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Abstract

Alzheimer's disease (AD) is the most prevalent form of dementia. Although fewer

people, who suffer from AD are correctly and promptly diagnosed, due to a lack of

knowledge of its cause and unavailability of treatment, AD is more manageable if the

symptoms of mild cognitive impairment (MCI) are in an early stage. In recent years,

computer-aided diagnosis has been widely used for the diagnosis of AD. The main

motive of this paper is to improve the classification and prediction accuracy of AD. In

this paper, a novel approach is developed to classify MCI, normal control (NC), and

AD using structural magnetic resonance imaging (sMRI) from the Alzheimer's disease

Neuroimaging Initiative (ADNI) dataset (50 AD, 50 NC, 50 MCI subjects). FreeSurfer

is used to process these MRI data and obtain cortical features such as volume, sur-

face area, thickness, white matter (WM), and intrinsic curvature of the brain regions.

These features are modified by normalizing each cortical region's features using the

absolute maximum value of that region's features from all subjects in each group of

MCI, NC, and AD independently. A total of 420 features are obtained. To address

the curse of dimensionality, the obtained features are reduced to 30 features using a

sequential feature selection technique. Three classifiers, namely the twin support

vector machine (TSVM), least squares TSVM (LSTSVM), and robust energy-based

least squares TSVM (RELS-TSVM), are used to evaluate the classification accuracy

from the obtained features. Five-fold and 10-fold cross-validation are used to vali-

date the proposed method. Experimental results show an accuracy of 100% for the

studied database. The proposed approach is innovative due to its higher classification

accuracy compared to methods in the existing literature.
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1 | INTRODUCTION

Alzheimer's disease (AD) affects the functional and structural parts of the human brain, which results in cognitive decline and, ultimately, death. It

is currently a growing threat to individuals, particularly those above 65 years of age, and it is dangerous because its odds of getting AD double

every five years after 65 years of age. Environmental and hereditary influences play a critical role in the advancement and onset of the disease.

There has been a reduction in deaths due to heart disease, prostate tumours, breast cancer, human immunodeficiency virus (HIV), and strokes by

16%, 8%, 2%, 42%, and 23%, respectively. On the other hand, deaths due to AD have increased by 68% (Alzheimer's, 2015). There are about

36 million people with AD globally, and this figure may rise to 115 million by the end of 2050 (Brookmeyer, Johnson, Ziegler-Graham, &

Arrighi, 2007). Recently, Tanveer et al. (2020) presented an updated review of the diagnosis of AD using machine learning techniques.

The diagnosis of AD includes investigation of an individual's history, clinical perceptions, and incident history from associates. The intellectual

decline of individuals can be measured using the mini-mental state examination (MMSE) and clinical dementia rate (CDR). However, these

methods are tedious and cannot determine past changes in the brain that can be markers for the progression of AD. For the diagnosis of early

AD, it is crucial to develop automated methods that can help experts suggest treatments that can slow the progression of the disease.

In recent years, there has been significant research focus on determining the early stages of AD. Machine learning algorithms based on single

or multiple biomarkers for the classification task are widely used for the prediction of AD and mild cognitive impairment (MCI), Neuroimaging is

the latest biomarker added in this field and gives reliable and efficient results for the identification of AD and MCI. Recent studies have shown

that multiple modalities of the same subject can be used. However, the collection of different modalities for the same subject is not easily feasible,

which results in a reduced number of subjects for study.

Electroencephalogram (EEG) data were also used in Kulkarni and Bairagi (2017) for the classification of normal control (NC) versus AD sub-

jects using a support vector machine (SVM). Mazaheri et al. (2018) used EEG recordings of word comprehension by subjects to classify MCI con-

verter (MCIc) from MCI non-converter (MCInc), and NC. Some recent EEG decomposition techniques such as empirical mode decomposition

(EMD) based filtering in Gaur, Pachori, Wang, and Prasad (2015), multivariate EMD based filtering in Gaur et al. (Gaur, Pachori, Wang, &

Prasad, 2016b; Gaur, Pachori, Wang, & Prasad, 2018), single and multi-channel EMD-based filtering in Gaur et al. (Gaur, Kaushik, Pachori, Wang, &

Prasad, 2019; Gaur, Pachori, Wang, & Prasad, 2016a), and intrinsic mode function selection in Gaur, Pachori, Wang, and Prasad (2019), which

enhances the classification of two class EEG signals, motivated us to develop algorithms for better classification of AD.

Despite remarkable research on the automatic classification of MCI or AD from NC, these classification techniques are not accurate. Earlier

studies were based on either the analysis of the voxel-based morphometry (VBM) or region of interest (ROI) using classification algorithms. The

limitations of ROI- and VBM-based techniques can be overcome by high-dimensional pattern classification techniques that use a large number of

features. These techniques are effective but require high computational time as these techniques involve the extraction of a large number of fea-

tures. The normalization of features and selection of the most distinct features may enhance the results of the proposed approach and will even-

tually reduce computational time. Tanveer and Pachori (2019) explained various techniques for the diagnosis of diseases, such as time-frequency

analysis, feature extraction, and machine learning applications for the classification of different diseases.

The proposed approach in this paper performs classification for three groups of subjects (i.e., AD vs. NC, AD vs. MCI, and NC vs. MCI) using

structural MRI (sMRI). The main focus is determining whether the given subject has AD or MCI. Once pre-processing by FreeSurfer is done on

sMRI, features based on the surface area, cortical thickness, intrinsic curvatures, volume, and white matter (WM) are extracted. Surface area, cor-

tical thickness, intrinsic curvature, and volume features play a major role in prior identification of AD. The surface area, cortical thickness, and cur-

vature of brain regions change, and densities of white and grey matter are reduced due to changes in brain cells, as many of these cells die due to

AD. A total of 420 features were extracted from the pre-processed MRI data. The obtained features were normalized then sequential feature

selection technique was used to reduce the feature set to 30.

The main task in the proposed approach is classification. For this, we use classifiers such as the twin support vector machine (TSVM)

(Jayadeva, Khemchandani, & Chandra, 2007), least squares TSVM (LSTSVM) (Kumar & Gopal, 2009), and robust energy-based least squares TSVM

(RELS-TSVM) (Tanveer, Khan, & Ho, 2016) for the classification of AD, MCI, and NC.

In recent years, concepts based on constructing a different variation of non-parallel hyperplanes as in Tanveer (2015c), Tanveer and

Shubham (2017), and Tanveer (2015a)) have emerged. TSVM is an efficient classification method, and, as mentioned in Jayadeva et al. (2007), the

two non-parallel proximal hyperplanes are designed in such a way that each hyperplane is as close as possible to one class and as far as possible

from the other class. Tanveer (2015b) proposed an implicit Lagrangian TSVM classifier in which a pair of unconstrained minimization problems

(UMPs) in dual variables is formulated, whose solutions are obtained using the finite Newton method. Due to modified UMPs, it is necessary to

solve only two systems of linear equations, compared to two quadratic programming problems (QPPs) in TSVM and twin bounded SVM (TBSVM),

which makes the algorithm fast and simple. Shao, Zhang, Wang, and Deng (2011) proposed a TBSVM in which two small QPPs are solved by

adding a regularized term for empirical risk minimization to construct two non-parallel hyperplanes, compared to TSVM. Tian, Qi, Ju, Shi, and

Liu (2014) proposed a non-parallel SVM (NPSVM) in which the kernel trick can be directly applied without solving another two primal problems

for the non-linear case, compared to existing non-linear TSVMs. High computational speed has been obtained by substituting convex QPP with a

convex linear system (Kumar & Gopal, 2009). Recently, Tanveer, Sharma, and Suganthan (2019) proposed a novel general TSVM with pinball loss
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(Pin-GTSVM) that is insensitive to noise and performs better for noise corrupted datasets. To retain the sparsity in the Pin-GTSVM, Tanveer,

Tiwari, Choudhary, and Jalan (2019) proposed a novel sparse pinball twin SVM (SPTSVM) that is insensitive to outliers and retail sparsity.

Richhariya and Tanveer (2020) used universum learning for the first time to solve the class imbalance problem in which reduced kernel was incor-

porated for reducing storage and computation cost. Nasiri, Charkari, and Mozafari (2014) proposed an energy-based least squares TSVM (ELS-

TSVM) that utilizes different energy for each class and can also handle unbalanced dataset problems. Gautam et al. (2020) introduced deep kernel

regularized least squares method for one-class classification by embedding minimum variance information, which improves the classifier capability

by reducing the intra-class variance and can also work effectively with small size datasets. Tanveer et al. (2016) proposed RELS-TSVM, which

maximizes the margin with a positive definite matrix formulation to overcome the positive semi-definite matrices formulation in the cases of

TSVM, LSTSVM, and ELS-TSVM. Additionally, the RELS-TSVM algorithm does not need a special optimizer but uses energy parameters to reduce

the effect of outliers and noise, due to which the classification becomes not only stable but also robust to outliers and noise (Tanveer

et al., 2016). Recently, Tanveer et al. (2019a) provided an exhaustive analysis of 08 variants of TSVM-based classifiers along with 179 classifiers

of 17 families. The results reveal that RELS-TSVM (Tanveer et al., 2016) performed the best among all the TSVM variants.

Hence, this inspired us to use these classifiers for the classification of AD. The experiment is individually performed for each type of feature

set using TSVM, LSTSVM, and RELS-TSVM. The reduced feature set performs better than the complete feature set, which reduces the

computational cost.

The paper is organized as follows: Section 2 discusses the background and related works on the diagnosis of AD using existing machine

learning techniques. Section 3 explains the dataset and demographic characteristics of all subjects. Section 4 presents the proposed approach.

Section 5 outlines the selection of features and the details of machine learning algorithms for classification problems. Section 6 presents the

results, analysis, discussion, and a comparison of the proposed approach using the existing methods. Section 7 draws conclusions about

the work.

2 | BACKGROUND AND RELATED WORK

There is growing interest in medical imaging that employs machine learning and computer-aided techniques for the diagnosis of AD. In machine

learning algorithms, features such as voxel intensity, tissue density, and shape are used to train the classifier for classifying subjects such as those

with AD and MCI as well as NC. These techniques are either whole brain-based or ROI-based. Prior knowledge is required for accessing the brain

region in ROI-based methods as they do not include all of the information available from brain MRI.

Modern neuroimaging techniques help researchers evaluate and estimate several brain functionalities and structures that are beneficial in the

diagnosis of AD and MCI. Recognized and risk-free techniques for brain imaging exist, and these are useful for the evaluation of physiological,

anatomical, and pathological brain features with acceptable outcomes. Table 1 presents related work that has used machine learning algorithms

for the classification of AD, along with limitations and possible advantages. The table provides the dataset used in each study, types of pre-

processing operations, types of classifiers, and extracted features used for classification of the groups, namely AD, MCI, and NC. It also provides

performance measures such as accuracy (acc), specificity (spe), and sensitivity (sen), which are used to compare the results of the proposed

approach, which shows obvious improvement.

Misra et al. (2009) predicted the conversion of MCI to AD using a method based on pattern recognition that employs a baseline and longitudi-

nal scan of the brain to measure atrophic spatial patterns. The aim is to predict whether MCI will transform into AD using baseline and longitudinal

scans of region-based brain tissues. Fan, Shen, and Davatzikos (2005) utilized deformation-based morphology and machine learning techniques

for the classification of medical images. High-dimensional template wrapping was utilized to acquire a morphological ROI, and the watershed divi-

sion was used to separate the features for classification. The separated features were then ranked using SVM recursive feature elimination (RFE)

strategy. Finally, SVM was utilized for the classification of subjects using the best set of features.

Fan, Resnick, et al. (2008) used features from positron emission tomography (PET) and MRI and applied high-dimensional pattern classifica-

tion (PC) to classify AD from MCI. Wang et al. (2007) used functional connectivity from resting-state functional magnetic resonance imaging (rs-

fMRI) to discriminate AD from NC using logistic regression. An increase in positive correlation was observed between the parietal, prefrontal, and

occipital lobes while a decrease was observed for the parietal and prefrontal lobes. Davatzikos, Resnick, et al. (2008) used voxel-based analysis for

the classification of AD and frontotemporal dementia (FTD) from NC using a high-dimensional PC method. Better diagnostic accuracy was

obtained using high-dimensional multivariate discriminant analysis than using conventional measurement. Hinrichs et al. (2009) used linear pro-

gramming for the classification of AD with sMRI (T1) and fluorodeoxyglucose PET (FDG-PET) with regularization using spatial smoothness. López

et al. (2009) used PCA for dimension reduction and Bayesian classifiers for classifying NC versus AD. Horn et al. (2009) used ROI-based features,

which were reduced by partial least squares (PLS) regression. The best accuracy was obtained using k-nearest neighbors (KNN) for classifying NC

versus AD. Richhariya, Tanveer, Rashid, and Alzheimer's Disease Neuroimaging Initiative (2020) used universum support vector machine-based

recursive feature elimination (USVM-RFE) technique for the diagnosis of AD. More recent techniques for the classification of AD, such as SVM,

deep learning, transfer learning, and ensemble methods, are reviewed in Tanveer et al. (2020).
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The fundamental principle behind AD classification approaches based on machine learning algorithms is the use of different brain imaging

techniques for feature extraction. A large number of features are available for the classification of AD and MCI from NC. We use features that

include WM, surface area, cortical thickness, volume, and curvature of different regions of the brain for the classification of AD and MCI. These

are presented in Tables S1 and S2.

3 | MATERIALS AND METHODS

3.1 | ADNI database

For the presented work, we obtained data from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI

was launched in 2003 by the National Institute on Aging (NIA), the Food and Drug Administration (FDA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), non-profit private pharmaceutical companies, and other organizations, with funding of $60 millions for the

five-year private-public partnership.

The main goal of ADNI is to examine whether PET, serial MRI, clinical, and neuropsychological assessment, and other biological markers can

be combined to measure early AD and the progression of MCI. Determination of specific and sensitive markers of very early AD progression is

intended to aid clinicians and researchers develop new treatments and monitor their effects and as well as minimize the time and cost of clinical

trials.

Michael W, Weiner, MD, VA Medical Center, and the University of California, San Francisco, is the principal investigator of this initiative.

3.2 | MRI acquisition

All the participants in this study were scanned with a GE Medical Systems MRI scanner with 1.5 Tesla field strength. The 3D T1-weighted MRI

scans were captured with the following information: sagittal acquisition plane, 3D acquisition type, 1.5 Tesla field strength, 8.0� flip angle, =1.2-

mm slice thickness, TE=3.96 ms, TI=1000.0 ms, TR=9.12 ms, and weighting=T1.

3.3 | Subjects

The ADNI dataset comprises more than 6,000 subjects with ages ranging from 18 to 96 years. From this database, we selected 150 subjects aged

between 58 and 91 years. The selected participants met the criteria defined in the ADNI protocol. The balance dataset of 150 subjects was con-

structed as follows:

1 50 NC subjects: 25 males, 25 females; average age ± standard deviation (SD) =80.36 ± 4.98 years, range =70 − 91 years, mini-mental state

estimation (MMSE) score =29.02 ± 1.16, range =25 − 30.

2 50 MCI subjects: 30 males, 20 females; average age ± SD =76.09 ± 7.85 years, range =58 − 91 years, MMSE score =25.66 ± 3.20, range

=18 − 30.

3 50 AD subjects: 25 males, 25 females; average age ± SD =75.76 ± 7.40 years, range =58 − 90 years, MMSE =20.68 ± 4.70, range =5 − 27.

The complete demographic characteristics of all the selected subjects are listed in Table 2.

TABLE 2 Details of dataset

Subjects NC MCI AD

Number of subjects 50 50 50

Sex (male/female) 25/25 30/20 25/25

Age (mean ± standard deviation) 80.36 ± 4.98 76.09 ± 7.85 75.76 ± 7.40

MMSE (mean ± standard deviation) 29.02 ± 1.16 25.66 ± 3.20 20.68 ± 4.70

Clinical dementia rating (CDR) (mean ± standard deviation) 0.03 ± 0.21 0.65 ± 0.44 1.05 ± 0.49
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4 | PROPOSED ALGORITHM

Figure 1 shows the overall scheme of the proposed method. First, the cerebral image features of both hemispheres were measured by processing

T1-weighted MRI brain images using FreeSurfer. Then, features such as volume, area, thickness, curvature, and WM volume of different brain

regions were measured. A detailed explanation of how FreeSurfer works is provided below.

To calculate area, curvature, and cortical thickness, all the T1-weighted MRI images were processed using the freely available FreeSurfer soft-

ware package v6.0.0 (http://surfer.nmr.mgh.harvard.edu). To obtain images with a relatively high contrast to noise ratio (CNR), normalization of

intensity was applied to the MRI. First, the boundary between white and grey matter was found in an image. Then, a triangular mesh consisting of

160,000 vertices in each hemisphere was formed around the WM. The grey matter surface was formed by deforming the mesh outward so that it

closely tracks the boundary between the cerebral spinal fluid (CSF) and grey matter. To measure cortical thickness, the distance between the grey

matter and WM surfaces was calculated for each vertex. Using the cortical folding pattern, the image was then registered to FreeSurfer's common

template. The neocortex of the Desikan et al. (2006) atlas was then parcellated into 68 neocortical regions comprising 34 regions from each

T1-weighted MRI

Measurement of cerebral image features using FreeSurfer software

Thickness
Volume of ROI

of ROI

Curvature
Area of ROI

of ROI

White mat-

ter of ROI

Normalized
Normalized

volume of ROI
thickness

Normalization of features usingmaximumvalue of feature fromall subjects of a group/class

of ROI

Normalized

area of ROI

Normalized cur-

vature of ROI

Normalized

white matter

of ROI

Evaluation of performance of the proposed

Classification of AD, NC, and MCI using TSVM, LSTSVM, and RELS-TSVM classifiers

method using different ROIs and combined ROIsF IGURE 1 Overall scheme of
the proposed method
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hemisphere. In each parcellation unit, the thicknesses of all the vertices were calculated and then averaged. The obtained thickness is the thick-

ness of that parcellation unit. This yielded 68 features of cortical thickness for each subject. To calculate the cortical surface area, all areas of the

mesh triangles formed on the grey matter were summed, which yielded 68 features of the cortical area for each subject. To calculate the cortical

curvature of the given surface, the curvature of vertices in two principle directions was calculated, which is the inverse of the radius of the oscu-

lating circles in the two principal directions and the average of all these curvatures, known as the cortical curvature of the parcellation unit. On

average 68, cortical curvature features were obtained per subject (Figure 2).

Next, the cortical features such as WM intensity, volume, thickness, area, and curvature of different regions of the brain were extracted from

stat files produced by FreeSurfer for all the MRIs. First, normalization of these features using the maximum absolute value of each cortical region

of the subjects of each group (i.e., AD, MCI, and NC) was done in such a way that the value of each feature lies in the range of 0 − 1. This was

done by dividing each feature of each cortical region by the maximum absolute value of features from that region of all subjects from the same

group. With this operation, the features that are less linearly separable become more linearly separable. Figures 3, 4, 5, 6, 7, and 8 show the distri-

bution of the first two features selected by sequential forward feature selection (SFFS) before normalization and after normalization for curvature

and all combined features. From these figures, it is clear that after normalization, features become more separable (Figures 9 and 10).

The performance of the proposed method was evaluated using TSVM, LSTSVM, and RELS-TSVM classifiers. The performance of three groups

(i.e., AD vs. NC, NC vs. MCI, and AD vs. MCI) was evaluated in terms of accuracy, sensitivity, and specificity. To validate our obtained results, we

used fivefold and 10-fold cross-validation methods.

The proposed approach can be summarized as follows:

1 First, process all the MRI images using FreeSurfer.

2 Obtain features of the desired cortical regions of the brain.

3 Normalize the features as explained in Section 4

4 Obtain the relevant features using the SFFS method.

MRI Output images
Measured
features

Surface area

Cortical thickness

Intrinsic curvature

Volume

White matter

Cross-validation

5-fold CV

10-fold CV

Classifiers

TSVM

LSTSVM

RELS-TSVM

Diagnosis

NC

AD

MCI
F IGURE 2 Systematic block
diagram for automatic
detection of AD
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5 Perform classification.

6 Validate the classification results.

5 | PROPOSED APPROACH FOR THE CLASSIFICATION OF AD

We used TSVM, LSTSVM, and RELS-TSVM for the classification of AD. Figure 2 is a systematic block diagram of stepwise classification stages of

AD prediction for the proposed approach. First, the obtained raw MRI from ADNI was processed by the freely available FreeSurfer software, and

then features such as cortical thickness, surface area, curvature, volume, and WM were extracted. After extracting the individual features, all the

ROI were normalized within the groups. The normalization of features was followed by SFFS to obtain the most relevant features. Finally, these

relevant features were used for the classification of AD.

5.1 | Effective feature selection

In the analysis of neuroimages, a large number of features is involved compared to the number of subjects, which gives rise to the curse of dimen-

sionality. To combat this effect, we applied an efficient and widely used SFFS method in the proposed approach. Hence, we get low-dimensional

data from high-dimensional neuroimaging data.

The SFFS algorithm begins with an empty set, and the features are added sequentially in such a way that minimizes the error criteria. The

10-fold cross-validation is used internally, in which training data is divided into 10 partitions, and the subset of the selected is added feature in

each iteration based on the criteria calculated for the internal test dataset. The algorithm stops when the criteria for improvement are exhausted

or the number of predefined features is selected. In our study, the residual error is used in SFFS as the optimization function to be minimized.

Acceptable is determined by a selected subset of small features using SFFS when a suitable classifier is used. The SFFS algorithm can be described

as follows:

1 Start with a null subset S = ϕ,

2 select the next higher rank feature h=arg min (Er(x [ S)), x ∈ (X − S),

3 update the feature subset S = S [ h,

4 and stop if the criteria are satisfied; otherwise go to step 2.

where S is a null set, X denotes the set of all features, and Er denotes the classification error.

5.2 | Twin support vector machine (TSVM)

TSVM belongs to a class of binary classification that uses two non-parallel hyperplanes for the classification of data, instead of one hyperplane as

with conventional SVMs (Jayadeva et al. (2007)). In conventional SVMs, a large QPP is solved to obtain the hyperplane. However, in TSVM, two

small QPPs are solved to obtain two non-parallel hyperplanes. Consider a problem of binary classification in n-dimensional real space Rn, in which

m1 data points belong to class +1 and m2 data points belong to class −1. Let A and B be the matrix in Rm1 × n and Rm2 × n representing the data

points of one class (class +1) and the other class (class −1), respectively. For the given binary classification problem, the two non-parallel hyper-

planes in Rn of linear TSVM can be expressed as follows (Figure 11):

min
w 1ð Þ ,b 1ð Þ

1
2

Aw 1ð Þ + e2b
1ð Þ

� �T
Aw 1ð Þ + e2b

1ð Þ
� �

+ a1kξ1k

subject to − Bw 1ð Þ + e1b 1ð Þ
� �

+ ξ1 ≥ e1, ξ1 ≥0,

ð1Þ

min
w 2ð Þ ,b 2ð Þ

1
2

Bw 2ð Þ + e1b
2ð Þ

� �T
Bw 2ð Þ + e1b

2ð Þ
� �

+ a2kξ2k

subject to Aw 2ð Þ + e2b
2ð Þ

� �
+ ξ2 ≥ e2, ξ2 ≥0,

ð2Þ

where w(1) and w(2) are weight vectors, e1 and e2 are vectors of suitable dimensions, whose all elements are of unit magnitude, a1 and a2 are posi-

tive penalty parameters, b(1) and b(2) are biased values, and ξ1 and ξ2 are slack variables.
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The Wolfe duals of QPPs (1) and (2) were solved in Jayadeva et al. (2007). The QPPs (1) and (2) in terms of Lagrangian multipliers α∈Rm1 and

β∈Rm2 are given by (3) and QPPs by (4), respectively.

max
α

eT1α−
1
2
αTQ PTP

� �−1
QTα

subject to 0≤ α≤ a1,
ð3Þ

and

max
β

eT2β−
1
2
βTP QTQ

� �−1
PTβ

subject to 0≤ β ≤ a2,
ð4Þ

respectively.

Here P = [A e2] and Q = [B e1]. The solution of QPPs shown in (3) and (4) provides the non-parallel hyperplanes of (d), which are given

by (5) and (6), respectively.

v1 = − PTP
� �−1

QTα, where v1 = w 1ð Þ b 1ð Þ
h iT

ð5Þ

v2 = QTQ
� �−1

PTβ, where v2 = w 2ð Þ b 2ð Þ
h iT

ð6Þ

It is advantageous for bounded constraints to solve two QPPs as this reduces the number of parameters of QPPs (3) and QPP (4), which are

m1 and m2, respectively, when compared with parameters l = m1 + m2 of QPPs of SVM. However, it should be noted that TSVM requires inversion

of the matrix twice of size (n + 1) × (n + 1) in addition to solving dual QPPs (3) and QPPs (4), where n � l. Support vectors that are important in

determining the hyperplanes (1) are defined by data points for which 0 < αi < a1(i = 1, 2, …, m2) or 0 < βj < a2( j = 1, 2, …, m1), and the support vec-

tors lie on the corresponding hyperplane.

Here, PTP or QTQ is always positive semidefinite, so it is possible that in some situations it is not well-conditioned. To avoid this condition, the

inverse matrices (PTP)−1 of (5) are replaced by (PTP + δI)−1 and that of (6) is replaced by (QTQ + δI)−1, where I represents the identity matrix and δ

represents a scalar with a very small positive value. Thus, the modified dual problems (3) and (4) can be expressed as follows:

max
α

eT1α−
1
2
αTQ PTP+ δI

� �−1
QTα

subject to 0≤ α≤ a1
ð7Þ

and

F IGURE 11 Geometrical interpretation of TSVM
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max
β

eT2β−
1
2
βTP QTQ+ δI

� �−1
PTβ

subject to 0≤ β ≤ a2,
ð8Þ

respectively.

Thus, the solution of α and β QPPs (7) and (8) gives the two non-parallel hyperplanes as follows:

w 1ð Þ

b 1ð Þ

" #
= − PTP+ δI

� �−1
QTα, ð9Þ

w 2ð Þ

b 2ð Þ

" #
= QTQ+ δI
h i−1

PTβ: ð10Þ

After obtaining the non-parallel hyperplanes. A new data point x ∈ Rn is assigned a label of class +1 or −1 on the basis of its shortest perpen-

dicular distance from two hyperplanes, and the class label value is given as follows:

Class i = arg min
i=1,2

j xTwi + bi j
kwik : ð11Þ

For non-linear classification problems, TSVM can be used by replacing two linear kernels with two non-linear kernels generated by surfaces

as follows:

K xT ,CT
� �

u 1ð Þ + γ 1ð Þ =0 and K xT ,CT
� �

u 2ð Þ + γð2 = 0, ð12Þ

where C =
A

B

� 	
and K is an arbitrary kernel. Corresponding to the surface (12), the primal QPPs of non-linear TSVM can be expressed as follows:

min
u 1ð Þ ,γ 1ð Þ

1
2

K A,CT
� �

u 1ð Þ + e2γ 1ð Þ
� �


 


2 + a1kξ1k

subject to −K B,CT
� �

u 1ð Þ + e1γ 1ð ÞÞ+ ξ1 ≥ e1, ξ1 ≥0,

ð13Þ

min
u 2ð Þ ,γ 2ð Þ

1
2

K B,CT
� �

u 2ð Þ + e1γ 2ð Þ
� �


 


2 + a2kξ2k

subject to K A,CT
� �

u 2ð Þ + e2γ 2ð ÞÞ+ ξ2 ≥ e2, ξ2 ≥0:

ð14Þ

The duals of QPPs (13) and (14) can also be solved to obtain the hyperplanes (12). It should be noted that the solution of non-linear TSVM

also requires the inversion of two matrices of order m1 × m1 and m2 × m2 along with the solution of two QPPs. In addition, it should be noted that

TSVM may fail in some cases where the dataset is perfectly symmetric. This problem can be reduced by either using non-linear kernels or by

slightly shifting a point, which disturbs the symmetry. Jayadeva et al. (2007) showed experimentally using University of California Irvine (UCI)

machine learning datasets that TSVM performance is better than that of a generalized eigenvalue proximal support vector machine (GEPSVM)

and conventional SVM in the case of linear and non-linear kernels. The TSVM can be trained four times faster using a linear kernel compared to

conventional SVM (Jayadeva et al., 2007).

5.3 | Least squares TSVM (LSTSVM)

Kumar and Gopal (2009) also explored LSTSVM for which two non-parallel hyperplanes are solved, similarly to TSVM (??). In LSTSVM, the training

data points are assigned close to one of the two non-parallel proximal hyperplanes and far from the other hyperplane. LSTSVM is a simple and fast

algorithm that only requires a solution to a system of linear equations to achieve both linear and non-linear classifiers. The QPP (15) uses the

square of the two-norm of slack variables a1 with weight a1
2 instead of the one-norm of ξ1 with weight a1, as in (??), which makes the constraint

ξ1�0e1 redundant. The optimization problems of LSTSVM can be expressed as follows:
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min
w 1ð Þ ,b 1ð Þ

1
2

Aw 1ð Þ + e2b
1ð Þ

� �T
Aw 1ð Þ + e2b

1ð Þ
� �

+
a1
2

ξ1k k2

subject to − Bw 1ð Þ + e1b
1ð Þ

� �
+ ξ1 = e1,

ð15Þ

min
w 2ð Þ ,b 2ð Þ

1
2

Bw 2ð Þ + e1b 2ð Þ
� �T

Bw 2ð Þ + e1b 2ð Þ
� �

+
a2
2

ξ2k k2

subject to Aw 2ð Þ + e2b
2ð Þ

� �
+ ξ2 = e2:

ð16Þ

The linear LSTSVM fully solves the classification problems by simply finding the inverse of two matrices with much smaller dimensions of

order (n + 1) × (n + 1), where n�l (Kumar & Gopal, 2009). After solving the QPPs (15) and (16), the following two systems of linear equations can

be solved to obtain the two non-parallel hyperplanes:

w 1ð Þ

b 1ð Þ

" #
= − a1Q

TQ+PTP
h i−1

a1Q
Te1, ð17Þ

w 2ð Þ

b 2ð Þ

" #
= a2P

TP+QTQ
h i−1

a2P
Te2, ð18Þ

where P = [A e2], Q = [B e1], and a1 and a2 are some positive penalty parameters.

A new datapoint x ∈ Rn is assigned a class label of +1 or −1 based on its perpendicular distance from two hyperplanes.

5.4 | Robust energy-based least squares TSVM (RELS-TSVM)

Consider a binary classification problem in which matrix A∈Rm1 × n represents data points of class +1 and matrix B∈Rm2 × n represents data points of

class −1.

The linear RELS-TSVM (Tanveer et al., 2016) includes a pair of minimization problems as follows:

min
w 1ð Þ ,b 1ð Þ ,ξ 1ð Þ

1
2

Aw 1ð Þ + e2b
1ð Þ

� �T
Aw 1ð Þ + e2b

1ð Þ
� �

+
a1
2
ξT1ξ1 +

a3
2

w 1ð Þ

b 1ð Þ

" #











2

subject to − Bw 1ð Þ + e1b
1ð Þ

� �
+ ξ1 = E1,

ð19Þ

min
w 2ð Þ ,b 2ð Þ ,ξ 2ð Þ

1
2

Aw 1ð Þ + e1b 1ð Þ
� �T

Aw 1ð Þ + e1b 1ð Þ
� �

+
a2
2
ξT2ξ2 +

a4
2

w 2ð Þ

b 2ð Þ

" #











2

subject to Aw 2ð Þ + e2b
2ð Þ

� �
+ ξ2 = E2,

ð20Þ

where e1 and e2 are the vectors of ones of suitable dimensions, a1, a2, a3, a4 > 0 are penalty parameters, and E1 and E2 represent the energy

parameters of the hyperplanes.

The QPP (19) can be solved as follows:

z1 = − a1Q
TQ+PTP+ a3I

� �−1
a1Q

TE1, ð21Þ

where z1 =
w 1ð Þ

b 1ð Þ

" #
. In a similar way, the solution of QPP (20) is given by following equation:

z2 = a2P
TP+QTQ+ a4I

� �−1
a2P

TE2, ð22Þ
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where z2 =
w 2ð Þ

b 2ð Þ

" #
, P= A e2½ �, Q= Be1½ � . The following decision function is used to assign the class label i = {+1,−1} to unknown data

point xi∈Rn:

f xið Þ=
+1, if j xiw

1ð Þ + eb 1ð Þ

xiw 2ð Þ + eb 2ð Þ j ≤1

−1, if j xiw
1ð Þ + eb 1ð Þ

xiw 2ð Þ + eb 2ð Þ j >1

8>>>><
>>>>:

ð23Þ

6 | EXPERIMENTAL RESULTS AND ANALYSIS

6.1 | Permutation testing

The statistical importance of the classifier can be calculated using permutation tests. In addition, the performance of the classifier can be evalu-

ated using the test error as a statistic, which gives the dissimilarity between two classes as evaluated in Golland and Fischl (2003). The evaluation

process begins with the choice of the test statistics of the classifier and the allocation of arbitrary labels to the classifier by permuting the class

labels for the training dataset. Cross-validation (CV) is involved in permutation testing, in which a randomly permuted class label is given to the

diagnostic dataset. This leads to the misprediction of clinical data labels due to the distribution of classification results under the null hypothesis.

The significance of a classifier can be indicated by p value, which is defined as the permuted estimation rate against the estimation rate with the

original data labels. In our work, we use fivefold CV and 10-fold CV methods and carry out binary classification of AD using TSVM, LSTSVM, and

RELS-TSVM.

6.2 | Performance evaluation methods

The performance of the proposed algorithm was evaluated using the TSVM, LSTSVM, and RELS-TSVM classifiers. Table 3 depicts the confusion

matrix, which can be used to evaluate the binary classification performance of classes A and B. The number of correctly predicted values by the

classifier is indicated by the diagonal elements of the confusion matrix. The correctly identified controls can be represented by further dividing

the elements into true negative (TN) and true positive (TP). Similarly, the classes that are wrongly classified by the classifier can be represented by

false negative (FN) and false positive (FP).

The portion of the subjects correctly labeled by the classifier can be measured by accuracy (acc), which is defined as follows:

acc =
TP+TN

TP+TN+FP+FN
: ð24Þ

If the dataset has a highly unbalanced class distribution, then the accuracy as defined in Equation (24) may not be the correct performance

measure. Therefore, two other performance measures were used, namely specificity (spe) and sensitivity (sen), which are defined below as

follows:

spe =
TN

TN+FP
, ð25Þ

TABLE 3 Confusion matrix

True class

Predicted class

A B

A TP FP

B FP TN
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sen=
TP

TP+FN
: ð26Þ

The rate of TNs is measured by the spe as defined in Equation (25) while the rate of TPs is measured by the sensitivity as defined in

Equation (26).

6.3 | Classification results and analysis

In this paper, the features extracted by the FreeSurfer are used by three classifiers to evaluate the performance of the proposed algorithm. The

main aim is to develop a method that can distinguish healthy (normal) subjects from AD and MCI patients. In the first case, we trained all three

classifiers with obtained features from AD and NC MRI scans (group 1 analysis).

6.3.1 | Classification results for NC and AD

In this section, the classification results for distinguishing AD and NC subjects are presented. For this group analysis, we used 50 AD subjects and

50 NC subjects, of which 40 subjects from each group were used to train the classifiers, and the remaining 10 subjects of each group were tested

using three classifiers (i.e., TSVM, LSTSVM, and RELS-TSVM). The acc, spe, and sen for the various features are given in Table 4. The lowest acc

was obtained for volume using TSVM. The highest acc of 100% was obtained for all the classifiers using cortical curvature and for all the features

TABLE 4 Classification results in percentage (%) for NC versus AD

Classifier Performance in (%) White matter Volume Area Thickness Curvature All combined

TSVM acc 75.5 54 99.5 94.5 100 100

sen 69 80 100 96 100 100

spe 82 28 99 93 100 100

LSTSVM acc 79.5 72.5 100 98.5 100 100

sen 86 74 100 98 100 100

spe 73 71 100 99 100 100

RELS-TSVM acc 81.33 54.67 100 95.33 100 100

sen 73.33 67.33 100 96 100 100

spe 75.72 64.36 100 96.18 100 100

F IGURE 12 Classification accuracy for AD versus NC
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combined. Hence, combining all the features increases the acc, spe, and sen. For WM analysis, the lowest acc of 75.5% was obtained by TSVM,

and the highest acc of 81.33% was obtained by linear RELS-LSTSVM. For volumetric analysis, the lowest acc of 54% was obtained by TSVM, and

the highest acc of 72.5% was obtained by LSTSVM. For cortical area analysis, the lowest acc of 90.5% was obtained by TSVM, and the highest

acc of 100% was obtained by LSTSVM and RELS-TSVM. For cortical curvature analysis, all the three classifiers had acc of 100%. Figure 12 shows

all the classification acc.

TABLE 5 Classification results in percentage (%) for NC versus MCI

1 Performance (%) White matter Volume Area Thickness Curvature All combined

TSVM acc 89.5 50.5 90 84 99 99.5

sen 93 78 93 82 98 99

spe 86 23 87 86 100 100

LSTSVM acc 82 63.5 98.5 90.5 99 100

sen 82 66 99 86 98 100

spe 82 61 98 95 100 100

RELS-TSVM acc 79.33 76 96 87.33 98 100

sen 92 46.67 96 85.33 100 100

spe 91.64 58.82 96.25 86.47 100 100

F IGURE 13 Classification accuracy for NC versus MCI

TABLE 6 Classification results in percentage (%) for AD versus MCI

Classifier Performance (%) White matter Volume Area Thickness Curvature All combined

TSVM acc 71.5 62.5 94.5 79 99.6 100

sen 80 62 90 79 100 100

spe 63 63 99 79 100 100

LSTSVM acc 76 78 100 91 100 100

sen 74 80 100 94 100 100

spe 78 76 100 88 100 100

RELS-TSVM acc 71.33 54.67 100 68.67 100 100

sen 78 54.67 99.33 84 100 100

spe 77.52 55.1 99.38 81.35 100 100
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6.3.2 | Classification results for NC and MCI

For the classification of NC from MCI, we used 50 subjects from each group. Table 5 shows the performance measures such as acc, sen, and spe

for feature sets obtained using TSVM, LSTSVM, and RELS-TSVM classifiers for NC and MCI. For every classifier input, we divided each group into

a set of 40 and 10 subjects. For each group that is, NC and MCI) a set of 40 subjects was used to train the classifiers, and a set of 10 was used to

evaluation classification performance. Figure 13 shows the classification acc for NC and MCI. It shows that the volume features had the lowest

acc of 50.5% when TSVM was used for classification. Cortical curvature and all features combined had the highest acc of 100% when LSTSVM

and RELS-TSVM were used. Therefore, combining all features increased not only the classification accuracy but also improved other performance

F IGURE 14 Classification accuracy for AD versus MCI

TABLE 7 Comparison of the proposed approach with existing approaches

Approach Features Groups Classifiers Accuracy (%)

Hosseini-Asl, Gimel'farb, and El-Baz (2016) Volumetric, intensity and cortical

thickness

NC versus AD Random Forest 83.00

MCI versus AD 68.00

HC versus MCI 67.00

HC versus MCI versus AD 54.00

Zhang, Yu, Jiang, Liu, and Tong (2012) Textural AD versus NC 1-NN 89.0

ANN 98.50

Zheng, Yao, Xie, Fan, and Hu (2018) Volume, surface area cortical

thickness sulcal depth

NC versus AD SVM 98.70

NC versus MCI 97.93

MCI versus AD 73.82

sMCI versus pMCI 67.92

Proposed approach Cortical features TSVM 100

LSTSVM 100

AD versus NC RELS-TSVM 100

TSVM 100

LSTSVM 100

AD versus MCI RELS-TSVM 100

NC versus MCI TSVM 99.5

LSTSVM 100

NC versus MCI RELS-TSVM 100
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parameters such as sen and spe. In the case of volume, the highest acc of 76% was obtained using RELS-TSVM. The lowest acc of 90% and the

highest acc of 98.5% were obtained by TSVM and LSTSVM, respectively, when cortical areas were used as features. When all features were com-

bined, sen and spe of 100% were obtained. Table 5 shows the performance parameters for the various feature sets.

6.3.3 | Classification results for AD and MCI

Table 6 shows the classification results for AD and MCI subjects. For this analysis, we used 50 subjects from each group. For training classifiers

and testing, each group was divided into sets of 40 and 10 subjects, respectively. All three classifiers (i.e., TSVM, LSTSVM, and RELS-TSVM) were

trained, and the performance measures were evaluated using the predicted values of class levels. Figure 14 shows the classification accuracies

obtained by TSVM, LSTSVM, and RELS-TSVM classifiers using the various feature sets of AD and MCI. An acc of 100% was obtained by all the

three classifiers when cortical curvature was used as a feature. The same acc was obtained when all features were combined. The lowest acc of

54.67% was obtained for volumetric analysis using RELS-TSVM. For WM, the lowest acc of 71.33% was obtained by RELS-TSVM, while the

highest acc of 74% was obtained by LSTSVM. Comparatively higher acc values were obtained for cortical area features. For all features combined,

sen of 100% and spe of 100% were obtained. Table 6 summarized all of the performance parameters.

Overall, our results show that LSTSVM and RELS-TSVM perform better than TSVM in most cases. Among the five cortical feature sets, WM,

volume, area, thickness, and curvature performed better. In addition, the volume of different regions cannot produce satisfactory results. It can be

concluded that the normalization technique we used, combined with classifiers such as LSTSVM and RELS-TSVM, is a better option for overall

classification between AD-NC, AD-MCI, and NC-MCI due to the high acc values. Hence, our proposed approach is highly effective for the classifi-

cation of AD. Table 7 compares our proposed approach with existing approaches.

7 | CONCLUSIONS

The accurate diagnosis of AD and MCI is essential for both research and patient care. To delay or alleviate the progression of AD, preventive mea-

sures play an important role. The classification task is a major challenge because of the small number of training samples compared to the large

number of features. The proposed approach performs better than some existing methods for AD classification in terms of acc, sen, and spe. In our

study, we investigated TSVM, LSTSVM, and RELS-TSVM for the classification of AD, MCI, and NC. For the classification of AD, LSTSVM performs

better than TSVM, and RELS-TSVM performs better than both TSVM and LSTSVM. Further, the classification acc of AD improves by applying

SFFS for feature selection.

In the future, we plan to analyze the combined effects of more modalities, such as PET and functional MRI (fMRI) with sMRI for the classifica-

tion of AD. In addition, other modalities such as the combination of EEG and MRI can be analysed. We also plan to investigate the more recent

neuro-imaging modality magnetoencephalography (MEG) in our future work.

ACKNOWLEDGEMENTS

This work is supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India under the Extra Mural Research (EMR)

Scheme, Grant No. 22 (0751)/17/EMR-II and the Science and Engineering Research Board (SERB) under the Ramanujan Fellowship Scheme,

Grant No. SB/S2/RJN-001/2016. We gratefully acknowledge the Indian Institute of Technology Indore for providing facilities and support. We

are thankful to CSIR, New Delhi, India for providing a research fellowship to Mr. R.U. Khan.

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of

Health Grant U01 AG024904) and DOD ADNI (Department of Defence Award Number W81XWH-12-2-0012). ADNI is funded by the

National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the fol-

lowing: AbbVie; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers

Squibb Company; CereSpir Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd,

and its affiliated company Genentech Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research and Develop-

ment LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co. Inc.; Meso Scale Diagnostics

LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Phar-

maceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research provides funds to support ADNI clinical sites

in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee

organization is the Northern California Institute for Research and Education, and the study was coordinated by the Alzheimer's Therapeutic

Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University

of Southern California.

KHAN ET AL. 19

http://www.fnih.org


CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

ORCID

Riyaj Uddin Khan https://orcid.org/0000-0002-9124-3985

Mohammad Tanveer https://orcid.org/0000-0002-5727-3697

REFERENCES

Alzheimer's, A. (2015). Alzheimer's disease facts and figures. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 11, 332.

Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer's disease. Alzheimer's & Dementia, 3,

186–191.
Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and

pattern classification. Neurobiology of Aging, 32, 2322–e19.
Davatzikos, C., Fan, Y., Wu, X., Shen, D., & Resnick, S. M. (2008). Detection of prodromal Alzheimer's disease via pattern classification of magnetic reso-

nance imaging. Neurobiology of Aging, 29, 514–523.
Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. M. (2008). Individual patient diagnosis of AD and FTD via high-dimensional pattern classifica-

tion of MRI. Neuroimage, 41, 1220–1227.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Albert, M. (2006). An automated labeling system for subdividing the

human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980.
Fan, Y., Batmanghelich, N., Clark, C. M., Davatzikos, C., & Alzheimer's Disease Neuroimaging Initiative. (2008). Spatial patterns of brain atrophy in MCI

patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage, 39, 1731–1743.
Fan, Y., Resnick, S. M., Wu, X., & Davatzikos, C. (2008). Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern

classification study. Neuroimage, 41, 277–285.
Fan, Y., Shen, D. and Davatzikos, C. (2005) Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM. Paper

presented at: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 1–8). Springer.
Farzan, A., Mashohor, S., Ramli, A. R., & Mahmud, R. (2015). Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longi-

tudinal brain atrophy patterns. Behavioural Brain Research, 290, 124–130.
Filipovych, R., Davatzikos, C., & Alzheimer's Disease Neuroimaging Initiative. (2011). Semi-supervised pattern classification of medical images: Application

to mild cognitive impairment (MCI). Neuroimage, 55, 1109–1119.
Gaur, P., Kaushik, G., Pachori, R. B., Wang, H., & Prasad, G. (2019). Comparison analysis: single and multichannel EMD-based filtering with application to

BCI. In Machine intelligence and signal analysis (pp. 107–118). Singapore: Springer.
Gaur, P., Pachori, R. B., Wang, H. and Prasad, G. (2015) An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals

for enhancing brain-computer interface. Paper presented at Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN)

(pp. 1–7). IEEE.
Gaur, P., Pachori, R. B., Wang, H. and Prasad, G. (2016a) Enhanced motor imagery classification in EEG-BCI using multivariate EMD based filtering and CSP fea-

tures. Paper presented at Proceedings of the International Brain-Computer Interface (BCI) Meeting 2016.

Gaur, P., Pachori, R. B., Wang, H. and Prasad, G. (2016b) A multivariate empirical mode decomposition based filtering for subject independent BCI. Paper pres-

ented at Proceedings of the 2016 27th Irish Signals and Systems Conference (ISSC) (pp. 1–7). IEEE.
Gaur, P., Pachori, R. B., Wang, H., & Prasad, G. (2018). A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based

filtering and Riemannian geometry. Expert Systems with Applications, 95, 201–211.
Gaur, P., Pachori, R. B., Wang, H., & Prasad, G. (2019). An automatic subject specific intrinsic mode function selection for enhancing two-class EEG based

motor imagery-brain computer interface. IEEE Sensors Journal, 19, 6938–6947.
Gautam, C., Mishra, P. K., Tiwari, A., Richhariya, B., Pandey, H. M., Wang, S., et al. (2020). Minimum variance-embedded deep kernel regularized least

squares method for one-class classification and its applications to biomedical data. Neural Networks, 123, 191–216.
Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.-S., … Eustache, F. (2009). Multidimensional classification of hippocampal shape

features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. Neuroimage, 47, 1476–1486.
Golland, P. and Fischl, B. (2003) Permutation tests for classification: towards statistical significance in image-based studies. Paper presented at Biennial

International Conference on Information Processing in Medical Imaging, 330–341. Springer.
Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., Johnson, S. C., & Alzheimer's Disease Neuroimaging Initiative. (2009). Spatially augmented

LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage, 48, 138–149.
Horn, J.-F., Habert, M.-O., Kas, A., Malek, Z., Maksud, P., Lacomblez, L., … Fertil, B. (2009). Differential automatic diagnosis between Alzheimer's disease

and frontotemporal dementia based on perfusion SPECT images. Artificial Intelligence in Medicine, 47, 147–158.
Hosseini-Asl, E., Gimel'farb, G. and El-Baz, A. (2016) Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv pre-

print arXiv:1607.00556.

Hu, K., Wang, Y., Chen, K., Hou, L., & Zhang, X. (2016). Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD

early diagnosis. Neurocomputing, 175, 132–145.
Jayadeva, Khemchandani, R., & Chandra, S. (2007). Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29, 905–910.
Kamathe, R. S., & Joshi, K. R. (2018). A novel method based on independent component analysis for brain MR image tissue classification into CSF, WM and

GM for atrophy detection in Alzheimer's disease. Biomedical Signal Processing and Control, 40, 41–48.
Kar, S., & Majumder, D. D. (2019). A novel approach of diffusion tensor visualization based Neuro fuzzy classification system for early detection of

Alzheimer's disease. Journal of Alzheimer's Disease Reports, 40,1–18.

20 KHAN ET AL.

https://orcid.org/0000-0002-9124-3985
https://orcid.org/0000-0002-9124-3985
https://orcid.org/0000-0002-5727-3697
https://orcid.org/0000-0002-5727-3697


Khedher, L., Ramírez, J., Górriz, J. M., Brahim, A., Segovia, F., & Alzheimer's Disease Neuroimaging Initiative. (2015). Early diagnosis of Alzheimer's disease

based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing, 151, 139–150.
Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., … Frackowiak, R. S. (2008). Automatic classification of MR scans in

Alzheimer's disease. Brain, 131, 681–689.
Kulkarni, N., & Bairagi, V. (2017). Extracting salient features for EEG-based diagnosis of Alzheimer's disease using support vector machine classifier. IETE

Journal of Research, 63, 11–22.
Kumar, M. A., & Gopal, M. (2009). Least squares twin support vector machines for pattern classification. Expert Systems with Applications, 36, 7535–7543.
López, M., Ramírez, J., Górriz, J., Salas-Gonzalez, D., Alvarez, I., Segovia, F., & Puntonet, C. (2009). Automatic tool for Alzheimer's disease diagnosis using

PCA and Bayesian classification rules. Electronics Letters, 45, 389–391.
Mazaheri, A., Segaert, K., Olichney, J., Yang, J.-C., Niu, Y.-Q., Shapiro, K., & Bowman, H. (2018). EEG oscillations during word processing predict MCI con-

version to Alzheimer's disease. NeuroImage: Clinical, 17, 188–197.
Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term con-

version to AD: Results from ADNI. Neuroimage, 44, 1415–1422.
Nasiri, J. A., Charkari, N. M., & Mozafari, K. (2014). Energy-based model of least squares twin support vector machines for human action recognition. Signal

Processing, 104, 248–257.
Ortiz, A., Górriz, J. M., Ramírez, J., Martínez-Murcia, F. J., & Alzheimer's Disease Neuroimaging Initiative. (2013). LVQ-SVM based CAD tool applied to

structural MRI for the diagnosis of the Alzheimer's disease. Pattern Recognition Letters, 34, 1725–1733.
Richhariya, B., & Tanveer, M. (2020). A reduced universum twin support vector machine for class imbalance learning. Pattern Recognition, 102, 107150.

Richhariya, B., Tanveer, M., Rashid, A., & Alzheimer's Disease Neuroimaging Initiative. (2020). Diagnosis of Alzheimer's disease using universum support

vector machine based recursive feature elimination (USVM-RFE). Biomedical Signal Processing and Control, 59, 101903.

Shao, Y.-H., Zhang, C.-H., Wang, X.-B., & Deng, N.-Y. (2011). Improvements on twin support vector machines. IEEE Transactions on Neural Networks, 22,

962–968.
Tanveer, M. (2015a). Application of smoothing techniques for linear programming twin support vector machines. Knowledge and Information Systems, 45,

191–214.
Tanveer, M. (2015b). Newton method for implicit Lagrangian twin support vector machines. International Journal of Machine Learning and Cybernetics, 6,

1029–1040.
Tanveer, M. (2015c). Robust and sparse linear programming twin support vector machines. Cognitive Computation, 7, 137–149.
Tanveer, M., Gautam, C., & Suganthan, P. N. (2019). Comprehensive evaluation of twin SVM based classifiers on UCI datasets. Applied Soft Computing, 83,

105617.

Tanveer, M., Khan, M. A., & Ho, S.-S. (2016). Robust energy-based least squares twin support vector machines. Applied Intelligence, 45, 174–186.
Tanveer, M., & Pachori, R. B. (2019). Machine intelligence and signal analysis (Vol. 748). New York, NY: Springer.

Tanveer, M., Richhariya, B., Khan, R. U., Rashid, A. H., Khanna, P., Prasad, M., & Lin, C.-T. (2020). Machine learning techniques for the diagnosis of

Alzheimer's disease: A review. ACM Transactions on Multimedia Computing, Communications, and Applications, 28, 1–35.
Tanveer, M., Sharma, A., & Suganthan, P. N. (2019). General twin support vector machine with pinball loss function. Information Sciences, 494, 311–327.
Tanveer, M., & Shubham, K. (2017). Smooth twin support vector machines via unconstrained convex minimization. Filomat, 31, 2195–2210. JSTOR.

Tanveer, M., Tiwari, A., Choudhary, R., & Jalan, S. (2019). Sparse pinball twin support vector machines. Applied Soft Computing, 78, 164–175.
Tian, Y., Qi, Z., Ju, X., Shi, Y., & Liu, X. (2014). Nonparallel support vector machines for pattern classification. IEEE Transactions on Cybernetics, 44,

1067–1079.
Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI

study. Human Brain Mapping, 28, 967–978.
Ye, D. H., Pohl, K. M., Davatzikos, C. (2011) Semi-supervised pattern classification: application to structural MRI of Alzheimer's disease. Paper presented at Pro-

ceedings of the 2011 International Workshop on Pattern Recognition in NeuroImaging (PRNI), (pp. 1–4). IEEE.
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., & Alzheimer's Disease Neuroimaging Initiative. (2011). Multimodal classification of Alzheimer's disease

and mild cognitive impairment. Neuroimage, 55, 856–867.
Zhang, J., Yu, C., Jiang, G., Liu, W., & Tong, L. (2012). 3D texture analysis on MRI images of Alzheimer's disease. Brain Imaging and Behavior, 6, 61–69.
Zhang, Y., Wang, S., & Dong, Z. (2014). Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector

machine decision tree. Progress in Electromagnetics Research, 144, 171–184.
Zheng, W., Yao, Z., Xie, Y., Fan, J., & Hu, B. (2018). Identification of Alzheimer's disease and mild cognitive impairment using networks constructed based

on multiple morphological brain features. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 887–897.

KHAN ET AL. 21



AUTHOR BIOGRAPHIES

Riyaj Uddin Khan is working as Senior Research Fellow (SRF) in Discipline of Mathematics, Indian Institute of Technology, Indore, India. He

received his B.Tech. and M.Tech. degree from Aligarh Muslim University, Aligarh, India, in 2015 and 2017 respectively. His research interest

includes bio medical signal processing, machine learning, brain-computer interface, neurodegenerative diseases, computer-aided medical diag-

nosis, and Alzheimer's disease (AD).

Mohammad Tanveer (SM‘18) is Associate Professor and Ramanujan Fellow at the Discipline of Mathematics of the Indian Institute of Tech-

nology, Indore. Prior to that, he spent one year as a Postdoctoral Research Fellow at the Rolls-Royce@NTU Corporate Lab of the Nanyang

Technological University, Singapore. His research interests include machine learning, deep learning, optimization, biomedical engineering and

applications to Alzheimer's disease and dementias. He has published over 40 referred journal papers of international repute. He is the recipi-

ent of the 2016 DST-Ramanujan Fellowship in Mathematical Sciences and 2017 SERB-Early Career Research Award in Engineering Sciences

which are the prestigious awards of INDIA at early career level. He is a Senior Member of IEEE, professional member of ACM, editorial review

board member of Applied Intelligence, Springer, Guest Editor of ACM Transactions on Multimedia Computing, Communications, and Applica-

tions (TOMM), Applied Soft Computing, Elsevier, Multimedia Tools and Applications, Springer and Associate Editor for IEEE SMC 2019. He

has also co-edited one book inSpringer on machine intelligence and signal analysis. He has also been lead organizer/ general chair and

invited/plenary/keynote speaker in many international conferences and Symposiums. He was the Co-Chair of Special Session Proposal in

IEEE SSCI 2018. Tanveer is currently the Principal Investigator of 07 major research projects funded by Government of India including

Department of Science and Technology (DST), Science & Engineering Research Board (SERB), Council of Scientific & Industrial

Research (CSIR).

Ram Bilas Pachori (SM'16) received the B.E.(Hons.) degree in electronics and communication engineering from Rajiv Gandhi Technological

University, Bhopal, India, in 2001, and theM.Tech. and Ph.D. degrees in electrical engineering from the Indian Institute of Technology (IIT)

Kanpur, Kanpur, India, in 2003 and 2008, respectively. He was a Postdoctoral Fellow with the Charles Delaunay Institute, University of Tech-

nology of Troyes, Troyes, France, from 2007 to 2008. He served as an Assistant Professor at Communication Research Center, International

Institute of Information Technology, Hyderabad, India, from 2008 to 2009. He served as an Assistant Professor at the Discipline of Electrical

Engineering, IIT Indore, Indore, India, from 2009 to 2013. He was a Visiting Scholar with the Intelligent Systems Research Center, Ulster Uni-

versity, Northern Ireland,U.K., in December 2014. He was an Associate Professor with the Discipline of Electrical Engineering, IIT Indore, from

2013 to 2017, where he has been working as a Professor since 2017. He is also an Associated Faculty with the Discipline of Biosciences and

Biomedical Engineering, IIT Indore. He has also been a Visiting Professor with the School of Medicine, Faculty of Health and Medical Sciences,

Taylor's University, Subang Jaya, Malaysia, since December 2018. He has more than 170 publications which include journal articles, confer-

ence articles, books, and book chapters. His publications have around 5800 citations,H index of 41, and i10 index of 98 (Google Scholar, April

2020).He has served on review boards for more than 95 scientific journals and served for scientific committees of various national and inter-

national conferences. His research interests are in the areas of biomedical signal processing, non-stationary signal processing, speech signal

processing, signal processing for communications, computer-aided medical diagnosis, and signal processing for mechanical systems. He is a

Fellow of IETE. He is an Associate Editor of Electronics Letters and Biomedical Signal Processing and Control journal; and an Editor of IETE

Technical Review Journal.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Khan RU, Tanveer M, Pachori RB, Alzheimer's Disease Neuroimaging Initiative (ADNI). A novel method for the

classification of Alzheimer's disease from normal controls using magnetic resonance imaging. Expert Systems. 2020;1–22. https://doi.org/

10.1111/exsy.12566

22 KHAN ET AL.

https://doi.org/10.1111/exsy.12566
https://doi.org/10.1111/exsy.12566

	A novel method for the classification of Alzheimer's disease from normal controls using magnetic resonance imaging
	1  INTRODUCTION
	2  BACKGROUND AND RELATED WORK
	3  MATERIALS AND METHODS
	3.1  ADNI database
	3.2  MRI acquisition
	3.3  Subjects

	4  PROPOSED ALGORITHM
	5  PROPOSED APPROACH FOR THE CLASSIFICATION OF AD
	5.1  Effective feature selection
	5.2  Twin support vector machine (TSVM)
	5.3  Least squares TSVM (LSTSVM)
	5.4  Robust energy-based least squares TSVM (RELS-TSVM)

	6  EXPERIMENTAL RESULTS AND ANALYSIS
	6.1  Permutation testing
	6.2  Performance evaluation methods
	6.3  Classification results and analysis
	6.3.1  Classification results for NC and AD
	6.3.2  Classification results for NC and MCI
	6.3.3  Classification results for AD and MCI


	7  CONCLUSIONS
	ACKNOWLEDGEMENTS
	  CONFLICT OF INTEREST
	REFERENCES


