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Abstract

Amyloid-beta (Aβ) plaques and tau neurofibrillary tangles are pathological hallmarks

of Alzheimer's disease (AD); their contribution to neurodegeneration and clinical

manifestations are critical in understanding preclinical AD. At present, the mecha-

nisms related to Aβ and tau pathogenesis leading to cognitive decline in older adults

remain largely unknown. Here, we examined graph theory-based positron emission

tomography (PET) analytical approaches, within and between tau and Aβ PET modali-

ties, and tested the effects on cognitive changes in cognitively normal older adults

(CN). Particularly, we focused on the network interdigitations of Aβ and tau deposits,

along with cognitive test scores in CN at both baseline and 2-year follow-up (FU).

We found highly significant Aβ-tau network integrations in AD vulnerable areas, as

well as significant associations between those Aβ-tau interdigitations and general

cognitive impairment in CN at baseline and FU. Our findings suggest a distinctive

contribution of interlinking network relationships between Aβ and tau deposits in

heteromodal areas of the human brain. They support a network-based interaction

between Aβ and tau accumulations as a key factor for cognitive deterioration in CN

prior to dementia.
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1 | INTRODUCTION

Alzheimer's disease (AD) is the most common type of dementia char-

acterized by progressive memory loss and the loss of independence in

daily activities. Aggregation of amyloid-beta (Aβ) peptides and accu-

mulation of aggregated forms of tau proteins are pathological hall-

marks of AD, appearing in initial stages of AD prior to onset of

symptoms (Fleisher et al., 2015; Jack Jr et al., 2010; Jansen

et al., 2015). Two pathological hallmarks, Aβ plaques and the neurofi-

brillary tangles, are considered sensitive markers for AD, and their

contribution to neurodegeneration and cognitive decline is presumed

to be a key to understand preclinical AD (Ballard et al., 2011; Johnson

et al., 2013; Pike et al., 2007). However, at present, it remains largely

unknown how Aβ and tau accumulation spatially intersect in brain cir-

cuits and whether these factors may explain the emergence of cogni-

tive decline in older adults.

Increased Aβ plaques and tau neurofibrillary tangles are com-

monly found in the neocortex of AD patients in postmortem autopsies

(Braak & Braak, 1991a, 1991b, 1995) as well as in positron emission

tomography (PET) imaging studies (Barthel et al., 2011; Chien
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et al., 2013; Clark et al., 2011; Clark et al., 2012; Johnson et al., 2016;

Klunk et al., 2004; Marquié et al., 2015; Pike et al., 2007; Van-

denberghe et al., 2010; Wong et al., 2010). The coexistence of both

pathological hallmarks is associated with synaptic dysfunction and

neuronal loss that mediate memory and cognition (Iqbal & Grundke-

Iqbal, 2002; Selkoe, 2002; Sperling et al., 2019). Several studies have

shown a strong association between Aβ and greater tau accumula-

tions at the cellular and molecular levels (Bennett et al., 2017; Götz,

Chen, Van Dorpe, & Nitsch, 2001; He et al., 2018; Hurtado

et al., 2010; Lewis et al., 2001; Williamson, Usardi, Hanger, &

Anderton, 2008). The spatial association between Aβ and tau accumu-

lations is somewhat inconsistent or minimally overlapping in specific

regions of the brain in older adults prior to dementia (Schöll

et al., 2016; Whitwell et al., 2018). Aβ plaques first arise in the neo-

cortex and spread to deep subcortical regions, while tau neurofibril-

lary tangles occur in entorhinal and limbic areas first, then spread to

the neocortical areas (Arnold, Hyman, Flory, Damasio, & Van

Hoesen, 1991; Braak & Braak, 1991b, 1995). Thus, the lack of spatial

consistency between Aβ and tau accumulations has resulted from the

distinctive spreading patterns of Aβ pathology and tau pathology in

AD progression (Arnold et al., 1991; Braak & Braak, 1991b, 1995).

Although there is not a perfect alignment of spatial distributions, a

potential contribution of global Aβ accumulation to increasing accu-

mulation of tau was suggested by several imaging studies (Jacobs

et al., 2018; Pontecorvo et al., 2017; Quiroz et al., 2018; Wang

et al., 2016), particularly if distributed network information is taken

into consideration. In fact, it is now known that regions of Aβ and tau

accumulation show network bonds, even without spatial overlapping

between them (Brier et al., 2016;Iaccarino et al., 2018; Sepulcre

et al., 2016). Therefore, understanding the spatial and network inter-

actions between Aβ and tau accumulations in cognitively healthy par-

ticipants may elucidate the underlying role of both pathologies in the

development of cognitive decline.

Given the increasing evidence of the transcellular propagation of

AD pathogenesis along neuronal circuits as well as in functionally

linked distributed regions (Braak & Del Tredici, 2011; Clavaguera

et al., 2009; De Calignon et al., 2012; Guo & Lee, 2014; Iba

et al., 2013; Stöhr et al., 2012; Thal, Rub, Orantes, & Braak, 2002;

Walker & Jucker, 2011), graph theory-based network approaches

have been applied to understand how Aβ and tau propagate in the

in vivo human brain (Kim et al., 2019; Sepulcre et al., 2016; Sepulcre

et al., 2018). The network-based spatial spreading patterns of Aβ and

tau accumulations have shown distinctive pathways, such as tau prop-

agation from medial/inferior temporal lobe to orbitofrontal cortex,

and Aβ propagation from posterior cingulate cortex (PCC) to lateral

parietal lobe, in older adults (Sepulcre et al., 2016), mild AD (Iaccarino

et al., 2018), and AD spectrum patients (Kim et al., 2019). However,

some hubs of both Aβ and tau pathology networks overlapped in

regions which are partly associated with AD vulnerability (Iaccarino

et al., 2018; Kim et al., 2019; Sepulcre et al., 2016; Sepulcre

et al., 2018). Additionally, local tau accumulation was significantly

associated with distributed Aβ accumulation, which suggested a

potential network dependency between Aβ and tau accumulations in

older adults or mild AD (Iaccarino et al., 2018; Sepulcre et al., 2016).

Previously, a strong association between the spatial distribution

of tau accumulation and cognitive impairment was observed, primarily

in the medial temporal lobe (MTL), in older adults and AD (Ghoshal

et al., 2002; Mitchell et al., 2002; Nelson et al., 2012; Quiroz

et al., 2018; Rolstad et al., 2013; van Rossum et al., 2012). Although

tau is more closely associated with cognitive impairment than Aβ

(Ghoshal et al., 2002; Mitchell et al., 2002; Nelson et al., 2012; Quiroz

et al., 2018; Rolstad et al., 2013; van Rossum et al., 2012), a significant

association between the longitudinal trajectories of Aβ and the pro-

gressive cognitive decline, particularly memory function, has been also

observed in aging or in the early stages of AD (Hanseeuw et al., 2019;

Landau et al., 2012; Resnick et al., 2010; Villemagne et al., 2013).

Other studies have suggested that neocortical Aβ accumulation

potentially contributes to the association of tau with cognitive impair-

ment in older adults (Hanseeuw et al., 2019; Jacobs et al., 2018; Schöll

et al., 2016; Sperling et al., 2019) and early stages of AD (Fagan

et al., 2007; Johnson et al., 2016). However, the mechanism of the

association between Aβ and tau pathogenesis that links to cognitive

decline in older adults prior to AD remains largely unknown.

Given that the network physical dependencies and overlapping

distributions of Aβ and tau in the neocortex -also called Aβ-tau inter-

digitations in this study- have been suggested recently (Kim

et al., 2019; Sepulcre et al., 2016; Sepulcre et al., 2018), it is critical to

examine whether Aβ accumulation and tau accumulation affect subtle

cognitive impairment independently, or combination of Aβ and tau

accumulations have synergetic effects in older adults with clinically

normal cognition prior to symptom onset. To date, little is known

about the role of the association between Aβ and tau accumulations

in longitudinal cognitive changes in aging. Therefore, investigating the

network-based PET correlation between Aβ and tau deposits, and

their association with the cognitive variability in older adults may pro-

vide insights into how preclinical AD progresses into a more patent

cognitive failure.

In this study, we explore the network-based relationships

between Aβ and tau accumulations in cognitively healthy older adults

measured by PET images. Next, we examine the association between

PET network profiles and neuropsychological (NP) test scores in order

to understand the effects of the Aβ and tau network relationships at

baseline and 2-year follow-up (FU). Our findings support the distinc-

tive contribution of Aβ-tau pathological connectivity crosstalk in the

appearance of the initial cognitive changes in putative preclinical

stages of AD in older adults.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 193 cognitively normal older adults (CN) from Alzheimer's

Disease Neuroimaging Initiative (ADNI) projects (http://www.loni.
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ucla.edu/ADNI/) who completed cognitive assessment, T1-weighted

magnetic resonance imaging (MRI), 18F-Florbetapir (FBP) PET, and

18F-AV-1451 (tau) PET at baseline visits were investigated. We

excluded nine subjects due to technical limitations of image processing,

such as a failure of coregistration between T1-MRI and PET or the fail-

ure of the partial volume correction (PVC) process in PET images. All

data used in this study was acquired from ADNI-3 project between

August 2016 and December 2019 (Weiner et al., 2017). Cognitive

assessment was performed using NP tests, such as Clinical Dementia

Rating, Mini Mental State Examination (MMSE) (Folstein, Folstein, &

McHugh, 1975), Geriatric Depression Scale, Rey Auditory Verbal Learn-

ing Test (RAVALT) (Rey, 1958), Alzheimer's Disease Assessment Scale-

Cognitive Subscale (ADAS-Cog) (Mohs et al., 1997a, 1997b), ADNI

composite score for memory (ADNI-MEM) (Crane et al., 2012), and

ADNI composite score for executive function (ADNI-EF) (Gibbons

et al., 2012). We additionally investigated the FU data in twenty CN,

who completed the cognitive assessment, T1-weighted MRI, FBP PET

and tau PET at the 2-year FU time point, for the validation analysis in

this study. Two FU data were excluded due to the failure of the PET-

preprocessing. Finally, we defined three groups of CN, with 184 CN at

baseline, 18 CN at 2-year FU, and FU-matched 18 CN at baseline, for

the longitudinal analysis. FU-matched CN at baseline was subselected

from all CN at baseline. Detailed demographic characteristics and NP

test scores of all participants are described in Table 1.

2.2 | MRI acquisition

T1-weighted MRIs were acquired using an accelerated sagittal

magnetization-prepared rapid gradient echo sequence on 3-T SIE-

MENS systems (repetition time = 2.3 ms, echo time = 2.9 ms, flip

angle = 9.0�, image matrix = 256 × 256, 210 slices, voxel

size = 1.0 × 1.0 mm, slice thickness = 1.0 mm) or on 3-T Phillips Sys-

tems (repetition time = 6.5 ms, echo time = 2.9 ms, flip angle = 9.0�,

image matrix = 256 × 256, 210 slices, voxel size = 1.0 × 1.0 mm, slice

thickness = 1.0 mm). Some T1-weighted MRIs were acquired using an

accelerated sagittal inversion recovery-prepared fast spoiled gradient-

echo sequence on 3-T GE systems (repetition time = 7.7 ms, echo

time = 3.1 ms, flip angle = 11.0�, image matrix = 256 × 256, 196 slices,

voxel size = 1.0 × 1.0 mm, slice thickness = 1.0 mm). Detailed infor-

mation of the MRI acquisition protocol is available from ADNI website

(http://www.loni.ucla.edu/ADNI/).

2.3 | PET acquisition

FBP (Aβ) PET scan was performed for 20 min in duration by 4-by-5 min

frames and was acquired starting 50–70 min after injection of

10.0 ± 1.0 mCi F18-Florbetapir. Tau PET scan was performed for

30 min in duration by 6-by-5 min frames and was acquired starting

75–105 min after injection of 10.0 ± 1.0 mCi F18-AV-1451. Both FBP

PET and tau PET images were acquired using one of several PET scan-

ners, including GE, Siemens, or Phillips Medical Systems. The detailed

methods for FBP PET and tau PET acquisitions are described elsewhere

(Weiner et al., 2017). We used an averaged single FBP PET and the

averaged single tau PET from ADNI database, which were generated

by averaging all frames of FBP PET or tau PET image set. All PET

images were reconstructed with 1.02 × 1.02 mm pixel size and 2.0 mm

slice thickness; or 1.33 × 1.33 mm pixel size and 3.27 mm slice thick-

ness; or 2.0 × 2.0 mm pixel size and 3.27 mm slice thickness depending

on their scanner types. Detailed PET acquisition information is available

from ADNI website (http://www.loni.ucla.edu/ADNI/).

TABLE 1 Demographics and clinical characteristics

CN at baseline (n = 184) FU-matched CN at baseline (n = 18) CN at 2-year FU (n = 18)

Gender F = 106/M = 78 F = 11/M = 7 F = 11/M = 7

Age (years) 74.92 ± 9.50 77.13 ± 6.31 79.22 ± 7.22

Education (years) 16.25 ± 3.44 15.30 ± 4.32 15.30 ± 4.32

MMSE 28.80 ± 2.51 29.06 ± 1.21 28.40 ± 1.64

CDR (IQR) 0.04 (0.0–0.0) 0.11 (0.0–0.0) 0.25 (0.0–0.5)

MoCA 24.73 ± 3.41 24.72 ± 3.20 23.35 ± 3.25

GDS 0.92 ± 1.57 0.89 ± 1.49 1.35 ± 1.87

RAVALT 45.24 ± 10.63 44.00 ± 8.22 36.00 ± 14.59

ADAS-Cog 12.97 ± 5.22 13.04 ± 4.40 13.53 ± 6.35

ADNI-MEM 0.93 ± 0.56 0.83 ± 0.40 0.66 ± 0.86

ADNI-EF 1.02 ± 0.79 1.18 ± 0.80 0.92 ± 0.74

Amyloid positivity (global FBP-SUVR ≥ 1.10) 30.77% 44.44%

tau positivity (composite ROIs ≥ 1.25) 2.73% 5.56%

Abbreviations: ADAS-Cog, Alzheimer's Disease Assessment Scale-Cognitive Subscale; ADNI-EF, Alzheimer's Disease Neuroimaging Initiative composite

score for executive function; ADNI-MEM, Alzheimer's Disease Neuroimaging Initiative composite score for memory; CDR, Clinical Dementia Rating; CN,

cognitively normal older adults; FBP, 18F-Florbetapir; FU, follow-up; GDS, Geriatric Depression Scale; IQR, interquartile range; MMSE, Mini Mental State

Examination; MoCA, Montreal Cognitive Assessment; RAVALT, Rey Auditory Verbal Learning Test; SUVR, standardized uptake value ratio.
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2.4 | MRI image processing

All T1-weighted MRIs at baseline and 2-year FU were automatically

processed by FreeSurfer recon-all procedure (FreeSurfer version

6.0.0; http://surfer.nmr.mgh.harvard.edu/) to reconstruct cortical sur-

faces and to segment region-of-interests (ROI) volumes (Dale, Fischl, &

Sereno, 1999; Desikan et al., 2006; Fischl, Sereno, Tootell, &

Dale, 1999). The ROI volumes were defined by the gyral-based

Desikan–Killiany atlas through an automated FreeSurfer process,

which used the depth from one sulcus to another to parcellate the

cerebral cortex into standard neuroanatomical regions, for each indi-

vidual MRI (Desikan et al., 2006). All technical details of these proce-

dures are described in prior publications (Dale et al., 1999; Desikan

et al., 2006; Fischl et al., 2002; Fischl, van der Kouwe, et al., 2004; Fis-

chl, Salat, et al., 2004; Fischl, Liu, & Dale, 2001). The brain tissues,

including gray matter (GM), white matter (WM), and cerebrospinal

fluid, were segmented from T1-weighted MRI and volume registered

into Montreal Neurological Institute/International Consortium for

Brain Mapping (MNI/ICBM) space using watershed/surface deforma-

tion procedure (Ségonne et al., 2004). The registered MRIs automati-

cally mapped into a common surface template using a surface-based

averaging technique by considering cortical folding patterns. Then,

predefined ROIs in the standard space were inversely mapped to each

native MRI using a high-dimensional spherical morphing procedure to

segment the ROIs in each individual (Fischl et al., 2002; Fischl, Salat,

et al., 2004; Fischl, van der Kouwe, et al., 2004). In order to calculate

the standard uptake value ratio (SUVR) and to perform the PVC in

PET image processing, we used ROIs to define the reference regions

of PET images for each individual.

2.5 | PET image processing

All FBP PET and tau PET at both baseline and 2-year FU were

processed by FMRIB Software Library (FSL; http://fsl.fmrib.ox.ac.uk)

and FreeSurfer PetSurfer procedure (FreeSurfer version 6.0.0; http://

surfer.nmr.mgh.harvard.edu/fswikiPetSurfer/) to perform cor-

egistration, calculation of SUVR, and to perform PVC (Greve

et al., 2016). Each individual FBP PET or tau PET image was cor-

egistered to the corresponding native T1-weighted MRI using a rigid-

body registration with mutual information cost function. All ROIs that

segmented from individual MRI were inversely registered to each indi-

vidual FBP PET or tau PET by using an inverse transformation of each

coregistration matrix. Then, each individual FBP PET or tau PET was

scaled by a mean value in the cerebellar gray reference region to cal-

culate the SUVR (Sepulcre et al., 2018). To examine the pathological

status of our population, we additionally investigated amyloid-

positivity and tau-positivity in CN at baseline. The amyloid-positivity

was defined by considering the recommended threshold of global

FBP-SUVR ≥1.10 in each individual (Joshi et al., 2012). The global

FBP-SUVR was calculated as the ratio of the mean FBP-SUVR of six

cortical ROIs, including frontal, temporal, precuneus, parietal, anterior

cingulate, and posterior cingulate cortices, to whole cerebellum refer-

ence region without performing PVC. The tau-positivity was defined

by using the tau cut-off threshold of composite ROIs ≥1.25 in each

individual (Mishra et al., 2017). The mean tau-SUVR in the composite

ROIs, including the entorhinal, lateral occipital, inferior temporal corti-

ces and amygdala, was divided by a mean value in the cerebellar gray

reference region to decide tau-positivity in CN at baseline (Mishra

et al., 2017). Individual FBP-SUVR and tau-SUVR images were

corrected for partial volume effects by using an extended Müller–

Gärtner (MG) method, which estimates a true radioactivity concentra-

tion in human brain GM by considering a heterogeneity of GM activity

via four-compartment model, within PetSurfer procedure (Meltzer

et al., 1996; Muller-Gartner et al., 1992; Rousset, Ma, & Evans, 1998).

A GM threshold for PVC was set at 0.1 and the point spread function

for PVC was estimated at 8 mm. Detailed methodological explanation

of MG PVC is described in a prior publication (Greve et al., 2016).

After that, individual partial volume corrected FBP-SUVR and tau-

SUVR images were coregistered to the corresponding MRI and then

registered to MNI/ICBM template by using the transformation

matrixes obtained from the previous step. All partial volume corrected

PET data were down sampled from the standard space to 6 mm iso-

voxel to avoid computational limitations of the high-dimensional data.

We used 6 mm isotropic MNI/ICBM template to define the structural

information in all PET data.

2.6 | Group averaged FBP-SUVR and tau-SUVR

To examine overall distributed patterns of both Aβ deposition and tau

deposition in CN, the group averaged FBP-SUVR map and tau-SUVR

map at baseline and 2-year FU were calculated in voxel-based MNI

space. Then, the voxel-based group averaged PET-SUVR maps were

mapped into an averaged cortical surface by mapping a value of the

middle point between inner and outer surfaces in each vertex point

via FreeSurfer recon-all procedure (FreeSurfer version 6.0.0; http://

surfer.nmr.mgh.harvard.edu/). Longitudinal changes in FBP-SUVR and

tau-SUVR between CN at 2-year FU and FU-matched baseline were

investigated using a paired t-test in each voxel, and then mapped into

an averaged cortical surface via FreeSurfer recon-all procedure

(FreeSurfer version 6.0.0; http://surfer.nmr.mgh.harvard.edu/). To

determine significant change, false discovery rate (FDR) set at

q < 0.05 was performed for multiple comparisons (Benjamini &

Hochberg, 1995).

2.7 | Graph theory-based PET correlation within
single PET modality and between PET modalities

We measured voxel-level correlations within single PET modality and

different PET modalities. We created graph theory-based correlation

matrices, which defined a node as a voxel in GM and an edge as a par-

tial correlation coefficient between a pair of voxels of PET SUVR data
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in GM across all CN. To remove confounding effects, we adjusted all

partial correlations by age, sex, as well as the PET-SUVR values of the

PET modality not included in that specific analysis (see details in the

following sections). All voxel-based partial correlations were calcu-

lated by Statistics and Machine Learning Toolbox within MATLAB.

2.7.1 | Partial PET correlation within single PET
modality

Each Aβ-to-Aβ correlation between different voxels was measured

by the partial correlation between a FBP-SUVR in a start voxel

b and a FBP-SUVR in the paired voxel d across all possible pairs of

voxels within GM in CN while controlling for age, sex, and tau-

SUVR in the paired voxel d. Similarly, each Tau-to-Tau correlation

was measured by the partial correlation between a tau-SUVR in a

start voxel b and a tau-SUVR in the paired voxel d across all possi-

ble pairs of voxels within GM in CN while controlling for age, sex,

and FBP-SUVR in the paired voxel d. We obtained 6,848-by-

6,848 matrix DwithinPET in each correlation within single PET

modality in group level. To determine significant correlation, we

corrected for multiple comparisons in each correlation matrix

DwithinPET by using a FDR set at q < 0.05 (Benjamini &

Hochberg, 1995).

2.7.2 | Partial PET correlation between different
PET modalities

Each Aβ-to-Tau correlation between different voxels was measured

by the partial correlation between a FBP-SUVR in a start voxel b and

a tau-SUVR in the paired voxel d across all possible pairs of voxels

within GM in CN while controlling for age, sex, and FBP-SUVR in the

paired voxel d (Figure 1a). Each Tau-to-Aβ correlation was measured

by the partial correlation between a tau-SUVR in a start voxel b and a

FBP-SUVR in the paired voxel d across all possible pairs of voxels

within GM in CN while controlling for age, sex, and tau-SUVR in the

paired voxel d (Figure 1a). We obtained 6,848-by-6,848 matrix

DbetweenPET in each correlation between different PET modalities in

group level. The FDR correction was performed at q as 0.05 in each

correlation matrix DbetweenPET to determine the significant correlation

(Benjamini & Hochberg, 1995).

2.7.3 | Weighted degree of the correlation matrix

We calculated the weighted degree (WD) of each voxel in each corre-

lation matrix D to identify which voxel's PET-SUVR were highly corre-

lated with PET-SUVRs of the rest of GM voxels. The WD of a voxel

b was calculated as the sum of the significant correlation coefficients

between voxel b and all possible paired voxel d, excluding a self-

connection. High WD in voxel b indicates that the PET-SUVR of the

voxel b have significantly large number of correlations to the rest of

paired-voxels in comparison with other voxels. Thus, a voxel with high

WD can be described as a hub voxel, which is strongly correlated with

the rest of the paired-voxels. The WD of all 6,848 voxels was calcu-

lated in each correlation matrix D and then resampled to the

corresponding GM voxels in the MNI template. Finally, we obtained

the WD map of Aβ-to-Aβ, Tau-to-Tau, Aβ-to-Tau, and Tau-to-Aβ

correlation matrixes in group level at baseline.

2.8 | Relationship between the information of the
graph theory-based correlation matrix and cognitive
variability

Flowchart for identifying the relationship between the averaged PET-

SUVR and cognitive variability in the PET correlation between differ-

ent PET modalities is shown in Figure 1. We examined correlation

between averaged PET-SUVRs of each paired-voxels and cognitive

scores in each PET-to-PET correlation combination. The linear associ-

ation analysis was performed to determine whether the information

of the graph theory-based PET correlations is associated with cogni-

tive variability or not, as well as to identify which PET correlation,

such as the correlation within single PET modality or the PET correla-

tion between different PET modalities, is better associated with the

cognitive variability in CN. First, we calculated the averaged PET-

SUVR between a start voxel and the paired voxel, which was defined

by a significant correlation in the PET correlation matrix D, across all

possible voxel pairs in each correlation matrix D, in each individual

level at baseline. Next, we investigated relationships between the

averaged PET-SUVR and NP scores, including MMSE, RAVALT,

ADAS-Cog, ADNI-MEM, and ADNI-EF, in each type of PET correla-

tion matrix in CN at baseline by using Pearson's partial correlation

analysis. Third, we constructed a linear plot between the averaged

PET-SUVR in each paired-voxels and each NP score to examine a lin-

ear trend between the averaged PET-SUVR in each paired-voxels and

each NP score in CN at baseline (Figure 1b).

Our correlation approach between PET-SUVRs and NP scores is

sensitive to detect direct association between the network profiles

of Aβ and tau accumulation and the cognitive scores of our samples.

Thus, they indicate whether a voxel displays an overall significant

association between network pathology and cognitive variability.

However, these correlations values do not provide information

about how initial or late are these associations along the pathologi-

cal process. To obtain this additional information, we used a

centroid-based strategy. We calculated the centroid values of

voxel-level correlations in order to determinate whether an Aβ, tau

and NP correlation was predominantly populated by values in spe-

cific areas of the dispersion graph. For instance, a low centroid value

would reflect a combination of low pathology and normal cognition

(or initial states), while a high centroid value would reflect a combi-

nation of high pathology and impaired cognition (late states)

(Figure 1b). We calculated centroid values of the cognition-related
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averaged PET-SUVRs and then made centroid maps using the CN

sample at baseline (Figure 1b,c). We only calculated the centroid if

the averaged PET-SUVRs in each paired-voxels was significantly

correlated with NP score. Next, we made spatial maps of the cen-

troid by summation of the centroid values across all possible con-

nections related to each voxel in group level to visualize the effects

of the graph theory-based single PET uptakes or multimodal PET

uptakes in cognitive variability in CN at baseline. The centroid map

was used to examine whether the centroid value of the graph

theory-based PET uptake is reliably and constantly associated with

the NP test scores in CN at both baseline and FU point for further

validation analysis.

2.8.1 | Measurement of averaged PET-SUVR

We calculated the averaged PET-SUVR between a PET-SUVR of a start

voxel and a PET-SUVR of the paired voxel, which had a significant cor-

relation in the PET correlation matrix D after performing FDR correc-

tion, in each PET correlation matrix D (Figure 1a, left side and right

bottom). The averaged PET-SUVR between a PET-SUVR of a start

voxel b (PETb) and a PET-SUVR of the paired voxel d (PETd) that linked

by ith edge (Ei) of each PET correlation matrix D in each subject k was

defined as follows:

μDk ið Þ=Avr PETb,PETdð Þ Ei of matrixD FDRcorrectedq<0:05ð Þj

F IGURE 1 Flowchart for measurement of sum of centroid values of averaged positron emission tomography (PET)-SUVR between different
modalities by using PET-to-NP correlation. (a) An averaged PET-SUVR (Avr(FBPb,taud)) was calculated by averaging between FBP-SUVR of a voxel
b (FBPb) and tau-SUVR of the paired voxel d (taud) that is significantly associated with the voxel b in FBP-to-Tau correlation matrix (DbetweenPET)
(FDR corrected q < 0.05) across all CN at baseline and 2-year FU. Then, PET-to-NP correlation matrix was calculated by Pearson's partial
correlation between the averaged PET-SUVR (Avr(FBPb,taud)) and ADAS-Cog scores while controlling for age, sex, years of education in CN at
baseline only (FDR corrected q < 0.05). (b) A centroid of the averaged PET-SUVRs was calculated by considering the scattered plots between the
averaged PET-SUVRs of each paired voxels (b,d) and ADAS-Cog scores. The centroid value was only calculated if the FBP-SUVR was significantly
correlated with tau-SUVR in the corresponding link between voxel b and voxel d from the FBP-to-Tau correlation matrix (FDR corrected
q < 0.05). (c) A sum of the centroid values in each voxel was calculated by summation of the centroid values across all possible correlations
between the voxel b and the rest of the gray matter voxels from the centroid matrix to make a spatial map of the cognition-related PET uptakes
in different PET modalities. The map of the sum of the centroid values was calculated in CN at baseline. Red color of (a) indicates high PET
uptakes. Black circle of (b) indicates each individual in CN at baseline and red cross marker of (b) indicates the centroid of the averaged PET-
SUVRs in plot distribution. Color bar of (c) indicates the sum of the centroid values in CN at baseline. ADAS-Cog, Alzheimer's Disease Assessment
Scale-Cognitive Subscale; Avr, averaged; CN, cognitively normal older adults; FBP, 18F-Florbetapir; FDR, false discovery rate; NP,
neuropsychological; SUVR, standardized uptake value ratio; tau, F18-AV-1451
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According to this equation, We obtained four types of the aver-

aged PET-SUVRs (μ), such as Avr(FBPb, FBPd), Avr(TAUb, TAUd), Avr

(FBPb, TAUd), and Avr(TAUb, FBPd), across all CN at baseline by consid-

ering each type of PET correlation matrix D. Finally, we obtained

6,848-by-6,848 matrix, which consisted of the averaged PET-SUVRs,

in each type of PET correlation matrix D in each individual. All aver-

aged PET-SUVRs were adjusted for age and sex via a general regres-

sion model by Statistics and Machine Learning Toolbox within

MATLAB.

2.8.2 | Partial correlation between the averaged
PET-SUVRs and cognitive scores

The correlations between the averaged PET-SUVRs in each paired-

voxels and NP scores, including MMSE, RAVALT, ADAS-Cog,

ADNI-MEM, and ADNI-EF, were performed by partial correlation

analysis in each type of PET correlation matrix D in CN at baseline.

We constructed four types of 6,848-by-6,848 correlation matrices

DPET�NP, which consisted of the correlation coefficients between

the averaged PET-SUVRs and each NP score in group level

(Figure 1a, right upper matrix). All correlations between the

averaged PET-SUVRs and NP scores were in each correlation

matrix DPET�NP, were adjusted for age, sex, and years of education

and performed FDR correction at q as 0.05 (Benjamini & Hochberg,

1995). Additionally, Bonferroni correction was performed in the

WD map (Bonferroni corrected adjusted p < .01) to confirm statisti-

cal robustness (Bonferroni, 1936).

2.8.3 | Measurement of centroid of cognition-
related PET uptakes

We constructed a linear plot between the averaged PET-SUVR in

each paired-voxels, which is defined as a link in each correlation

matrix DPET�NP, and each NP across all CN at baseline to examine a lin-

ear trend between two variables at group level (Figure 1b). Then, we

calculated a centroid of the averaged PET-SUVRs from the plot

between the averaged PET-SUVRs in each paired-voxels and each NP

score by considering the distribution of the plot in group level. The

centroid was calculated by assessing cluster centroid locations in the

plot distribution between the averaged PET-SUVRs and NP scores via

k-means clustering analysis within MATLAB toolbox. The centroid

value in each link was only calculated if the averaged PET-SUVRs in

this link had significantly correlated with NP score in the correlation

matrix DPET�NP (Figure 1a,b). This centroid calculation was iterated for

the number of all links of the correlation matrix DPET�NP. We obtained

6,848-by-6,848 centroid matrix DCentroid in each NP score in each type

of PET correlation.

In order to visualize the effects of the graph theory-based mea-

surements, the centroid values, in cognitive variability in CN, we cal-

culated the sum of the centroid values in each voxel b by adding the

centroid values across all links connected to the voxel b in the cen-

troid matrix DCentroid, excluding self-connection (Figure 1c). The sum

of the centroid in all 6,848 voxels were calculated in each centroid

matrix DCentroid, then resampled to the corresponding GM voxels in

the MNI template. Finally, we obtained the volume-based map of the

sum of the centroid values derived from each centroid matrix DCentroid

in group level. We resampled each volume-based map of the sum of

the centroid values onto the group averaged cortical surface by map-

ping a value of middle point between inner and outer surfaces in each

vertex point via FreeSurfer recon-all procedure (FreeSurfer version

6.0.0; http://surfer.nmr.mgh.harvard.edu/) (Figure 1c).

2.9 | Longitudinal analysis

We performed a similarity approach based on the centroid map to

examine whether the PET uptakes were reliably associated with the

cognitive impairment in CN at both baseline and 2-year FU. We per-

formed spatial correlations between the centroid map and the individ-

ual averaged PET-SUVR images to determine the topological similarity

between them, across all CN at both baseline and 2-year FU. Then,

we used these spatial similarity scores from all individuals to investi-

gate whether significant associations exist between PET patterns and

cognitive scores in CN at baseline, and in an independent longitudinal

sample.

2.9.1 | Measurement of similarity score

We measured the spatial similarity between the centroid map, which

was defined by CN at baseline only, and a local corresponding voxel-

based averaged PET-SUVR map of each individual across all CN at

baseline and 2-year FU by using Pearson correlation analysis. First,

we constructed a local voxel-based averaged PET-SUVR map by

averaging a local voxel's PET-SUVR and the same voxel's PET-SUVR

across all voxels in each individual in CN at baseline and 2-year

FU. For example, if the centroid map is based on different PET

modalities, each local voxel-based averaged PET-SUVR was calcu-

lated by averaging between a local PET-SUVR and the corresponding

voxel's another PET-SUVR in each voxel in each individual level. If

the centroid map is based on the single PET modality, we just used a

single PET-SUVR map of each individual instead of the calculation of

the local voxel-based averaged PET-SUVRs. Because each voxel's

value of the centroid map was calculated by summing the centroid

values across all possible associations between the one voxel and

the rest of the GM voxels from the centroid matrix, the centroid map

was based on the local-to-distributed voxel's PET correlations.

Therefore, we used the local voxel-based averaged PET-SUVR maps,

which were based on the local-to-local PET-SUVRs, to avoid circular

dependency in the final analysis. Consequently, we obtained a simi-

larity score for each individual across all CN at baseline and

2-year FU.
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2.9.2 | Linear association between the similarity
scores and cognitive scores

To better visualize whether the high similarity scores are significantly

associated with the worsening of the cognitive test performances across

individuals, we performed linear regression analysis between the similar-

ity scores and cognitive test scores. All linear regression analyses were

performed with SurfStat MATLAB toolbox (http://www.math.mcgill.ca/

keith/surfstat). The group difference in slopes of the linear regression

lines between the FU-matched CN at baseline and CN at 2-year FU data

were tested by analysis of variance (ANOVA) within MATLAB toolbox.

3 | RESULTS

3.1 | Group demographics and clinical
characteristics

All demographic characteristics and NP tests scores are described in

Table 1. We found that most of our sample of CN displayed low levels

of amyloid and tau at baseline (threshold of global FBP-SUVR ≥ 1.10

and mean tau-SUVR in composite ROIs > 1.25). There was no signifi-

cant group difference in NP scores between 2-year FU data and FU-

matched baseline data.

3.2 | Group averaged FBP-SUVR and tau-SUVR

A high group averaged FBP-SUVR was observed in CN at baseline,

mainly in medial frontal cortex, PCC/precuneus, inferior temporal cor-

tex, and lateral occipital cortex (Figure 2a). Compared to baseline, rela-

tively higher group averaged FBP-SUVR was observed in temporal

cortex, and part of parietal cortex in CN at 2-year FU (Figure 2b). A

slightly higher group averaged tau-SUVR was observed mainly in wide

areas of the temporal cortex, MTL, medial prefrontal cortex, and PCC

in CN at baseline (Figure 2c). The group averaged tau-SUVR was more

increased in CN at 2-year FU, partly in temporal cortex (Figure 2d).

We observed significant longitudinal changes between CN at

2-year FU and FU-matched baseline in tau-SUVR, but not obviously

noted in FBP-SUVR (Supplementary Figure 3). We observed a signifi-

cantly increased FBP-SUVR in only a few spots of cortical areas

(Supplementary Figure 3a), while, a significantly increased tau-SUVR

was noted in wide areas of the temporal cortex, prefrontal cortex,

parietal cortex, and PCC in CN at 2-year FU compared with the FU-

matched baseline (Supplementary Figure 3b).

3.3 | Graph theory-based PET correlation within
single PET modality and between different PET
modalities

We observed significant PET correlation within single PET modality,

such as Aβ-to-Aβ and Tau-to-Tau correlations, as well as the PET cor-

relation between different PET modalities, such as Aβ-to-Tau and

Tau-to-Aβ correlation, in CN at baseline (FDR corrected q < 0.05,

Figure 3). Spatial distributions of WD of the PET correlation within

single PET modality, which was calculated by summation of all correla-

tion coefficients in all possible links between each voxel and the rest

of voxels, were observed across almost all cortical areas, excluding

motor cortex, in CN at baseline (Figure 3a,b). A voxel with the high

WD indicates that this voxel have the large number of connections to

the rest of voxels, that means the PET-SUVR of this voxel is strongly

correlated with the PET-SUVR of the rest of the paired voxels,

broadly. A high WD of the PET correlation was noted mainly in both

F IGURE 2 Surface-mapped
group averaged (a) FBP-SUVR and
(b) tau-SUVR in CN at all baseline
and group averaged (c) FBP-SUVR
and (d) tau-SUVR in CN at 2-year FU
after performing PVC. Red color
indicates high positron emission
tomography (PET)-SUVR. CN,
cognitively normal older adults; FBP,
18F-Florbetapir; FU, follow-up; PVC,
partial volume correction; SUVR,
standardized uptake value ratio; tau,
F18-AV-1451
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PCC/precuneus, medial frontal cortex, parietal cortex, and broad areas

of temporal cortex in Aβ-to-Aβ correlation in CN at baseline

(Figure 3a). Compared to Aβ-to-Aβ correlation, Tau-to-Tau correlation

showed relatively low WD in the temporal cortex, precuneus, and

frontal cortex in CN at baseline (Figure 3b).

A spatial distribution of WD of the PET correlations between dif-

ferent PET modalities, such as Aβ-to-Tau and Tau-to-Aβ correlations,

was shown in large areas of cortical regions in CN at baseline, but that

showed relatively lower PET correlations compared with the PET cor-

relations within single PET modality (Figure 3c,d). High WD was

observed mainly in the left lateral parietal cortex, left precuneus, left

orbitofrontal cortex, and both superior temporal cortices in Aβ-to-Tau

correlation in CN at baseline (Figure 3c). A spatial distribution of WD

of Tau-to-Aβ correlation was less spread out than the other PET cor-

relations, but showed more intensive WD pattern in both inferior

temporal cortices, both precuneus, right fusiform gyrus, and right lat-

eral parietal cortex in CN at baseline (Figure 3d).

3.4 | Relationship between the information of the
graph theory-based correlation matrix and cognitive
variability

There was a significant positive PET-to-NP correlation between aver-

aged PET-SUVRs, the mean values between FBP-SUVR of a local

voxel and tau-SUVR of the rest of voxels, and ADAS-Cog scores in

the type of Aβ-to-Tau correlation after controlling for years of educa-

tion in CN at baseline (FDR corrected q < 0.05). In contrast, no signifi-

cant correlation between the averaged PET-SUVRs and any NP scores

was found in other types of PET correlations, such as Aβ-to-Aβ, Tau-

to-Tau, and Tau-to-Aβ correlations, after performing FDR correction

in CN at baseline. In this analysis, a voxel with high WD of the PET-

to-NP correlation indicates that the averaged PET-SUVR from the dif-

ferent PET modalities between this voxel and the rest of the voxels is

strongly correlated with the NP scores, broadly. Thus, high WD

reflects the strong effects of the averaged PET-SUVR between differ-

ent PET modalities between different voxels in cognitive scores. We

found that the high averaged PET-SUVRs derived from Aβ-to-Tau

connectivity was significantly correlated with high ADAS-Cog scores

in left superior temporal cortex, left inferior cortex, left superior parie-

tal cortex, part of left PCC/precuneus, part of right superior temporal

cortex, right middle parietal cortex, right precuneus, both middle fron-

tal cortices, and both cuneus (Figure 4a). Similar topology remains sig-

nificant after performing post hoc Bonferroni correction (Figure 4b).

3.5 | Measurement of cognition-related PET
uptakes at baseline and longitudinal FU

Of note, in this section, an individual with high similarity score indi-

cates that the uptake spatial pattern of the averaged Aβ and tau PET-

SUVRs is well overlapped to the centroid map, which reflects the

F IGURE 3 Weighted degree maps of positron emission tomography (PET) correlations in CN at baseline. Cortical distributions of FBP-to-FBP
(a), Tau-to-Tau (b), FBP-to-Tau (c), and Tau-to-FBP (d) weighted degree maps in CN at baseline while adjusting for age, sex, and FBP-SUVR or
tau-SUVR when appropriate in all paired-voxels. Only multiple comparison corrected significant correlation coefficients were included in the
weighted degree maps (FDR corrected q < 0.05). Color bar indicates the weighted degree value; a high score indicates that the PET-SUVR of this
surfaced-mapped local voxel is strongly correlated with the rest of voxels, broadly. CN, cognitively normal older adults; FBP, 18F-Florbetapir;
FDR, False discovery rate; SUVR, standardized uptake value ratio; tau, F18-AV-1451
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information of the spatial patterns of cognitive impairment-related

PET uptakes. Thus, the high similarity score reflects the worsening of

the cognitive test performance. We found that increased spatial simi-

larity scores were significantly associated with increased ADAS-Cog

score in CN at baseline (t(182) = 3.22, p = .0015, Figure 5a). A similar

linear association between the similarity score and ADAS-Cog was

observed in CN at 2-year FU (t(16) = 2.41, p = .025, Figure 5b) as well

as in FU-matched baseline (t(16) = 2.36, p = .031, Figure 5b). There is

no significant slope difference between FU-matched baseline and

2-year FU groups after performing ANOVA. Although there was no

significant slope difference between FU-matched baseline and 2-year

FU, the slope was slightly higher in 2-year FU compared with the FU-

matched baseline (Figure 5b).

4 | DISCUSSION

AD is a neurodegenerative disorder in which the network-level accu-

mulation of Aβ and tau pathology seems to play a critical role in the

appearance of cognitive symptoms. Currently, we believe that close

and interdigitated spatial interactions of Aβ and tau within neural cir-

cuits might be a better indicator of early preclinical processes and

F IGURE 4 Weighted degree maps of positron emission tomography (PET)-to-NP correlations between the averaged PET-SUVRs and ADAS-
Cog scores in CN at baseline adjusted by age, sex, and years of education. (a) Only multiple comparison corrected significant correlation
coefficients were included in the weighted degree map (FDR corrected q < 0.05). (b) Bonferroni correction was also performed in the weighted
degree map (Bonferroni corrected adjusted p < .01) to confirm statistical robustness. Color bar indicates the weighted degree of PET-to-NP
correlations; a high score indicates that the averaged PET-SUVRs between this voxel and the rest of the voxels are strongly correlated with the
ADAS-Cog scores. ADAS-Cog, Alzheimer's Disease Assessment Scale-Cognitive Subscale; CN, cognitively normal older adults; FBP, 18F-
Florbetapir; FDR, False discovery rate; NP, neuropsychological scores; SUVR, standardized uptake value ratio; tau, F18-AV-1451

F IGURE 5 Linear regression associations between similarity scores and ADAS-Cog in CN at baseline and 2-year FU time point. (a) A
significant positive association between the similarity score and ADAS-Cog was noted in CN at baseline (t(182) = 3.22, p = .0015). (b) Similar
positive association was noted in both 2-year FU (t(16) = 2.41, p = .025), as well as FU-matched baseline (t(16) = 2.36, p = .031). ADAS-Cog,
Alzheimer's Disease Assessment Scale-Cognitive Subscale; CN, cognitively normal older adults; FBP, 18F-Florbetapir; FU, follow-up; SUVR,
standardized uptake value ratio; tau, F18-AV-1451
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cognitive decline of aging populations. Following this line of research,

in the present study, we used a novel graph-theory approach to inves-

tigate brain network profiles of Aβ and tau PET imaging and cognitive

scores. We found striking positive correlations between the Aβ-to-

Tau interactions and ADAS-Cog score, which is the most widely used

measure to assess multiple cognitive domains in AD (Mohs

et al., 1997a, 1997b; Rosen, Mohs, & Davis, 1984) and was developed

to measure general cognition, including verbal memory, nonverbal

memory, planning an executive function, attention and concentration,

praxis, and orientation (Mohs et al., 1997a, 1997b; Podhorna,

Krahnke, Shear, Harrison, & Alzheimer's Disease Neuroimaging, 2016;

Skinner et al., 2012). Particularly, we observed a high correlation

between Aβ-to-Tau interactions and ADAS-Cog in the temporal cor-

tex. This is consistent with the previous findings that show not only a

significant association between tau and cognitive impairment in MTL

(Sepulcre et al., 2018), but also that these cognition-related tau accu-

mulation in MTL are associated with an increased Aβ burden in older

adults (Schöll et al., 2016; Sperling et al., 2019) or mild-to-moderate

AD (Johnson et al., 2016). Other areas in the fronto-parieto-occipital

cortices displayed similar network-based ADAS-Cog associations. Pre-

vious literature has shown a strong relationship between local Aβ and

local tau in probable AD (Iaccarino et al., 2018), and a strong associa-

tion between the inferior temporal tau accumulation and distributed

Aβ accumulation in older adults (Sepulcre et al., 2016; Sperling

et al., 2019). Thus, although a significant association between both

pathology accumulations and cognitive decline was reported mainly in

MTL in previous studies (Johnson et al., 2016; Schöll et al., 2016;

Sperling et al., 2019), the cognition-related tau accumulation

(Ossenkoppele et al., 2019; Sepulcre et al., 2018) or Aβ accumulation

(Schöll et al., 2016) in regions beyond MTL, such as the parietal cortex,

frontal cortex, or occipital cortex, was also reported in several studies.

These selective associations of cognitive impairment or neurodegen-

erative changes with AD pathology accumulations depend on the AD

severity (Ossenkoppele et al., 2019) and Braak stages (Schöll

et al., 2016). Thus, we believe that high associations of Aβ-to-Tau

interactions and ADAS-Cog scores in MTL-related regions, as well as

the fronto-parieto-occipital lobes, may indicate specific states of net-

work interactions, from local Aβ toward distributed tau, that potenti-

ates neurodegenerative and cognitive changes via Aβ-triggered tau

(Duyckaerts, 2011; Ittner & Götz, 2011; Jacobs et al., 2018; Small &

Duff, 2008).

Our findings show that the cross-talking of Aβ-to-Tau better

explains the initial cognitive changes of CN compared to brain net-

work profiles derived from single PET modalities, such as Aβ-to-Aβ, or

Tau-to-Tau. The effects of Aβ pathology in cognitive decline generally

appeared in prodromal AD and dementia, rather than in cognitively

healthy older adults (Ossenkoppele et al., 2019). Therefore, the

absence of the significant PET-to-NP correlation in type of Aβ-to-Aβ

may be caused by the insufficient Aβ accumulation in CN at baseline,

which seems to be a late phenomenon. Similarly, no significant PET-

to-NP correlation in type of tau-to-tau was observed in CN at base-

line. Sperling et al. (2019) showed the association between cognitive

decline and tau accumulation in MTL in older adults; however, an

increased tau accumulation in the temporal cortex was commonly

observed in Braak stage of III or IV (Braak, Alafuzoff, Arzberger,

Kretzschmar, & Del Tredici, 2006; Braak & Braak, 1991b, 1995) and in

tau PET image (Johnson et al., 2016). Thus, a relatively weaker tau-to-

tau correlation in MTL may also explain the absence of the significant

PET-to-NP correlation in our study. Finally, we did not observe signifi-

cant PET-to-NP correlations in the type of Tau-to-Aβ. As we con-

trolled tau-SUVR effects in FBP-SUVRs of all possible paired-voxels

when we measured the correlation between the averaged PET-SUVR

and ADAS-Cog scores in types of Tau-to-Aβ correlation, one possible

explanation is that tau-independent Aβ may not sufficiently contribute

to the initial cognitive changes in CN at baseline even though tau-

controlled FBP-SUVR showed a strong association with the local tau-

SUVR in MTL.

Currently, the major concern to investigate the relationship

between Aβ and tau accumulations is the spatial inconsistencies

between the two brain pathologies. The lack of spatial correlation or

overlap between a local Aβ and the corresponding local tau accumula-

tions has been reported in imaging studies, which makes it difficult to

investigate their potential synergistic effects on cognitive decline in

aging. The benefit of conducting a graph theory-based approach is

that it provides a high-resolution strategy to relate these two

unmatched anatomies. Our proposed graph theory-based approach

measures the local-to-distributed correlations within and between Aβ

and tau PET modalities, thus solving the spatial inconsistency

between them. In this network-based study, we only observed signifi-

cant findings with ADAS-Cog scores. The absence of significance in

the correlation analysis between the averaged PET-SUVRs and other

NP scores included in the study is somewhat surprising. It is possible

that ADAS-Cog is the most sensitive to test in this work due to its

multi-domain nature. However, future studies are needed to examine

other PET-to-NP correlations by assessing multiple cognitive mea-

surements in both cognitively normal and impaired older adults

through multiple longitudinal FUs. Moreover, we used multicenter

ADNI data, which may have a potential bias in PET images caused by

multiple scanner types or visit sites. We observed consistency in the

cortical distribution of the mean tau-SUVRs and mean FBP-SUVRs

across three scanner types in CN at baseline (Supplementary

Figure 1). We performed one-way ANOVA to determine whether

there are any statistically significant differences in the means of PET-

SUVRs of GM between the three types of scanner, and we found no

significant difference in mean tau-SUVR or mean FBP-SUVR between

three types of scanners (Supplementary Figure 2). No meaningful

trends of group difference between two groups in the mean PET-

SUVRs was noted (Supplementary Figure 2). Nevertheless, future

studies should apply similar network PET-based strategies within uni-

center data to avoid potential scanner biases. Our study has an addi-

tional limitation: we mainly focused on a large CN sample at baseline,

and a relatively small longitudinal sample from ADNI-3 study dataset.

Therefore, larger number of FU individuals should be used and tested

in future studies.
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5 | CONCLUSION

We examined network interaction patterns within single PET modal-

ity, such as Aβ-to-Aβ or Tau-to-Tau correlations, and between differ-

ent PET modalities, such as Aβ-to-Tau or Tau-to-Aβ, at high-

resolution (voxel-level) in CN, using a graph theory-based analysis.

We observed that the PET uptakes derived from Aβ-to-Tau interdigi-

tations were significantly associated with ADAS-Cog in AD vulnerable

brain areas, a finding confirmed by our longitudinal investigation.

Therefore, our work suggests the preceding contribution of network

interactions between Aβ and tau deposits to explain initial cognitive

changes in CN prior to the conversion of dementia.
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