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Abstract

Background: Alzheimer’s disease affects profoundly the quality of human behavior
and cognition. The very broad distribution of its severity across various human subjects
requires the quantitative diagnose of Alzheimer’s disease beyond the conventional
tripartite classification of cohorts such as cognitively normal (CN), mild cognitive
impairment (MCI), Alzheimer’s disease (AD). The unfolding of such broad distributions
by the quantitative and continuous degree of AD severity is necessary for the precise
diagnose in the cross-sectional study of different stages in AD.

Results: We conducted the massive reanalysis on MRl images of 761 human brains
based on the accumulated bigdata of Alzheimer's Disease Neuroimaging Initiative.
The score matrix of cortical thickness profile at cortex points of subjects was con-
structed by statistically learning the cortical thickness data of 761 human brains. We
also developed a new and simple algebraic predictor which provides the quantitative
and continuous degree of AD severity of subjects along the scale from 0 for fully CN to
1 for fully AD state. The mathematical measure of a new predictor for the degree of AD
severity is presented based on a covariance correlation matrix of cortical thickness pro-
file between human subjects. One can remove the uncertainty in the determination of
different stages in AD by the quantitative degree of AD severity and thus go far beyond
the tripartite classification of cohorts.

Conclusions: We unfold the nature of broad distribution of AD severity of subjects
even within a given cohort by the scale from 0 for fully CN to 1 for fully AD state. The
quantitative and continuous degree of AD severity developed in this study would be a
good practical measure for diagnosing the different stages in AD severity.

Keywords: Alzheimer’s disease, Mild cognitive impairment, MRI, Cortical thickness,
Bigdata
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Introduction

Alzheimer’s disease (AD) profoundly affects human health and behavior. The diagno-
sis of AD requires not only the identification of cohort that classify different tripartite
stages of AD but also the estimation of the severity degree of AD for a given individual
[1-5]. The symptoms of AD appear in various forms in the human body, behavior, and
cognition, yet the direct anatomical evidences appear in the structural change within
the brain [6—-11]. Among these evidences is the degradation of the cortical thickness of
human brain, which is one of the imprints of AD. Such physical change can be moni-
tored through the neuro-image, for example the magnetic resonance image (MRI) analy-
sis of the brain [12—17]. The anatomical degradation of the cortical thickness becomes
more pronounced as the degree of AD severity becomes greater [13, 17].

Given the information of cortical thickness of human brains, previous studies have
noted that the person-to-person fluctuations in cortical thickness of an individual
may overwhelm the degradation in cortical thickness. In clinical cases, we frequently
observed that the average cortical thickness of some cognitively normal people is thin-
ner than that of people with AD, which appears to contrast the conventional view. Also
we recognized the ambiguity in what we should do if two different cohorts have a differ-
ence in the cortical thickness in brain regions that have little to do with AD. In principle
we should construct some good determinants for judging the degree of AD severities of
human subjects, but in practice we are confronted with the differences in cortical thick-
ness in regions of the cortex that are unrelated to the pathogenesis of AD. The abundant
existence of such unrelated regions is an intrinsic source that increases the uncertainty
of the AD determinants and hinders the appropriate construction of good classifier and
predictor for AD.

In this study we developed a simple and straightforward algebraic predictor for pro-
viding the continuous and quantitative degree of AD severity of human subjects along
the scale from 0 for fully CN to 1 for fully AD state. Instead of dealing with all 327,684
vertices point on the whole cortex of a human brain, we strived to overcome the before
mentioned obstacles and demonstrated that the consideration of a few hundred essential
vertices were enough for distinguishing CN, MCI, AD cohorts each other. With cortical
thickness data at these essential vertices of 1006 human brain images for control and 510
human brain images for independent validation, we defined the machined-learned score
matrix and the covariance correlation matrix between human subjects as a new set of
classifier and predictor for AD severity.

Over the past decade, there have been developments in diagnosing CN/MCI/AD with
various deep learning techniques, such as Deep Neural Network and Convolution Neu-
ral Network [18]. And the accuracy of the diagnosis by deep learning techniques has
already reached a significant level. Raju et al. [19] showed 97.77% accuracy for ADNI
465 subjects using the Convolution Neural Network, and Albright [20] showed 86.6%
accuracy for ADNI 1737 subjects using Deep Neural Network. Our results may not be
satisfactory enough if we only compare the accuracy of the diagnosis. However, we have
a significant advantage of discovering ROI in an intuitive way, performing diagnostics
based on it, and providing severity degree for individual patients.

Our study suggests that unlike the conventional view that the degradation of the
cortical thickness of human brain was sole responsible for AD, the singular valued
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decomposition analysis of the score matrix developed in this study clearly revealed that
the simultaneous consideration of both thinner and thicker cortical regions together
compared to those of CN are important and very necessary for the precise diagnose of
the AD severity. Based on a covariance correlation matrix of cortical thickness profile
between human subjects, we could determine the quantitative and continuous degree
of AD severity for a given subject even within a given cohort and also tell how much a
subject is prone to CN, AD, or positioned at a particular stage in between. This study not
only provided a straightforward algebraic determinant to analyzing the cortical thick-
nesses of human brains but also suggested quantitative measures by which one could
estimate both the cohort and the severity degree of AD for a given new subject based on
the neuro-images from the structural MRI. The MRI data of a new and larger number of
human brains could also be machine-learned into this study in a systematic and robust
manner, which would facilitate the better diagnose of AD with the different degree of

severity.

Methods

Preparation of cortical thickness data from MRI of 1522 human brain images from ADNI

We selected 274 individuals (human subjects) who were identified as CN, 265 indi-
viduals with MCI, 125 individuals with AD from the ADNI-2 study of ADNI, and 97
individuals with MCI from the ADNI-GO study of ADNI. A human brain image-data
set of 1522 MR images from a total of 761 subjects was constructed, for each of which
both 1.2-mm sagittal Magnetization Prepared Rapid Gradient Echo (MPRAGE) and
MPRAGE_SENSE2 images were taken separately. Here, we note that the longitudinal
study of AD is beyond the scope of this work. Therefore, we ignore the number of visits

of subject required to perform any longitudinal study.

Partition 1516 MR images of human brains into four groups and determine the essential
region-of-interest vertices for each group

We performed the FreeSurfer analysis to obtain the cortical thickness data at 327,684
vertices on the cortex of a human brain [21, 22]. The cortical thickness at each vertex
ranges from 0 to 5 mm. After eliminating those vertices at which cortical thickness infor-
mation was missing for any one of the 1522 MR images of human brains in the ADNI
data set, 276,825 common vertices whose cortical thickness values are available for all
1522 MR images were selected for our study. The average cortical thickness over 276,825
vertices for each brain images was evaluated, and we divided 1516 values of average
thickness into four groups (A-D) of different windows of average thickness except 6 val-
ues of that run out-of-bounds. Demographic characteristics of the average cortical thick-
ness of the four groups are listed in Table 1.

In order to assign subjects from each CN, MCI, and AD cohort into one of the four
groups (A-D) of average cortical thickness, we employed the Z score criteria in select-
ing the region-of-interest (ROI) vertices and the essential ROI vertices on the cortex at
which the distribution of cortical thickness of the CN cohort is distinguished from that
of the AD cohort within each group of average cortical thickness. A similar procedure
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Table 1 Demographic characteristics of the groups

(2022) 23:357

CN MClI AD
Group A
N* 136 155 13
Female (%) 60.3 535 30.8
Age, Mean (SD) 72.5(5.3) 72.1(5.1) 78.1(5.0)
<t>" Mean (SD) 24580 (0.0477) 24549 (0.0415) 24676 (0.0539)
Group B
N 212 262 67
Female (%) 62.7 435 418
Age, Mean (SD) 73.0(5.2) 73.7 (5.3) 76.7 (6.3)
<t>, Mean (SD) 2.3516 (0.0293) 2.3429 (0.0266) 2.3491 (0.0269)
Group C
N 159 209 84
Female (%) 46.5 340 524
Age, Mean (SD) 740 (5.7) 753 (5.8) 769 (5.2)
<t>, Mean (SD) 2.2566 (0.0290) 2.2573(0.0278) 2.2455 (0.0298)
Group D
N 40 96 83
Female (%) 225 354 26.5
Age, Mean (SD) 78.1(6.5) 76.2 (5.7) 774 (6.6)
<t>, Mean (SD) 2.1514 (0.0389) 2.1448 (0.0433) 2.1373 (0.0520)

*Number of MRl images; fAverage cortical thickness over the 276,825 vertices. AD Alzheimer’s disease, CN cognitively
normal, MCI mild cognitive impairment

is repeated for distinguishing the CN cohort from the MCI cohort and also the MCI
cohort from the AD cohort:

’

ZCN—MCI _ (tp,heCN) - (tp,heMCI) ZCN_AD _ <tp,heCN> - <tp,hEAD>
2 = »“p =

2 2 2 2
Op,heCN 9, heMCl Op,heCN Op,heAD
Mp,heCN My, heMCI MpheCN Mp,he AD

ZMCI-AD _ (tphemct) — (tpheaD)
> =

2 2 ’
OpheMCl | %pheAD
Ny, heMCI My, he AD

Here, (¢, sck) is the average cortical thickness at a vertex point p averaged over the
subject # who belongs to the k (one of CN, MCI, AD) cohort, and 0}, ¢ is its standard
deviation, and 7, ;¢ is the number of MR images belonging to the k cohort. The posi-
tive (negative) value of Z;N_AD, for example, indicates that the distribution curve of the
average cortical thickness of the CN cohort is right (or left)-shifted compared to that of
AD cohort. And the bigger the absolute value of the Z score, the better distinguished the
distribution curves of average cortical thickness of the cohorts. In this study, we identi-
fied ROI vertices satisfying the absolute value of the Z score larger than 1.5, and essential
ROI vertices satisfying much higher cut-off Z scores (Additional file 1: Table S1).
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Construction of a statistical score matrix for classifying subjects into one of CN, MCI, AD
cohorts

Within each group of average cortical thickness, we constructed the statistical score
matrix for determining a subject’s cohort as either CN, MCI, or AD [23]. First of all,
tynek was transformed into the probability distribution matrix Pl(glf,zq, which is a prob-
ability that the cortical thickness ¢, ¢k at a vertex point p of the subject in k cohort is
between (m — 1) A and mA:

Y nek O — (m—1)A) e O(mA —t) 0 5(t — t,,)
> oneil '

P, = m=1,2,...30,k = CN,MCLAD.
()

Here, A=0.2 mm, and cortical thickness index m runs from 1 to 30; this covers the

cortical thickness from 0 to 6 mm. §(x) is a Dirac delta function, and ®(x) is a step
function where ®(x < 0) = 0; ®(x > 0) = 1. Then, we defined the statistical score
matrix SI(,];),, from PI(,]f,),, in the following way:

(k) (k) (k)
s6 — _1n [Q ] Q) = Ppm & DmPpm

pm k k)’ 2 k) °

3)

Since ZmP(k) =1, S;,k,)n = —lnP}sky),, lnz 1 and the second term are constants. The
value of the statistical score matrix SI(,,,),, varies depending on the cohort k; the smaller
S(k) is, the larger P, (24 is.

With this statistical score matrix Sg,)n, we employed a strategy for determining to
which one of k cohorts a given subject would belong. First, we evaluated the averaged
cortical thickness of a given subject over 276,825 vertices. Second, we assigned this
subject to one of four groups (A-D) of average cortical thickness. Third, based on the
preselected essential ROI vertices p for the assigned group, we determined the corti-
cal thickness index m’(p) at which the cortical thickness at an essential ROI vertex p
is between (m — 1)A and mA Then, for each k cohort, the total score S was cal-
culated by summing up S pm () over the preselected essential ROI vertlces p for the
assigned group of the average cortical thickness, S (k) Zp s )/(p) Lastly, to which &
cohort a given subject would belong was decided by a Cohort which gives the mini-
mum score out of S oy, S’ ovcry S'(ap)y

We, however, noted that the accuracy of both P(AD) and Sy, (AD) may become unsatis-
factory if the number of people in the AD cohort was less than that of the CN cohort
and the MCI cohort (Table 1). In order to overcome the unsatisfactory nature of
both P;fl,yl,)) and S;,Am ), we employed the method of Kernel Density Estimation (KDE);
namely, a Dirac delta function B(t — tp,h) in the definition of the probability distribu-
tion matrix Pl(glf,),,, is replaced by a kernel function f (t - tp,h):

4

ft—tyn) = Z aid(t = (tpn +14)), (4)

I=—4
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|7]-1
a; = 0.5erf (0.25 + 0.5/1|) + = Z ap; erf(x) = f/ ~7 dg. (5)
Here, the relative ratio among coefficients a is

ag  d+1 A+ . a+3 - d+q = 56 :43 : 21 : 7 : 1. The kernel function f(t — tpyh) satisfies
fioogf(t — tp,h)dt ~ 1 and the standard deviation oy A~ 1.435. Upon subjecting KDE,
Pl(fr),,, becomes

=1,2,...30,k = CN, MCLAD.
(6)

In this study, we constructed the statistical score matrix on which KDE was

Pl S k@t — (m—1A) e O(mA —t) o f (t — t,,) -
pm z:hek1

employed and used it for determining to which k cohort a given subject would belong.

Construction of a covariance correlation matrix and a predictor for the severity degree

of AD

Within each group of the average cortical thickness, the severity degree of AD for a
given subject is estimated by the following strategy. First of all, we transformed the corti-
cal thickness matrix £, at essential ROI vertices p for a subject / into the normalized
matrix tz/f, , such that

tp,h - (tp,h>h

thp!h 2

by =~ () = A1 0y = (), — o)y (7)
h P\phly ’ b phly
P o S, phlp

Here, the product of tzlzi by its transpose tl’”»T results in the square matrix
tl’/’ = "};,iT . tz/%i’ and then its normalized matrix (called by a covariance correlation

matrix) Cj; is defined by C;; = t/;; /max{t//ij }, where max{t//ij} is the maximum value
of elements in the square matrix t;l’ The larger the value of Cj;, the higher the covariance
correlation between a subject i and a subject j in their profile of the cortical thickness
at essential ROI vertices. Based on this covariance correlation matrix, we defined the
severity degree AD for a given subject i by

SD; = (CIAD7CN - <CI‘AD7CN)ieCN)/((CiAD{N)ieAD =& ieCN)’ (8)

CAD CN

where (C,,)] CAD — (Cij)j ccn- The severity degree of AD ranged from 0 for

the basin of CN state to 1 for the basin of AD state. Rank-ordering this degree in ascend-
ing order illustrates that a subject i with the larger (or smaller) value of the severity
degree is more prone to AD (CN) state.

Results

Identification of essential ROI vertices at which the distributions of cortical thickness of CN,
MCI, AD subjects are distinguishable

Although the averaged cortical thickness of subjects with AD is generally known to be
thinner than that of CN or MCI subjects, the distribution curves of averaged cortical
thickness for the cohorts are not well distinguishable except near both ends of the distri-
bution curves as demonstrated in Fig. 1A. This illustrates that a subject can be CN even
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Fig. 1 The classification of 1516 brain images into four groups by the average cortical thickness. A The
distribution of average cortical thickness of subjects in the CN (black), MCl (cyan), and AD (magenta) cohorts.
Above arrows point to the range of average cortical thickness. Subject number, sex, and age for each group
are listed in Table 1. B For the cortical thickness group D, the degree of separation of the distribution curve
of average cortical thickness between CN subjects and AD subjects is presented in the form of black points.
The closer to the origin point (0, 0) the degree of separation of two distribution curves of average cortical
thickness is, the less distinguishable they are (Additional file 1: Fig. S1). Black points residing outside of

the blue-dashed line (Z= £ 1.5) are ROI vertices, and black points residing outside of red-dashed line (Z
values are listed in Additional file 1: Table S1) are essential ROl vertices. C For each group of average cortical
thickness, ROI vertices at which the thickness of the cortex for CN subjects is thicker (thinner) than that of
the other subjects with MCl or AD is represented by cyan (blue) color. As a similar procedure, ROl vertices
for MCl subjects is thicker (thinner) than the other cohorts is represented by green (dark green) color. Also,
ROl vertices for AD subjects is thicker (thinner) than the other cohorts is represented by orange (red) color.
Especially, the ROI vertices at which the cortical thickness decreases in the descending order of CN-MCI-AD
is represented by dark red. And the essential ROl vertices are represented by a black color. The ROI vertices
commonly found from more than three groups of average cortical thickness are presented in Additional
file 1: Fig. S2, where it shows less congested and clear ROl vertices
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though the averaged cortical thickness is thinner than that of a subject with AD, and
vice versa. Also, we found that many subjects identified as CN, MCI, or AD have a simi-
lar averaged cortical thickness. This is due to the fact that the average cortical thickness
for a subject was calculated over all 276,825 vertex points on the cortex, and the corti-
cal thicknesses at most vertices are similar for all subjects, which prohibits us from suc-
cessfully clustering 1552 human brain images into the image of CN, MCI, AD cohorts.
Therefore, instead of resorting on the cortical thickness of all 276,825 vertex points on
the cortex, we selected ROI vertices at which the cortical thickness values are distin-
guishable from each other among CN, MCI, and AD. For a fair selection of such ROI
vertices, we divided the range of the averaged cortical thickness of subjects into four
(A-D) different regions (for the detail, see the second section in methods).

Figure 1B illustrates how we identified ROI and essential ROI vertices. The x-axis

((tp,hECN> — (tp,heAD>)/« /%Z,heCN/”p,heCN represents the degree of separation between

the distribution curves of cortical thickness for CN subjects and AD subjects at a vertex
p normalized by the dispersion of the cortical thickness of CN subjects, which is quanti-
fied by the value of its Z score. The y-axis ({tyccN) — (Ephean))/ /UpZ,heAD/"p,hGAD

represents values normalized by the dispersion of the cortical thickness of individuals
with AD. Therefore, the x-values (y-values) at a vertex point p represent the degree by
which the distribution of cortical thickness at this point p of CN (AD) subjects is distin-
guished from averaged cortical thickness of subjects with AD (CN). It means the larger
the value of (ZgN’AD)2 =[x 2+ y’z]f1 is, the two distribution curves are more distin-
guished each other (for the illustration, see Additional file 1: Fig. S1). The ROI cut-off
line is defined by points satisfying ’ZENfAD’ = 1.5, and the distribution of cortical thick-

ness of CN subjects and individuals with AD is clearly distinguished at those points sat-
isfying ‘ZpCN’AD’ > 1.5 (outside of the ROI cut-off line).

Figure 1C shows ROI vertices for each of the cortical thickness groups (A-D) by
colored points on the white cortex, at which the thickness of the cortex is either thicker
or thinner particularly for one cohort compared with that of two other cohorts. These
ROI vertices are widely distributed on the cortex, and their locations are not fixed but
vary depending on the groups A to D. We uncovered, however, that the medial tempo-
ral lobe, known to be very important for memory formation, is always indicated by a
red or dark red color irrespective of the groups A to D (Additional file 1: Fig. S2). This
implies that the cortical thickness values of the medial temporal lobe for subjects with
AD are characteristically thinner than those of CN subjects or individuals with MCI (red
color), and this decrease occurs in the following descending order: CN-MCI- AD (dark
red color). The medial temporal lobe is the region where the cortical thickness gradu-
ally decreases as AD severity increases and therefore is the critical region necessary for
determining the AD cohort and the severity degree of AD. We also noted that the corti-
cal thickness at the orange-colored region for subjects with AD is thicker than that for
CN subjects or those with MCI. This has nothing to do with the damage in the cor-
tex but contributes to the increase in the accuracy for predicting the AD cohort since it
could provide better distinguishability of subjects with AD from CN subjects and those
with MCI.
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Fig. 2 The character of score matrix for each group of average cortical thickness. A For a given group of
average cortical thickness, three kinds of heat maps illustrate the process starting from the cortical thickness
matrix at all 276,825 vertices to that at only 564 essential ROl vertices, and then construction of the score
matrix. The dimension in the x-axis of the cortical thickness matrix at all 276,825 is too large to draw, we

placed the blank in the middle to abbreviate the large dimension of the x-axis. B The results of singular value
decomposition analysis on score matrices, which are composed of 547 CN, 722 MCl, 247 AD human brain

images and used for self-recognition test. For each group of average cortical thickness, six singular vectors

corresponding to the six largest singular values are presented. Here, x-axis is m value defined in the third
section of methods, and y-axis is an arbitrary unit for the singular vectors. For each graph, the singular vector
components for CN, MCl, and AD subjects are plotted by black, cyan, magenta colors, respectively. CThe
results of singular value decomposition analysis on score matrices, which are composed of 363 CN, 480 MC|,

163 AD human brain images as a training set and used for the first iteration of the stratified threefold cross

validation test. The other results of that used for the second and third iterations of the stratified threefold
cross validation test are presented in Additional file 1: Fig. S3
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Table 2 Result for the tests of the cohorts for each group

Exp Group A Group B Group C Group D Correct (%)

Score

CN M AD CN M AD CN M AD CN MC AD

Self-recognition test

CN 128 8 - 197 12 3 142 11 6 40 - - 507 (92)
MCl 16 139 - 74 155 33 59 120 30 5 88 3 502 (69)
AD - - 13 6 1 60 7 2 75 1 3 79 227 (91)
Stratified threefold cross validation test

CN 122 14 - 177 28 7 133 20 6 31 6 3 463 (84)
MCI 33 122 - 97 130 35 68 103 38 9 75 12 430 (59)
AD 1 - 12 5 9 53 7 11 66 2 8 73 204 (82)

“Exp.” column, outside of the parenthesis, represents the number of MR images base on the clinical test, and “Score” row,
inside of the parenthesis, represents the number of MR images base on our test using score matrix. AD, Alzheimer’s disease;
CN, cognitively normal; MCI, mild cognitive impairment

Character of statistical score matrix and classification of subject’s cohort

The third section in methods described the detailed procedure of constructing the
statistical score matrix for determining a subject’s cohort within each group of the
average cortical thickness (Fig. 2A). In order to judge how well the statistical score
matrix distinguishes CN, MCI, and AD cohorts from each other before we predict the
cohort of a new subject, we performed the singular value decomposition (SVD) analy-

AlD which consists of matrix elements

sis on the combined statistical score matrix S
of SN, SMCD "and SAP) We used the SVD character of a matrix that a given matrix
can be reconstructed as a linear combination of the products of two singular vectors
weighted by corresponding singular value. Since the reconstructed matrix from the
few highest modes of singular values contains the predominant character of an origi-
nal given matrix, one expects that the differences among the cohorts should appear
in singular vectors of different cohorts. Otherwise, the statistical score matrix S
is not reliable nor does it contain the characteristic ingredient of different cohorts.
Figure 2B, C and Additional file 1: Fig. S3 show the highest six singular vectors cor-
responding to the six largest singular values from SVD analysis of the statistical score
matrices for each group of the average cortical thickness A to D. Here, it demonstrates
that elements in the singular vectors v, to v5 for CN, MCI, and AD follow qualitatively
a similar trend, meaning that these compose the fundamental default modes, whereas
those in v, to v; follow a different trend and are distinguished each other.

Out of 547 CN, 722 MCI, and 247 AD human brain images provided from the
ADNI data set and with their cohort predetermined clinically, we performed the self-
recognition test and also the stratified threefold cross validation test for a cohort of
subject using the 1516 human brain images for each group on the average cortical
thickness A to D (Table 2 and Additional file 1: Table S2). For the first (second; third)
iteration of stratified threefold cross validation test, 1006 (1011; 1015) human brain
images were used as the training set for learning the statistical score matrix and 510
(505; 501) human brain images were used as an independent validation set. The new
method presented in this study recognized and predicted the subjects with AD in the
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cohort with more than 91% (self-recognition test) and 82% (stratified threefold cross
validation test) accuracy, respectively.

There may be a problem that the demographics of the CN/MCI/AD cohort look
quite different. Therefore, we performed statistical tests to check whether there are
significant demographic differences between CN/MCI/AD cohorts. We checked
through p-value whether the distribution of age within each group showed statisti-
cally significant differences (Additional file 1: Table S3). It can be said that there is no
statistically significant difference because all p-values have values greater than 0.05.
Since p-value cannot be calculated with respect to female percentage, we performed
the reanalysis of the cortical thickness data by taking equal ratio between female and
male in the demographics of the participants in Table 1. Even if the sex ratio was set
to 1:1, our results were robust (Additional file 1: Table S4).

Estimating the AD severity of subjects by a new predictor of covariance correlation matrix
Developing a quantitative measure to tell the degree of AD severity for a given sub-
ject is very important for diagnosing and clinically treating patients with MCI and
AD with the different degree of AD. In this study, we already identified essential ROI
vertices and constructed the statistical score matrices as an initial classifier ensuring
the prediction of subjects with AD at more than 80% accuracy that they belong to the
AD cohort. Thus, we extracted the cortical thickness profile (or vector) at essential
ROI vertices for all brain images, and constructed the covariance correlation matrix
between them. Then we calculated the correlation between the profile vector for a
given subject’s image with that of patients with AD, to estimate the degree of AD
severity for a given subject relative to patients with AD (for the detail, see the Eq. (8)
in the fourth section in methods and Fig. 3A). The personalized and quantitative
severity degree of AD (the Eq. (8)) is plotted at the right-bottom graph of Fig. 3A for
each subject of CN, MCI, AD cohort of the group D in the ascending order. The val-
ues of severity degree of AD were distributed around the averaged value of 0 (ranging
from about -0.5 to+0.5) for subjects with CN, 0.5 (ranging from about -0.2 to + 1.2)
for subjects with MCI, and 1.0 (ranging from about+ 0.2 to+1.5) for subjects with
AD, respectively. The distribution of the severity degree for subjects with MCI was
laid across both ranges of those for CN and AD, which points out that this is the
intrinsic source of the low success ratio in determining the AD cohort of subjects
with MCI. One could unfold and sort out quantitatively the broad spectrum of the
AD severity for MCI subjects in that whether they are prone to CN or AD. Given a
new person for diagnosing the AD state, one of the cohort CN, MCI, AD was assigned
by the Eq. (3) and the personalized and quantitative severity degree of AD was esti-
mated by the Eq. (8). Then, with these two qualitative- and quantitative-determinants,
one may infer that a new person with the estimated severity degree below 0.0 is most
likely to be CN, with that between 0.0 and 0.5 might be CN or MCI prone to CN, with
that between 0.5 and 1.0 might be MCI prone to AD or AD, and with that above 1.0 is
most likely to be AD state.

We constructed the covariance correlation matrices for all groups A, B, C, D of the
average cortical thickness and observed the common pattern in the matrices that sub-
jects with AD (CN), possessing a strong correlation among themselves are clustered
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Fig. 3 Covariance correlation matrix and severity degree of AD. A The left-top heat map is the covariance
correlation matrix for group D of average cortical thickness. The x- and y-axes represent the indices 1 to 40
for CN subjects, 41 to 136 for MCl subjects, and 137 to 219 for AD subjects. Here, red (blue) color represents
the high (low) correlation between two subjects at the essential ROI vertices. The extra E-cohort color bar

at the right of the heat map represents the clinically determined cohort of CN subjects and subjects with
MCl and AD denoted by black, cyan, and magenta colors, respectively. The left-bottom graph illustrates

the personalized severity degree of AD for each subjects of the group D in terms of a quantitative value,
ranging from O for the basin of CN state to 1 for the basin of AD state (for the detail, see the fourth section

in methods). The average values of this severity degree in each cohort are denoted by horizontal lines,
respectively. The left panel is reordered into the right panel according to the ascending value of the severity
degree in each cohort. For those subjects with MCl, the distribution of severity degree of AD is very broad.
One can sort out the broad spectrum of the AD severity for MCl subjects in that whether they are prone to
CN or how much they are progressed toward AD. B The reordered covariance correlation matrices for A, B, C,
and D groups of average cortical thickness together with the determination of CN (black), MCl (cyan), and AD
(magenta) cohorts by clinical (E-cohort color bar) exam and by the stratified threefold cross validation test
of this study (S-cohort color bar). The original covariance correlation matrices for the four groups of average
cortical thickness are provided in Additional file 1: Fig. S4
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Fig. 4 Flow chart for the cohort determination and the estimation of the severity degree of AD. The left
shows the process of constructing the score matrix and covariance correlation matrix from the cortical
thickness big data of subjects derived from the ADNI data set. The right shows the process of determining
the cohort and the severity degree of AD for a new given subject

at the top-right (bottom-left) corner, represented by the cluster of red colors (Addi-
tional file 1: Fig. S4). Also, we presented the reordered covariance correlation matri-
ces by the severity degree of AD and the results to which one of the CN, MCI, AD
cohorts each human brain would belong, based on both the clinical test and our
stratified threefold cross validation test (Fig. 3B). After comparing the result from our
independent validation test with that of the clinical test, we noted that those subjects
which were predicted to belong to the MCI cohort by the clinical test and yet esti-
mated to have the higher (lower) severity degree of AD by our estimation, were pre-
dicted to belong to the AD (CN) cohort from the our validation test.

Discussion

Based on the cortical thickness data of 1516 human brain images from the ADNI data
set, we presented a new algebraic determinant for both (1) the identification of the
cohort (CN, MCI, AD) a given subject would belong to and (2) the quantitative esti-
mation of the severity degree of AD for a given new person (Fig. 4). A total of 1516

human brain MR images were partitioned into four groups by the average cortical
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thickness of each subject. Out of 327,684 vertices on the cortex, a few hundred essen-
tial ROI vertices for each group were identified, which were enough to distinguish the
cortical thickness distribution of the CN, MCI, and AD cohorts from each other. Sta-
tistical score matrices using the cortical thickness on the essential ROI vertices were
constructed as an initial classifier for determining the cohort of a given subject. Out
of 547 CN, 722 MCI, and 247 AD subjects predetermined clinically, the success ratio
for self-recognizing their cohort was 92% with CN, 69% with MCI, and 91% with AD
subjects. On the other hand, employing 1006 human brain images for control and 510
human brain images for independent validation, the stratified threefold cross-valida-
tion test gave the correct prediction rate of 84% with CN, 59% with MCI, and 82% in
subjects with AD; this is in the overall agreement with the results of clinical determi-
nation. Using the quantitative severity degree of AD for subjects, we could explain the
reason why the inevitable uncertainty in the determination of the MCI cohort arouse
by the very broad distribution of the severity degree of AD which MCI subjects pos-
sess intrinsically. We suggested that the severity degree of AD presented in this study
would be a realistic measure for the quantitative and personalized diagnosis of a given
subject instead of tri-partitioning the classification of a subject’s cohort only by CN,
MCI or AD. It is the continuous degree of AD severity for a given subject along the
scale from O for the basin of CN state to 1 for the basin of AD state. One could sort
out quantitatively the broad spectrum of the severity degree of AD for MCI or AD
subjects with the different severity degree in that whether they are prone to CN or
how much they are progressed toward AD.

Limitations

We noted above that the correct prediction rate of cohort for MCI subjects is 59% which
is lower than 84%, 82% for CN and AD subjects, respectively. This is because, as repre-
sented in Additional file 1: Fig. S2, there are no particular cortex regions in a brain, at
which the cortical thickness is markedly different for MCI subjects compared to those
for CN and AD subjects. Despite of such difficulties in predicting the cohort of subjects
with MCI, we introduced a new quantitative determinant “the severity degree of AD”
so that we could identify MCI state by the quantitative manner as an intermediate one
between CN and AD states (Fig. 3A). Therefore, instead of trying to single out MCI state
as the one which is distinctively distinguished from CN and AD states, we focused on
accessing how much a given subject with MCI possesses the similar character with that
of subjects with AD. Our ultimate mission in the future would be to verify how much the
severity degree of AD for subjects with MCI will be correlated with the occurrence rate
of AD in a longitudinal study.

Conclusions

This study not only provided a straightforward algebraic determinant to analyzing the cor-
tical thicknesses of human brains but also suggested quantitative measures by which one
could estimate both the cohort and the severity degree of AD for a given new subject based
on the neuro-images from the structural MRI. The MRI data of a larger number of human
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brains could also be implemented into this study in a systematic and robust manner, which
would facilitate the better diagnose of AD with the different degree of dementia.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-022-04903-8.

[ Additional file 1: Supplementary Figures and Tables. }

Acknowledgements

National Research Foundation (2017R1E1ATA03070854), Korea. We acknowledged DGIST supercomputing big data
center for the allocation of supercomputing resources. We appreciated Mookyung Cheon and Wookyung Yu for the
fruitful discussions, and also Keonho Lee and Jangjae Lee of Chosun University for the preparation of MRl image data in
the initial stage of this work.

The Alzheimer’s Disease Neuroimaging Initiative

Lisa C. Silbert®, Betty Lind®, Rachel Crissey”, Lon S. Schneider®, Sonia Pawluczyk®, Mauricio Becerra®, Liberty Teodoro®,
Karen Dagerman®, James Brewer’, Helen Vanderswag’, Jaimie Ziolkowski®, Judith L. Heidebrink® Lisa Zbizek-Nulph?®, Lisa
Zbizek-Nulph®, Ronald Petersen®, Sara S. Mason®, Colleen S. Albers®, David Knopman?®, Kris Johnson®, Javier Villanueva-
Meyer'® Valory Pavlik'®, Nathaniel Pacini'®, Ashley Lamb'?, Joseph S. Kass'?, Yaakov Stern'", Lawrence S. Honig'', Akiva
Mintz'", Beau Ances'?, John C. Morris'?, David Winkfield'?, Maria Carroll'?, David Geldmacher'?, Marissa Natelson Love'?,
Hillel Grossman'#, Martin A. Goldstein'*, Jonathan Greenberg'*, Raj C. Shah'®, Melissa Lamar'?, Patricia Samuels', Ranjan
Duara'®, Maria T. Greig-Custo'®, Rosemarie Rodriguez'®, Marilyn Albert'”, Chiadi Onyike'”, Leonie Farrington'”, Scott
Rudow'’, Rottislav Brichko'”, Amanda Smith'®, Martin Sadowski'®, Thomas Wisniewski'®, Melanie Shulman'®, Arline
Faustin'®, Julia Rao'?, Karen M. Castro'?, Anaztasia Ulysse'®, Shannon Chen'?, P Murali Doraiswamy?®’, Jeffrey R. Petrella®’,
Olga James?, Terence Z. Wong?’, Jason H. Karlawish?', David A. Wolk?', Sanjeev Vaishnavi®', Charles D. Smith?, Gregory
A. Jicha??, Riham El Khouli??, Flavius D. Raslau??, Oscar L. Lopez?®, MaryAnn Oakley?, Donna M. Simpson??, Anton P.
Porsteinsson?, Kim Martin’*, Nancy Kowalski**, Melanie Keltz**, Gaby Thai?*, Aimee Pierce?®, Beatriz Yanez?®, Elizabeth
Sosa’®, Megan Witbracht?®, Brendan Kelley?®, Trung Nguyen?®, Kyle Womack?®, Allan |. Levey?’, James J. Lah?’, Ihab
Hajjar?’, Jeffrey M. Burns?®, Russell H. Swerdlow?®, William M. Brooks?®, Daniel H.S. Silverman??, Sarah Kremen??, Neill R
Graff-Radford®®, Francine Parfitt*®, Kim Poki-Walker®, Martin R. Farlow?', Jared R. Brosch®', Scott Herring®', Christopher

H. van Dyck®, Adam P. Mecca®, Susan P. Good*, Martha G. MacAvoy™, Richard E. Carson®?, Pradeep Varma®?, Howard
Chertkow?®, Susan Vaitekunis®, Chris Hosein®, Sandra Black®, Bojana Stefanovic*, Chris (Chinthaka) Heyn**, Ging-Yuek
Robin Hsiung®, Ellen Kim*, Benita Mudge®®, Vesna Sossi*, Elizabeth Finger®, Stephen Pasternak®, Irina Rachinsky™, lan
Grant®, Brittanie Muse®’, Emily Rogalski*’, Jordan Robson®’, Nunzio Pomara®, Raymundo Hernando®®, Antero Sarrael®,
Howard J. Rosen®, Bruce L. Miller®’, David Perry*, Raymond Scott Turner“’, Kathleen Johnson“, Brigid Reynolds®, Kelly
MCCann, Jessica Poe?, Reisa A. Sperling®!, Keith A. Johnson*', Gad A. Marshall*', Jerome Yesavage*?, Joy L. Taylor*?,
Steven Chao*, Jaila Coleman®, Christine M. Belden, Alireza Atri*, Bryan M. Spann*?, Kelly A. Clark®, Ronald Killiany*,
Robert Stern*, Jesse Mez*, Thomas O. Obisesan®, Oyonumo E. Ntekim®, Saba Wolday*, Javed . Khan®, Evaristus
Nwulia®, Sheeba Nadarajah™®, Alan Lerner®, Paula Ogrocki®®, Curtis Tatsuoka®, Parianne Fatica®, Evan Fletcher*, Pauline
Maillard*, John Olichney®, Charles DeCarli*’, Vernice Bates“®, Horacio Capote®®, Michelle Rainka*®, Michael Borrie*®, T-Y
Lee*, Rob Bartha*, Sterling Johnson®®, Sanjay Asthana®, Cynthia M. Carlsson®, Allison Perrin®!, Douglas W. Scharre®?,
Maria Kataki®?, Rawan Tarawneh®?, David Hart*® Earl A. Zimmerman®3, Dzintra Celmins®*, Delwyn D. Miller**, Laura L. Boles
Ponto™, Karen Ekstam Smith®*, Hristina Koleva®, Hyungsub Shim®*, Jeff D. Williamson®®, Suzanne Craft>*, Jo Cleveland™,
Brian R. Ott*®, Jonathan Drake®®, Geoffrey Tremont®, Lori A. Daiello®®, Jonathan D. Drake®®, Marwan Sabbagh®’, Aaron
Ritter””, Abigail O'Connelll”®, Jacobo Mintzer®®, Arthur Wiliams®, Joseph Masdeu®?, Jiong Shi®®, Angelica Garcia®®, Paul
Newhouse®', Steven Potkin®, Stephen Salloway®®, Paul Malloy®®, Stephen Correia®, Athena Lee®*,

Oregon Health & Science University. *University of Southern California. “University of California — San Diego. ®University
of Michigan. *Mayo Clinic, Rochester. '°Baylor College of Medicine. ''Columbia University Medical Center. '“Washington
University, St. Louis. *University of Alabama—Birmingham. “Mount Sinai School of Medicine. '°Rush University Medical
Center. '®Wien Center. ' Johns Hopkins University. '®University of South Florida: USF Health Byrd Alzheimer’s Institute.
"9New York University. 2Duke University Medical Center. >'University of Pennsylvania. *?University of Kentucky. >Univer-
sity of Pittsburgh. 2“University of Rochester Medical Center. 2University of California Irvine IMIND. 2°University of Texas
Southwestern Medical School. ?’Emory University. 2University of Kansas, Medical Center. 2?University of California, Los
Angeles. **Mayo Clinic, Jacksonville. *'Indiana University. **Yale University School of Medicine. **McGill Univ., Montreal-
Jewish General Hospital. **Sunnybrook Health Sciences, Ontario. **U.B.C. Clinic for AD & Related Disorders. *°St. Joseph's
Health Care. *Northwestern University. *®Nathan Kline Institute. **University of California, San Francisco. “*Georgetown
University Medical Center. *'Brigham and Women's Hospital. “’Stanford University. “*Banner Sun Health Research
Institute. *Boston University. “Howard University. “°Case Western Reserve University. */University of California, Davis —
Sacramento. “®Dent Neurologic Institute. “’Parkwood Institute. *°University of Wisconsin. °'Banner Alzheimer’s Institute.
*2Ohio State University. >*Albany Medical College. **University of lowa College of Medicine. **Wake Forest University
Health Sciences. **Rhode Island Hospital. °’Cleveland Clinic Lou Ruvo Center for Brain Health. *®Roper St. Francis Health-
care. *’Houston Methodist Neurological Institute. ®*Barrow Neurological Institute. ¢'Vanderbilt University Medical Center.
©2Long Beach VA Neuropsychiatric Research Program. ®Butler Hospital Memory and Aging Program. ®*Cornell University.
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investi-
gators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.


https://doi.org/10.1186/s12859-022-04903-8
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Kim et al. BMC Bioinformatics (2022) 23:357 Page 16 of 17

Author contributions

The research planning was conceived by SK and IC. The processing of MRl image data from ADNI and the evaluation of
cortical thickness of human brains were done by SP and SK. The statistically learned score matrix and a covariance matrix
as a set of classifier and predictor were constructed by SK and IC. The in-depth interpretation of data, manuscript writing
were done by all authors. All authors read and approved the final manuscript.

Funding
National Research Foundation (2017R1E1ATA03070854), Korea.

Availability of data and materials

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by principal investi-
gator Michael W. Weiner, MD. The primary goal of the ADNI has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCl and early
Alzheimer's disease. For up-to-date information, see www.adni-info.org. Data collection and sharing for this project was
funded by the AD Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01T AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following:
AbbVie, Alzheimer's Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc,; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc,; Eli Lilly and Company; Eurolm-
mun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd,; Janssen
Alzheimer Immunotherapy Research & Development, LLC,; Johnson & Johnson Pharmaceutical Research & Development
LLC,; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transi-
tion Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The
grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the
Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Southern California.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 21 March 2022 Accepted: 24 August 2022
Published online: 29 August 2022

References

1. Galvin JE, Sadowsky CH, Nincds A. Practical guidelines for the recognition and diagnosis of dementia. J Am Board
Family Med: JABFM. 2012;25(3):367-82.

2. Solomon A, Soininen H. Dementia: Risk prediction models in dementia prevention. Nat Rev Neurol.
2015;11(7):375-7.

3. Raj A Kuceyeski A, Weiner M. A network diffusion model of disease progression in dementia. Neuron.
2012,73(6):1204-15.

4. Coughlan G, Coutrot A, Khondoker M, Minihane AM, Spiers H, Hornberger M. Toward personalized cognitive diag-
nostics of at-genetic-risk Alzheimer’s disease. Proc Natl Acad Sci USA. 2019;116(19):9285-92.

5. Wang J, Knol MJ, Tiulpin A, Dubost F, de Bruijne M, Vernooij MW, et al. Gray matter age prediction as a biomarker for
risk of dementia. Proc Natl Acad Sci USA. 2019;116(42):21213-8.

6. Hojjati SH, Ebrahimzadeh A, Babajani-Feremi A. Identification of the early stage of Alzheimer’s disease using struc-
tural MRI and resting-state fMRI. Front Neurol. 2019;10:904.

7. Kim BH, ChoiYH, Yang JJ, Kim S, Nho K, Lee JM, et al. Identification of novel genes associated with cortical thick-
ness in Alzheimer’s disease: systems biology approach to neuroimaging endophenotype. J Alzheimer’s Dis: JAD.
2020;75(2):531-45.

8. Qiu S, Joshi PS, Miller M, Xue C, Zhou X, Karjadi C, et al. Development and validation of an interpretable deep learn-
ing framework for Alzheimer’s disease classification. Brain: J Neurol. 2020;143(6):1920-33.

9. Tetreault AM, Phan T, Orlando D, Lyu |, Kang H, Landman B, et al. Network localization of clinical, cognitive, and
neuropsychiatric symptoms in Alzheimer’s disease. Brain: J Neurol. 2020;143(4):1249-60.

10. Reber J, Hwang K, Bowren M, Bruss J, Mukherjee P, Tranel D, et al. Cognitive impairment after focal brain
lesions is better predicted by damage to structural than functional network hubs. Proc Natl Acad Sci USA.
2021;118(19):e2018784118.

11. Zhang X, Mormino EC, Sun N, Sperling RA, Sabuncu MR, Yeo BT, et al. Bayesian model reveals latent atrophy factors
with dissociable cognitive trajectories in Alzheimer’s disease. Proc Natl Acad Sci USA. 2016;113(42):E6535-44.


http://www.adni-info.org
http://www.fnih.org

Kim et al. BMC Bioinformatics (2022) 23:357 Page 17 of 17

20.

21.

22.

23.

Hartikainen P, Rasanen J, Julkunen V, Niskanen E, Hallikainen M, Kivipelto M, et al. Cortical thickness in frontotempo-
ral dementia, mild cognitive impairment, and Alzheimer’s disease. J Alzheimer’s Dis: JAD. 2012;30(4):857-74.

Im K, Lee JM, Seo SW, Yoon U, Kim ST, Kim YH, et al. Variations in cortical thickness with dementia severity in Alzhei-
mer’s disease. Neurosci Lett. 2008:436(2):227-31.

Kim HJ, Ye BS, Yoon CW, Noh Y, Kim GH, Cho H, et al. Cortical thickness and hippocampal shape in pure vascular mild
cognitive impairment and dementia of subcortical type. Eur J Neurol. 2014;21(5):744-51.

Lebedev AV, Westman E, Beyer MK, Kramberger MG, Aguilar C, Pirtosek Z, et al. Multivariate classification of patients
with Alzheimer’s and dementia with Lewy bodies using high-dimensional cortical thickness measurements: an MRI
surface-based morphometric study. J Neurol. 2013;260(4):1104-15.

Paternico D, Manes M, Premi E, Cosseddu M, Gazzina S, Alberici A, et al. Frontotemporal dementia and language
networks: cortical thickness reduction is driven by dyslexia susceptibility genes. Sci Rep. 2016;6:30848.

Querbes O, Aubry F, Pariente J, Lotterie JA, Demonet JF, Duret V, et al. Early diagnosis of Alzheimer’s disease using
cortical thickness: impact of cognitive reserve. Brain: J Neurol. 2009;132(Pt 8):2036-47.

Saleem TJ, Zahra SR, Wu F, Alwakeel A, Alwakeel M, Jeribi F, et al. Deep learning-based diagnosis of Alzheimer’s
disease. J Personal Med. 2022;12(5):815.

Raju M, Gopi VP, Anitha VS, Wahid KA. Multi-class diagnosis of Alzheimer’s disease using cascaded three dimen-
sional-convolutional neural network. Phys Eng Sci Med. 2020;43(4):1219-28.

Albright J. Forecasting the progression of Alzheimer’s disease using neural networks and a novel preprocessing
algorithm. Alzheimers Dement. 2019,5:483-91.

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. | Segmentation and surface reconstruction. Neuroim-
age. 1999,9(2):179-94.

Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate
system. Neuroimage. 1999;9(2):195-207.

YuW, Lee W, Lee W, Kim S, Chang I. Uncovering symmetry-breaking vector and reliability order for assigning second-
ary structures of proteins from atomic NMR chemical shifts in amino acids. J Biomol NMR. 2011;51(4):411-24.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC




	Development of quantitative and continuous measure for severity degree of Alzheimer’s disease evaluated from MRI images of 761 human brains
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Preparation of cortical thickness data from MRI of 1522 human brain images from ADNI
	Partition 1516 MR images of human brains into four groups and determine the essential region-of-interest vertices for each group
	Construction of a statistical score matrix for classifying subjects into one of CN, MCI, AD cohorts
	Construction of a covariance correlation matrix and a predictor for the severity degree of AD

	Results
	Identification of essential ROI vertices at which the distributions of cortical thickness of CN, MCI, AD subjects are distinguishable
	Character of statistical score matrix and classification of subject’s cohort
	Estimating the AD severity of subjects by a new predictor of covariance correlation matrix

	Discussion
	Limitations
	Conclusions
	Acknowledgements
	References


