-MEM – versus + 24.9 (24.1–35.6) 119.5 (97.5-NA) < 0.001
12 ADNI-EF – versus + 35.9 (24.8–47.6) 109.4 (94.0-NA) < 0.001
13 ADNI-VS – versus + 48.9 (47.8–71.8) 96.2 (84.8-NA) < 0.001
14 ADNI-LAN – versus + 36.3 (35.4–48.1) 96.2 (87.2-NA) < 0.001

NA indicates that the upper limit could not be determined by the KM method. The p-values are obtained using the log-rank test.

Cox PH model. The orders of variables’ importance
are mostly consistent between the two models.

Figure 2b shows the KM survival curves of high-
risk and low-risk MCI groups stratified based on their
Xgboost PH risk being above or below the median
risk in the cohort. The survival rates were signifi-
cantly different based on a log-rank test (p < 0.001).
The median (95% CI) survival times for the high-risk
group was 25.3 (24.3–35.9) months.

We also applied the Cox PH and Xgboost PH
models, trained by each of the 10 folds of the
MCI cohort, to stratify the risk of conversion to
MCI in the CN cohort. The Xgboost model per-
formed better than the Cox model in every fold.
The average C-index for was 69.6% for the Cox

model and 73.3% for the Xgboost model. The dif-
ferent was statistically significant (p < 10–6). When
we used the trained MCI-to-AD model as an ini-
tial model in the Xgboost algorithm and adjusted the
model parameters using additional subjects from the
CN-to-MCI cohort, the C-index estimated by 5-fold
cross-validation increased to 75.1% for the Xgboost
model.

DISCUSSION

A key priority in the management of AD is the
development of early intervention strategies that can
stop or slow disease progression in the pre-dementia
phase. Development and application of these preven-
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(a)

(b)

Fig. 4. Variable importance of dementia risk prediction in MCI:
(a) Xgboost PH model, (b) Cox PH model.

tive approaches can only be effective if individuals at
higher risk of AD dementia can be accurately identi-
fied through cost-effective, non-invasive, and widely
available tests. Multiple markers have been identi-
fied that differentiate AD from normal aging [9–11].
However, each predictor by itself is a relatively weak
indicator of AD in the pre-dementia phase. There-
fore, the current consensus is to combine multiple
concurrently measured predictors to obtain an overall
strong disease indicator. Since AD predictors inter-
act [26–29] and may be non-linearly associated with
risk of progression, advanced machine learning algo-
rithms are required to assess risk of decline (from
MCI to dementia or from CN to MCI) from arrays
of concurrently measured predictors. Here, we used
the tree-based Xgboost, a relatively new and pow-
erful machine learning method, to build a predictive
model to estimate the risk of developing AD demen-
tia for individuals with MCI in a SA framework.
The developed model ranks patients based on their
likelihood of progression to AD. The Xgboost PH
model achieved a C-index of 84.5% which is signifi-
cantly greater than the C-index of the Cox PH model
(83.2%) (p = 0.014). This result indicates that there
are interactions amongst predictors and non-linear
predictor-risk relationship captured by the Xgboost

regression algorithm beyond what is explained by the
Cox linear regression model.

The difference between the models’ performances
(C-index) was more pronounced when applied to the
CN cohort to estimate CN-to-MCI conversion risk
(Xgboost: 73.3% versus Cox: 69.6%; p < 10–6). This
suggests that model advantages may reveal them-
selves more readily as the diagnosis task becomes
more challenging. In general, survival predictions
may be improved in one of two ways: 1) by apply-
ing more suitable models; and 2) by employing better
disease indicators. In both cases, improvements will
likely be incremental. Here, we have shown that
applying the Xgboost regressor in the PH model
results in improvement in risk assessment.

As shown in Fig. 2a, the median (95% CI) survival
time for the entire ADNI amnestic MCI cohort was
77.2 (65.9–95.9) months. However, when stratified
by high versus low risk using Xgboost PH, the median
survival time in the high-risk group reduced to 25.3
(24.3–35.9) months. This result indicates the utility
of our risk assessment method for sample enrichment
in clinical trials to increase the likelihood of detecting
positive therapeutic outcomes [7, 8].

Variable importance analysis on our Xgboost PH
model (Fig. 4) indicated that ADNI-MEM is the most
predictive feature, confirming the effect of AD on
memory deficiency at early stages of the disease.
Other high-ranking predictors were ADAS-13, FAQ
and RHPF. Table 2 shows that these variables are also
early indicators of impending cognitive decline in CN
individuals.

The only imaging measure considered in this study
was HPF, which can be easily calculated from T1-
weighted MRI scans. We investigated the ability of
this measure to improve the prediction performance
and act as an effective biomarker of neuronal injury in
AD. We demonstrated that the HPF had a significant
contribution to the model’s performance: C-index
84.5% versus 83.7% (p = 0.02). It was observed that
the prediction power of RHPF is almost twice that
of LHPF (Fig. 4). This concurs with the findings
reported in [12] where the RHPF had a higher variable
importance than the LHPF in a Random Forest model
for stable versus progressive MCI classification. It has
been shown that in normal aging the left hippocam-
pus declines faster than the right hippocampus [28].
Therefore, the deterioration of the right hippocampus
may be a more ominous indicator of underlying AD
pathology in MCI.

It should be emphasized that although we utilized
low-cost and non-invasive predictors, adding other
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risk factors could potentially increase the strength
of our proposed model. Until recently, A� and tau
proteins could only be extracted through invasive
procedures. Yet recently, it has been shown that infor-
mation on these factors may be acquired through
simple blood tests [45]. The data obtained from these
tests have not been sufficiently collected, but the use
and evaluation of their effect in subsequent stud-
ies are recommended. Furthermore, the procedure
described in the current paper may serve as an initial
assessment tool for patients with subjective memory
complaints. If results indicate high-risk for conver-
sion to MCI/dementia, then further tests (e.g., CSF
analysis and A� and tau PET imaging) may be recom-
mended to obtain a more accurate diagnostic picture.

Future strategies such as relaxing the PH assump-
tion, including additional low-cost novel predictors,
and using longitudinal data should be investigated
to achieve further improvements in model accuracy
leading to significant cost savings in clinical trials,
long-term disease management, and patient care.

A limitation of this work was the assumption of
non-informative censoring which may not be neces-
sarily true. SA leads to reliable and unbiased results
only if the non-informative data censoring condition
is met (i.e., participants should not have left the study
for a reason related to their disease status). This ought
to be considered more carefully in future studies.
Another limitation of this study was that the model
trained for MCI-to-AD progression was applied for
CN-to-MCI conversion. Ideally, for the latter applica-
tion the model should be trained on CN subjects with
likely improved results. This would require a larger
cohort of longitudinally observed CN.
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