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Highlights 

 Three distinguishable trajectory subgroups were identified in Aβ+ participants 

with MCI 

 Older age, presence of APOE ε4, higher Aβ deposition, and hypometabolism 

predict fast decline 

 Prediction models showed good predictive accuracies in the development and 

validation data sets 

 The predicted probability of belonging to a trajectory subgroup given the risk 

scores of each predictor was visualized 
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Abstract 

The clinical outcomes of patients with amyloid beta-positive (Aβ+) mild cognitive 

impairment (MCI) are heterogeneous. We therefore developed prediction models for 

distinguishable cognitive trajectories in Aβ+ participants with MCI. We included 238 Aβ+ 

participants with MCI from the Alzheimer’s Disease Neuroimaging Initiative to develop a 

group-based trajectory model and 63 Aβ+ participants with MCI from the Samsung Medical 

Center for external validation. Three distinguishable classes, slow decliners (18.5%), 

intermediate decliners (42.9%), and fast decliners (38.7%), were identified. Intermediate 

decliners were associated with older age, higher AV45 standardized uptake value ratios 

(SUVR) and lower fluorodeoxyglucose (FDG) SUVR than slow decliners. Fast decliners 

were associated with older age, presence of APOE ε4, higher AV45 SUVR and lower FDG 
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SUVR than slow decliners. Prediction models of cognitive decline showed good 

discrimination and calibration capabilities in the development and validation data sets. Our 

analysis yields novel insights into the cognitive trajectories of Aβ+ patients with MCI, which 

will facilitate their effective stratification in Aβ-targeted clinical trials. 

 

Keywords: Mild cognitive impairment, amyloid β, Alzheimer’s disease, group-based 

trajectory analysis model, prediction model 

 

 

 

 

1. Introduction 

The clinical outcomes of patients with mild cognitive impairment (MCI) are 

heterogeneous, and the rate of cognitive decline varies among patients (Amieva et al., 2005; 

Busse et al., 2006; Mungas et al., 2010). Although positron emission tomography (PET) 

findings suggest that patients with amyloid beta-positive (Aβ+) MCI are more likely to 

progress to dementia than their Aβ-negative counterparts (Okello et al., 2009), patients with 

Aβ+ MCI have different prognoses depending on biomarkers such as cerebrospinal fluid 

(CSF) tau level, tau deposition as assessed through tau PET images, hippocampal atrophy, 

and hypometabolism (Drzezga et al., 2003; Jang et al., 2019). These prognostic differences 

may result from the interaction of underlying pathologies with other multiple factors such as 

genetics and comorbidities (Jack et al., 2013). Consequently, previous studies have shown 
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that patients with Aβ+ MCI can be classified into converters and non-converters within three 

years from initial examinations (Jang et al., 2019; Okello et al., 2009). Therefore, 

determining the stratified disease prognosis among Aβ+ MCI patients is clinically essential 

for the early identification of individuals at risk of rapidly developing dementia due to 

Alzheimer’s disease (AD). In fact, this patient population could significantly benefit from 

early treatment and therapies that are being tested in clinical trials. 

The group-based trajectory analysis model (GBTM) is a statistical tool to analyze 

developmental trajectories over age or time, and it provides an estimated proportion of 

individuals that are likely to have similar longitudinal trajectories (Nagin, 2014). For 

example, group-based models have been applied to identify developmental trajectories 

among patients with amnestic and non-amnestic MCI (David et al., 2016; Lee et al., 2018). 

Even though predictive models of AD dementia have been generated using pattern 

classification methods based on clinical and imaging data as well as CSF biomarkers (Jang et 

al., 2019; Perrin et al., 2009), the GBTM method has not yet been utilized to determine the 

longitudinal cognitive trajectories of patients with Aβ+ MCI. A risk prediction model for 

disease progression is important for designing clinical trials and guiding clinical decision-

making and early treatment administration. Therefore, we aimed to identify distinguishable 

cognitive trajectories among Aβ+ MCI patients and to develop a model that could predict the 

trajectory of each subgroup using risk factor-related data. 

 

2. Materials and methods  

2.1. Participants 

Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (http://adni.loni.usc.edu) and included participants from the ADNI-GO and ADNI-2 
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phases of the ADNI clinical trial. The goal of the ADNI is to utilize genetic, biomarker and 

clinical predictors of decline to identify the cross-sectional features and longitudinal 

trajectories that lead patients from normal aging to MCI and AD dementia. The inclusion and 

exclusion criteria of the ADNI database are defined in detail at 

http://adni.loni.usc.edu/methods/documents/.  

In this study, we selected 420 participants with MCI. Patients were diagnosed with 

MCI according to the following criteria: subjective memory complaints with a Clinical 

Dementia Rating (CDR) score of 0.5, a Mini-mental state examination (MMSE) score of 24-

30, absence of significant impairments in other cognitive domains, mostly preserved ability to 

carry out activities of daily living, and absence of dementia (Petersen et al., 2010). Early and 

late MCI were categorized according to the Logical Memory II subtest of the Wechsler 

Memory Scale. Specifically, early MCI was defined with a score of 0.5-1.5 standard 

deviations (SDs) below the mean of Cognitively Normal on delayed recall test, and late MCI 

was assigned with a score >1.5 SDs below the mean. (Aisen et al., 2010). After the baseline 

visit, the participants were followed up in 6- or 12-month intervals for clinical and 

neuropsychological assessments. At least three times throughout the study period, the patients 

underwent the Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog) 13 

questionnaire, brain imaging (fluorodeoxyglucose [FDG] PET, and 18F-AV-45 [Florbetapir] 

PET), and apolipoprotein E (APOE) genotyping.  

  

2.2. Collection of clinical and multimodal biomarkers 

Clinical data including demographic information, neuropsychological scores, and 

APOE genotyping were acquired from the ADNIMERGE dataset offered by the ADNI 

database. The ADAS-Cog-13 score, where higher scores reflect cognitive decline (Mohs et 
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al., 1997), was employed as a dependent measure for our longitudinal analyses. Additionally, 

we collected the average FDG and AV45 standardized uptake value ratios (SUVR) of AD 

signature brain regions at baseline (Jagust et al., 2009). The standardized imaging protocols 

have been previously described in detail (Jack et al., 2008; Landau et al., 2013). 

MCI participants were divided into an Aβ+ and Aβ- group utilizing a SUVR >1.11 

as the cut-off at baseline (Landau et al., 2013). 

 

2.3. Data for external validation 

The 63 participants with Aβ+ MCI from the Samsung Medical Center (SMC) were 

considered as data for external validation. These data were collected between September 

2015 and March 2021. Instead of ADAS-Cog-13 scores, the Clinical Dementia Rating-Sum 

of Boxes (CDR-SOB) score was used as outcome variable, because the participants in the 

SMC did not complete the ADAS-Cog-13 test. All participants had been tested according to 

the CDR-SOB scale at least three times, and had also undergone 18F-florbetaben or 

flutemetamol PET for Aβ imaging.  

We determined Aβ (+) employing the standardized visual assessments created by the 

companies that manufacture the amyloid tracers. In addition, Aβ uptake was quantitatively 

measured by scaling the Centiloid unit as described in previous studies (Battle et al., 2018; 

Rowe et al., 2017). To measure hippocampal volume, we employed an automated 

hippocampal segmentation method, which performs graph cut optimization, combined with 

atlas-based segmentation and morphological opening (Kwak et al., 2013).  

 

2.4. Statistical analysis 

                  



8 

In order to fulfill the aim of this study, we carried out the following four steps: 1) 

outlining trajectory subgroups according to longitudinal ADAS-Cog-13 scores, 2) comparing 

baseline demographic/clinical variables among the different trajectory subgroups, 3) 

constructing a prediction model for the trajectory subgroups, and 4) visualizing the prediction 

model through the baseline individual values of the predictive factors.  

First, the GBTM was used to classify individuals into subgroups representing the 

progression of ADAS-Cog-13 score trajectories over time, so that individuals in the same 

subgroup had highly similar trajectories to one another, but not to those in other subgroups.  

In order to implement the GBTM, ADAS-Cog-13 scores were transformed using natural log 

because of the skewed distribution of the data after adding two to all scores to offset zero 

scores for log transformation. The average levels of ADAS-Cog-13 scores were modeled as a 

function of time and intercept, and the identified trajectory subgroups were labeled based on 

the slope. The proportion of the patient population following each trajectory was estimated 

based on the posterior probabilities of the subgroup memberships. Individuals were assigned 

to the trajectory subgroups based on the maximum posterior probability of group 

membership. The Bayesian Information Criterion (BIC) and the Sample Size-Adjusted BIC 

(SABIC) were applied to select the optimal number of subgroups and their order (Nagin and 

Odgers, 2010). A lower BIC (or SABIC) indicates a better fit. A difference of 6 or more BIC 

points between a (k-1) and a k-class model (k=2, 3,…) suggests that the additional number 

of classes meaningfully improves model fit (Kass and Raftery, 1995). Furthermore, to ensure 

the accuracy of subgroup classification, the average posterior probabilities of all model 

trajectories were investigated. Probabilities greater than 0.7 generally indicate acceptable 

classification (Nagin and Odgers, 2010). To further validate the adequacy of the identified 

trajectory subgroups, a bootstrap procedure with 1,000 iterations was employed (Efron and 
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Tibshirani, 1986). The GBTM was applied to each of the 1,000 bootstrap samples, and the 

difference between the value of each parameter, which was estimated from the original 

sample, and the bootstrap sample were calculated, and the 95% confidence interval (CI) was 

computed. For internal validation, the original dataset (238 participants) was split into a 

training and testing set according to a 6:4 ratio.  

Second, continuous variables and categorical variables representing the baseline 

demographic, clinical, and genetic factors of each trajectory subgroup were compared using 

the Kruskal-Wallis test and the Chi-square test, respectively. For multiple comparison 

analysis, Tukey’s test with ranks or Fisher's exact test with permutation method were 

performed for continuous and categorical variables, respectively.  

Third, the prediction model for the trajectory subgroups was estimated using a 

multinomial logistic model. The linearity of the continuous variables to log odds of outcome 

in the model was investigated using a plot of log odd. Two categorical predictors were 

employed: sex (male and female, coded as 0 and 1, respectively) and APOE ε4 genotype 

status (non-carriers and carriers, coded as 0 and 1, respectively). Furthermore, the two 

continuous variables of age and duration of education, which did not meet the linearity to log 

odds of outcome, were categorized into two groups (age: <70 years and ≥70 years, coded as 0 

and 1, respectively; duration of education: <12 years and ≥12 years, coded as 0 and 1, 

respectively). The FDG and AV45 SUVRs were multiplied by ten in order to prevent an 

excessively large estimation of odds ratios (OR), and to estimate the ORs for a 0.1 increase in 

both the FDG and AV45 SUVRs.  

Each model was assessed by adding variables in the following order: demographic variables, 

APOE ε4 genotype status, and PET SUVR-related factors. We evaluated the fitness and 

predictability of each estimated model using the Akaike information criterion (AIC), Schwarz 
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Criterion (SC), R-square, M-index (Hand and Till, 2001), and polytomous discrimination 

index (PDI) (Van Calster et al., 2012). The goodness-of-fit of competing models was 

compered using the likelihood ratio test (LRT).  

Finally, the predictor value of a specific patient was multiplied by the coefficient of the 

model corresponding to the predictor. When the model treated the slow decliners as a 

reference group, it resulted in the risk score of the predictor on a patient in the intermediate 

(fast) decliners. For intermediate (fast) decliners, the total risk score, obtained from the sum 

of all risk scores, was added to the value of the model’s intercept to obtain a linear predictor. 

The probability of being classified as an intermediate (fast) decliner was estimated with a 

linear predictor utilizing the following formula: 

𝑒𝑥𝑝(linear predictor of intermediate (fast) decliners)

[1+exp(linear predictor of intermediate (fast)decliners)+exp (linear predictor of fast decliners)
.  

A bar graph was generated to display the risk scores of each predictor and the predicted 

probability of belonging to a trajectory subgroup given the individual’s value of that predictor 

(Van Belle and Van Calster, 2015).  

Continuous and categorical variables are summarized as the median (interquartile range 

[IQR], 1
st 

- 3
rd

 quartile), and frequency (percentage), respectively.  

All the data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). For group 

trajectory analyses, the PROC TRAJ on SAS was employed 

(http://www.andrew.cmu.edu/user/bjones) (Jones et al., 2001). Graphical representation of 

the risk predictor model was carried out using the ‘VRPM’ package for R 3.6.1 (The R 

Foundation, Vienna, Austria). Two-sided p-values <0.05 were considered statistically 

significant. 
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3. Results 

3.1. The demographic and clinical characteristics of the study participants 

The demographics and clinical characteristics of the participants included in the 

ADNI and SMC datasets are presented in Table 1.  

In the Aβ+ MCI participants from the ADNI, the median age was 73.2 years (IQR, 

68.3-77.6 years). The median duration of education was 16 years (IQR, 14-18 years). Female 

participants accounted for 44.1% of all participants. APOE ε4 carriers comprised 67.7% of all 

participants. The median ADAS-Cog-13 score was 16 (IQR, 12-21) and the median CDR-

SOB score was 1.5 (IQR, 1-2) at baseline.  

The median age of Aβ- MCI participants, who represented the reference group, was 69.4 

years. In this group, female participants and APOE ε4 carriers accounted for 46.2% and 

24.7% of all participants, respectively.  

In the SMC, the median age of Aβ+ MCI participants was 70 years (IQR, 65-77 

years). Female participants and APOE ε4 carriers account for 66.7% and were 68.3% of all 

participants, respectively. The median CDR-SOB score was 1.5 (IQR, 1.0-2.5) at baseline. 

 

Table 1 The demographics and clinical characteristics of the participants in the ADNI and SMC 

  ADNI  SMC 

 Aβ+ MCI Aβ- MCI Aβ+ MCI 

 (n=238) (n=182) (n=63) 

Demographics    

Age, median (IQR), years 73.2 (68.3-77.6) 69.4 (63.6-75) 70 (65-77) 

Age ≥70 years, N (%) 155 (65.4) 89 (48.9) 33 (52.4) 
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Female sex, N (%) 105 (44.1) 84 (46.2) 42 (66.7) 

Education, median (IQR), years 16 (14-18) 16 (14-18) 12 (7-16) 

Education >12 years, N (%) 196 (82.7) 164 (90.1) 25 (39.7) 

Biomarkers    

APOE ε4 carriers, N (%) 161 (67.7) 45 (24.7) 43 (68.3) 

Amyloid PET SUVR, median 

(IQR) 
1.3 (1.2-1.5) † 1.01 (0.98-1.05) † 

82.9(57.5-101.3) 

‡ 

FDG PET SUVR, median (IQR) 1.2 (1.1-1.3) 1.3 (1.2-1.4)  

ADAS-Cog-13, median (IQR) 16 (12-21) 12 (8-16)  

CDR-SOB, median (IQR) 1.5 (1-2) 1.0 (0.5-1.5) 1.5 (1.0-2.5) 

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical Center; 

MCI, mild cognitive impairment; Aβ+, amyloid beta-positive; Aβ-, amyloid beta-negative; APOE, 

apolipoprotein E; SUVR, standardized uptake value ratio; FDG, fluorodeoxyglucose; ADAS-Cog, 

Alzheimer’s Disease Assessment Scale-Cognitive subscale; PET, positron emission tomography; 

IQR, interquartile range, CDR-SOB, Clinical Dementia Rating-Sum of Boxes. 

† AV45 PET; ‡18F-florbetaben or flutemetamol PET (Centiloid score) 

 

3.2. Identifying distinguishable trajectory subgroups  

In Aβ+ MCI participants, trajectories were grouped according to baseline (intercept) 

and slope (linear, quadratic) and the best classification was selected by model fit statistics. 

Three trajectory subgroups were labelled as slow, intermediate, and fast decliners based on 

the change of longitudinal ADAS-Cog-13 scores from the baseline (Fig. 1A). Two of the 

subgroups had quadratic trajectories and one subgroup had a linear trajectory (Fig. 1A, Table 

2). For these trajectories, the BIC values were 840.9 (n=1286) and 825.7 (n=238), while the 

SABIC values were 820.3 (n=1286) and 801.8 (n=238). The average posterior probability for 

each trajectory subgroup was 98.5, 93.6, and 96.3, respectively (model 6) (Table 2). The 

parameter estimates of the model were highly similar between the original and bootstrap 

samples, suggesting that the trajectory subgroups identified in the original sample were stable 

(Table 3).  
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Quadratic patterns for 44 slow decliners (18.5%) and 102 intermediate decliners 

(42.9%), as well as a linear pattern for 92 fast decliners (38.7%) were observed (Fig. 1A). 

Slow decliners included a subset of Aβ+ MCI participants with favorable baseline ADAS-

Cog-13 scores and prognosis, while fast decliners showed a more impaired baseline status 

and a rapidly progressing longitudinal cognitive decline. The baseline values of the three 

trajectory subgroups were 7.96 (slow decliners), 14.23 (intermediate decliners), and 21.88 

(fast decliners) (Supplementary Table 1). The values of the three trajectory subgroups 

increased from baseline at the 5-year follow-up, and the change showed stable, intermediate, 

and fast patterns. In fact, the change in cognitive decline of slow decliners was -1.66 points 

after 3 years and 0.84 points after 5 years. On the other hand, the change in cognitive decline 

of intermediate and fast decliners was 1.91 and 10.35 points after 3 years and 6.85 and 19.64 

points after 5 years, respectively. Therefore, the difference between the trajectory subgroup in 

cognitive decline did not increase linearly (Fig. 1). 

Similarly, in the internal validation analysis, the training and testing sets displayed 

three distinguishable trajectories, and model 6 showed quadratic, quadratic, and linear shapes 

of trajectories, respectively. The ΔBIC of model 6 compared with other models was between 

6 and 10 in the training set, so it could be said that there was strong evidence against other 

models for model selection. In the testing set, model 6 showed the better fit, but there was 

little difference in the BIC with model 5. Therefore, we could confirm the three trajectory 

subgroups with quadratic, quadratic, and linear trajectory patterns (model 6) (Supplementary 

Table 3). 

The same trajectory subgroups and similar trajectory shapes were identified in the 

Aβ- MCI participants of the ADNI. In the Aβ- and Aβ+ MCI participants, the change in 

cognitive decline of fast decliners was 3.53 and 10.35 points after 3 years, and 5.88 and 19.64 
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points after 5 years, respectively (Supplementary Table 1). The proportions of slow and fast 

decliners in the Aβ- and Aβ+ MCI groups were different. Specifically, fast decliners were 

more frequent in the Aβ+ (38.7%) than in the Aβ- (16.5%) group. On the other hand, slow 

decliners were more frequent in the Aβ- (36.3%) than in the Aβ+ (18.5%) group (Fig. 1A, 

1B).  

In addition, we also performed GBTM using the longitudinal CDR-SOB scores in 

the Aβ+ and Aβ- MCI groups (Fig. 2A, 2B). Briefly, the frequencies of fast, intermediate, 

and slow decliners were 14.3%, 29.8%, and 55.9% in the Aβ+ group and 2.8%, 23.1%, and 

74.2% in the Aβ- group.  

The same trajectory subgroups were also identified in Aβ+ MCI participants of the 

SMC (Fig. 2C). The frequencies of fast, intermediate, and slow decliners (60.32%, 27.0%, 

and 12.7%, respectively) was similar to those from the ADNI.
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Fig. 1. The longitudinal trajectories of cognitive decline of (A) Aβ+ MCI participants and (B) Aβ- MCI participants over time according to the 

ADAS-Cog-13 score. The y-axis represents the Alzheimer’s Disease Assessment Scale-cognitive subscale 13 (ADAS-Cog-13) scores. Three trajectory 

subgroups were identified: slow, intermediate, and fast decliners. Dashed lines and solid lines indicate the mean of the observed trajectories and the 

estimated trajectories, respectively.  
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Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive subscale; Aβ+, 

amyloid beta-positive; Aβ-, amyloid beta-negative; MCI, mild cognitive impairment. 

Table 2 The BIC values, SABIC values and average posterior probabilities of the group-based trajectory models 

 

Number 

of 

trajectory 

subgroups  

Trajectory 

shapes†  

BIC SABIC Average 

posterior 

probability for 

each trajectory 

        Selecting the Best model  

n=1286‡ n=238§ n=1286‡ n=238§ 
Model 

comparison 

ΔBIC 

(n=1286)‡ 

ΔBIC 

(n=238)§ 

ΔSABIC 

(n=1286)‡ 

ΔSABIC 

(n=238)§ 

Model 1 1 2 1961.3  1954.5  1964.5  1951.0  100.0  - 
    

Model 2 2 1, 1 1219.1  1210.7  1215.2  1201.7  98.3, 98.9 
model 2 vs 

1 
742.2  743.8  749.3  749.3  

Model 3 2 2, 1 1204.1  1194.0  1196.8  1181.7  98.6, 98.6 
model 3 vs 

2 
15.0  16.7  18.3  20.0  

Model 4 3 1, 1, 1 885.0  873.2  870.8  855.6  
98.8, 92.6, 

96.6 

model 4 vs 

3 
319.1  320.8  326.1  326.1  

Model 5 3 2, 1, 1 847.0  833.5  829.5  812.7  
98.2, 93.3, 

96.9 

model 5 vs 

4 
38.0  39.7  41.2  42.9  

Model 6 3 2, 2, 1 840.9  825.7  820.3  801.8  
98.5, 93.6, 

96.3 

model 6 vs 

5 
6.1  7.8  9.3  11.0  

Model 7 3 2, 2, 2 862.3  842.1  824.2  804.1  
98.6, 93.6, 

96.3 

model 7 vs 

6 
-21.4  -16.4  -4.0  -2.3  

The difference Δ in the BIC (SABIC) indicates that the best models are either a model (k-1) and a model k (k=2, 3 …,7). 

Abbreviations: BIC, Bayesian information criterion; SABIC, sample size-adjusted Bayesian information criterion. 

† Trajectory shapes: 1=linear, 2: quadratic; ‡ Total number of observations; § Total number of participants 
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Table 3 Parameter comparisons for the trajectory subgroups between the original and the bootstrap samples  

Group Parameter 
Original sample Bootstrap sample 

delta of beta† (95% CI) 
Beta (SE) Beta (SE) 

Slow decliners 

Intercept 2.3 (0.03) 2.29 (0.01) 0.007 (-0.063-0.076) 

Linear -0.01 (0.003) -0.01 (0.0004) 0.000316 (-0.005-0.005) 

Quadratic 0.0003 (0.00004) 0.0003 (0.000008) 0 (-0.00008-0.000079) 

Intermediate decliners 

Intercept 2.79 (0.02) 2.78 (0.004) 0.003 (-0.045-0.05) 

Linear -0.001 (0.002) -0.001 (0.0002) 0 (-0.004-0.004) 

Quadratic 0.0001 (0.00003) 0.0001 (0.000002) 0 (-0.00005-0.00006) 

Fast decliners 
Intercept 3.17 (0.02) 3.17 (0.003) 0.001 (-0.039-0.042) 

Linear 0.01 (0.001) 0.01 (0.0001) 0 (-0.00142-0.00147) 

Abbreviations: CI, confidence interval; SE, standard error. 

†Reported as the difference in the estimated parameters between the original and bootstrap samples 
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Fig. 2. The longitudinal trajectories of cognitive decline of (A) Aβ+ MCI participants in ADNI (B) Aβ- MCI participants in ADNI and (C) Aβ+ 

MCI participants in SMC over time according to the CDR-SOB score. Three trajectory subgroups were identified: slow, intermediate, and fast 

decliners. Dashed lines and solid lines indicate the mean of the observed trajectories and the estimated trajectories, respectively. 
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Abbreviations: Aβ+, amyloid beta-positive; Aβ-, amyloid beta-negative; CDR-SOB, Clinical Dementia Rating-Sum of Boxes scores; MCI, mild cognitive 

impairment; ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical Center 
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3.3. Comparison of the clinical characteristics of the trajectory subgroups 

Table 4 shows the significant baseline predictive demographic variables and 

biomarkers for identifying individuals who are at risk for fast decline. The median age was 

the lowest in the slow decliner (Tukey’s test using ranks: slow vs. intermediate p<0.001; slow 

vs. fast p=0.001; intermediate vs. fast p=0.692). The gender composition did not significantly 

differ (Chi-square test; p=0.483) among three subgroups, but the duration of education was 

higher in the slow decliners than in intermediate decliners (Tukey’s test using ranks: slow vs. 

intermediate p=0.022; slow vs. fast p=0.321; intermediate vs. fast p=0.289). The presence of 

APOE ε4 was more frequent among fast decliners than slow and intermediate decliners 

(Fisher's exact test with permutation method for multiple testing: slow vs. intermediate 

p=0.828; slow vs. fast p=0.003; intermediate vs. fast p=0.003). In regards to biomarkers, all 

the analyzed markers significantly differed among the three decliner types. The median 

AV45 PET SUVR was lower in the slow decliners than in the other two subgroups (Tukey’s 

test using ranks: slow vs. intermediate p<0.001; slow vs. fast p<0.001; intermediate vs. fast 

p=0.003). In addition, the median FDG PET SUVR was lower in the fast decliners than in the 

other two decliners (Tukey’s test using ranks: slow vs. intermediate p=0.001; slow vs. fast 

p<0.001; intermediate vs. fast p<0.001). 
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Table 4 Demographics and clinical characteristics of the three trajectory subgroups 

  

Slow  

decliners 

Intermediate  

decliners 

Fast  

decliners p-value
†

  

Slow vs. 

Intermediate 

p-value 

Slow vs. 

Fast 

p-value 

Intermediate 

vs. Fast 

p-value (n=44) (n=102) (n=92) 

Demographics 
       

Age, median (IQR), years 68.4 (65.3-72.5) 75.2 (68.9-79.3) 74.0 (69.7-77.5) <0.001
a
 <0.001

c
 0.001

c
 0.692

c
 

Age ≥70 years, N (%) 17 (38.64)
 
 70 (69.31) 68 (73.91) <0.001

b
 0.002

d
 <0.001

d
 0.729

d
 

Female sex, N (%) 23 (52.27) 43 (42.16) 39 (42.39) 0.483
 b
 0.503

d
 0.56

d
 1

d
 

Education, median (IQR), 

years 
17 (16-19.5) 16 (13-18) 16 (14-18) 0.027

 a
 0.022

c
 0.321

c
 0.289

c
 

Education >12 years, N (%) 41 (93.2) 79 (78.2) 76 (82.6) 0.091
b
 0.059

d
 0.2

d
 0.69

d
 

Biomarkers 
       

APOE ε4 carriers, N (%) 24 (54.55) 62 (60.78) 75 (81.52) 0.001
 b
 0.828

d
 0.003

d
 0.003

d
 

AV45 PET SUVR, median 

(IQR) 
1.2 (1.2-1.3) 1.4 (1.2-1.5) 1.4 (1.3-1.5) <0.001

 a
 <0.001

c
 <0.001

c
 0.003

c
 

FDG PET SUVR, median 

(IQR) 
1.4 (1.3-1.4) 1.3 (1.2-1.3) 1.2 (1.1-1.2) <0.001

 a
 0.001

c
 <0.001

c
 <0.001

c
 

Abbreviations: APOE, apolipoprotein E; SUVR, standardized uptake value ratio; FDG, fluorodeoxyglucose; PET, positron emission tomography; IQR, 

interquartile range 

†
Overall comparison of the three trajectory subgroups; a: Kruskal-Wallis test; b: Chi-square test; c: Tukey test using ranks; d: Fisher’s exact test with 

permutation method for multiple testing 
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3.4. Development of the prediction model 

Table 5 shows the fitness and predictability indices of the models, as well as the 

results of the goodness-of-fit comparison tests. Model 5, which considered age, APOE ε4 

genotype status, FDG SUVR, AV45 SUVR, and duration of education, and model 6, which 

excluded duration of education yielded a lower AIC and SC, as well as higher R-square, M-

index, and PDI values, indicating that these two models were superior to the others. Models 5 

and 6 exhibited similar fitness performances and predictability, with no significant 

differences in terms of goodness-of-fit (LRT; p=0.183). However, model 6 was selected as 

the final model due to the relatively lower number of predictive factors that it included. In 

model 6, intermediate decliners were associated with advanced age (≥70 years) (OR 2.72, 

95% CI 1.78-6.28), a higher AV45 SUVR (OR 1.69, 95% CI 1.22-2.34), and a lower FDG 

SUVR (OR 0.65, 95% CI 0.46-0.93), but not a higher proportion of APOE ε4 carriers (OR 

1.53, 95% CI 0.66, 3.54) than slow decliners. Fast decliners were associated with advanced 

age (≥70 years) (OR 3.76, 95% CI 1.40-10.10), a higher proportion of APOE ε4 carriers (OR 

4.2, 95% CI 1.53-11.58), a higher AV45 SUVR (OR 2.14, 95% CI 1.50-3.05), and a lower 

FDG SUVR (OR 0.31, 95% CI 0.20-0.48) than slow decliners (Table 6).  

Similar prediction models were also developed for Aβ+ MCI participants of the 

SMC (Supplementary Table 2). Model 6 showed the best predictive performance and fitness 

compared to other models. 

 

3.5. Visualization of the prediction model 

Finally, we visualized the risk scores and the predicted probability of belonging to a 

trajectory subgroup using the prediction model given the values of the participant’s predictors 
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(Fig. 3). Specifically, for a participant aged 75 years, APOE ε4 carrier, an AV45 SUVR of 

1.3, and an FDG SUVR of 1.2, the risk scores of all predictors, as well as the intercept value, 

were higher in the fast decliners than in the intermediate decliners. Therefore, the linear 

predictor was also higher (2.05 vs 1.92; Fig 3A, 3B), so the probability of belonging to fast 

decliners was estimated to be higher than the probability of belonging to intermediate 

decliners (50.0% vs 43.6%; Fig 3A, 3B). The predicted probability of being in slow decliners 

was 6.4% (=100% – [43.6% + 50%]).
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Table 5 Comparisons of models that include different combinations of predictors 

  AIC SC R-Square M-index 

95% CI
 
for M-index 

(Using 1,000 bootstrap 

samples) 

PDI 

Likelihood ratio test 

Lower Upper Model comparison 
Chi-squared 

statistic 
DF p-value 

Model 1 485.47 506.28 0.10 0.63 0.57 0.68 0.27 - - - - 

Model 2 472.00 499.75 0.17 0.67 0.6 0.72 0.43 Model 1 vs. Model 2 17.47 2 0.0002 

Model 3 416.76 451.44 0.39 0.78 0.72 0.83 0.66 Model 2 vs. Model 3 59.25 2 <0.0001 

Model 4 439.59 474.27 0.31 0.75 0.65 0.78 0.61 Model 2 vs. Model 4 36.41 2 <0.0001 

Model 5 398.74 440.36 0.45 0.81 0.74 0.85 0.70 
Model 3 vs. Model 5 22.01 2 <0.0001 

Model 4 vs. Model 5 44.84 2 <0.0001 

Model 6 398.16 432.84 0.44 0.81 0.73 0.85 0.69 Model 5 vs. Model 6 3.41 2 0.1813 

Model 1: age, education 

Model 2: age, education, APOE ε4 (carrier, non-carrier)  

Model 3: age, education, APOE ε4, FDG PET SUVR  

Model 4: age, education, APOE ε4, AV45 PET SUVR  

Model 5: age, education, APOE ε4, FDG PET SUVR, AV45 PET SUVR  

Model 6: age, APOE ε4, FDG PET SUVR, AV45 PET SUVR 

Abbreviations: CI, confidence level; APOE, apolipoprotein E; PET, positron emission tomography; SUVR, standardized uptake value ratio; FDG, 

fluorodeoxyglucose; AIC, Akaike information criterion; SC, Schwarz criterion; M-index, Multiclass area under receiver operating characteristic index; 

PDI, polytomous discrimination index; DF, degrees of freedom 
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Table 6 Multinominal logistic regression for predictors of the Aβ+ MCI trajectory subgroup  

 
Intermediate decliners

†
 Fast decliners

†
  

  OR 95% CI p-value OR 95% CI p-value 

Age, (≥70 years) 2.72 1.78, 6.28 0.002 3.76 1.40, 10.10 <0.001 

Presence of APOE ε4 1.53 0.66, 3.54 0.158 4.20 1.53, 11.58 <0.001 

AV45 PET SUVR‡  1.69 1.22, 2.34 <0.001 2.14 1.50, 3.05 <0.001 

FDG PET SUVR‡ 0.65 0.46, 0.93 <0.001 0.31 0.20, 0.48 <0.001 

Abbreviations: Aβ+, amyloid beta-positive; MCI, mild cognitive impairment; OR, odds ratio; CI, confidence interval; APOE, apolipoprotein E; PET, 

positron emission tomography; SUVR, standardized uptake value ratio; FDG, fluorodeoxyglucose. 
†

Slow decliners as reference; ‡ Multiplied by ten 
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Fig. 3. Graphical representation of the predictive model. The case is that of a 75-year-old patient carrying the APOE ε4 allele, with an AV45 SUVR of 

1.3, and a FDG SUVR of 1.2. (A) Risk scores, linear predictor and predicted probability of intermediate decliners (B) Risk scores, linear predictor and 

predicted probability of fast decliners. The black lines indicate the range of the risk score for each predictor as observed in the dataset. The gray box 

indicates the predictors’ risk scores for the patient. The specific predictor values given to the patient are indicated in blue color. All the predictors’ risk 

scores were added to the model’s intercept value to obtain a linear predictor. (A) represents the linear predictor for intermediate decliners compared with 

slow decliners, wherein the predicted probability corresponds to intermediate decliners. The predicted probability of the linear predictor is 43.6%. (B) 

represents the linear predictor for fast decliners compared to slow decliners, wherein the predicted probability corresponds to fast decliners. The predicted 

probability of the linear predictor is 50%. The predicted probability for slow decliners is 6.4% (=100% - (43.6%+50%)). 
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Abbreviations: APOE, apolipoprotein E; PET, positron emission tomography; SUVR, standardized uptake value ratio; FDG, fluorodeoxyglucos
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4. Discussion 

In the present study, we investigated several trajectories based on longitudinal 

cognitive decline through the ADAS-Cog-13 scores of participants with MCI due to AD. Our 

main findings were as follows: 1) three subgroups were identified: slow, intermediate, and 

fast decliners; 2) age ≥70 years, the presence of the APOE ε4 allele, high amyloid SUVR, and 

hypometabolism were predictive of fast decline; 3) our newly developed prediction model 

serves to estimate the probability of belonging to each subgroup according to the presence of 

the above-mentioned predictive factors.  

Our first major finding was that participants with Aβ+ MCI can be classified into 

three subgroups (slow, intermediate, and fast decliners) based on changes in their cognitive 

performance. As we expected, Aβ+ MCI participants show more rapid progression than Aβ- 

MCI participants, a result that is consistent with our previous findings indicating that Aβ+ 

MCI individuals have a higher risk of dementia progression compared to Aβ- MCI 

individuals (Ye et al., 2018). The results of the external validation analysis also showed 

similar patterns to the data obtained from the ADNI dataset. These results are in line with 

previous studies showing that individuals with MCI, regardless of the presence or absence of 

amyloid, have distinguishable trajectories of cognitive decline (Bhagwat et al., 2018). 

However, unlike previous studies, our research focused on individuals with Aβ+ MCI 

because most clinical trials have been recruiting this patient population. In particular, our 

modeling approach extends beyond the recent binary classifications created through 

discretionary criteria regarding the progression from MCI to dementia within a three-year 

period. Furthermore, our study employed a data-driven classification of Aβ+ MCI based on 

longitudinal cognitive performance rather than on a priori classifications.  
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Similarly, utilizing the CDR-SOB scores as a measurement of cognitive trajectory, 

three different trajectories were distinguishable in both the Aβ+ and Aβ- MCI groups as well. 

However, slow decliners seemed to be stable, and the frequency of fast decliners was lower 

than that obtained using the ADAS-Cog-13 scores. The frequency of fast decliners in Aβ- 

MCI participants (2.8%) was still lower than in Aβ+ MCI participants (14.3%) using CDR-

SOB. These differences might be explained by the fact that the CDR-SOB (range: 0-17) has 

less variation than the ADAS-Cog-13 scale (range: 0-85). 

Since the GBTM assumes that individuals within each trajectory subgroup started at 

the same value (zero variance around the intercept) and expressed the same pattern over time 

(zero variance around the slope), all individuals assigned to a trajectory have identical 

intercepts and slopes. This simplifies the explanatory aspect of the model because, in the 

absence of any intragroup variance, it could be sufficient to solely explain trajectory 

membership (Frankfurt et al., 2016). The Latent Class Growth Model (LCGM) and Growth 

Curve Model (GCM) were also applied to the to Aβ+ MCI data, but neither of these models 

converge due to negative variance in the Aβ+ MCI dataset. In fact, like in other research 

regarding trajectory data of cognitive aging and MCI (Ding et al., 2019; Koscik et al., 2020), 

the GBTM (Nagin and Odgers, 2010) was best suited to identify distinguishable trajectories. 

Our second major finding was that advanced age, the presence of the APOE ε4 

allele, a high amyloid SUVR, and hypometabolism were predictive of a fast decline, a finding 

that is consistent with previous studies showing that advanced age and hypometabolism are 

predictive of faster disease progression in patients with MCI (Jang et al., 2019; Landau et al., 

2012). A notable finding was that greater Aβ deposition predicted a faster decline in Aβ+ 

MCI patients. Several studies have demonstrated that Aβ deposition is reflective of early 

changes in AD (van Rossum et al., 2012). However, there are some debates regarding the 
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association of Aβ with disease stage, disease severity, and rate of cognitive decline (Hansson 

et al., 2006; Ingelsson et al., 2004; Jack et al., 2010). In fact, in the present study, when 

adding Aβ-related quantitative information to the prediction model, the R-square value 

increased from 0.39 (model 3) to 0.45 (model 5). Therefore, our finding seems to support that 

higher Aβ deposition is predictive of a more severe AD status. Another notable finding was 

that Aβ+ MCI participants carrying the APOE ε4 allele displayed a rapid cognitive decline 

that is more frequent that that of non-carriers and independent from of Aβ deposition levels 

and downstream markers. APOE ε4 is the most relevant genetic risk factor for AD and has 

been consistently associated with abnormal Aβ aggregation and deposition (Liu et al., 2013). 

However, our findings suggest that APOE ε4 may influence not only cognitive decline via 

unknown underlying mechanisms but also Aβ and other downstream mechanisms in Aβ+ 

MCI individuals.  

Despite that model 6 showed the highest prediction accuracy, the predictive factors 

added to this model may not be available in each clinical setting. For example, models 1 or 2, 

which consist of basic demographic variables and genotype data, might be more helpful in 

primary memory clinics. Similarly, models 3, 4, 5 or 6, which include brain imaging factors, 

could be exclusively used in tertiary hospitals where brain scans can be performed.  

The final major contribution of this study is the introduction of a model that can 

serve to predict and visualize the individual risk of developing AD dementia even in a 

relatively homogenous patient population with Aβ+ MCI. In the present study, we have 

visualized, for each predictor, both the risk and total scores to assess the predicted probability 

of belonging to a trajectory subgroup considering the set of predictors of an individual 

patient. Therefore, our model may easily obtain clinically valuable results while also allowing 

for a more intuitive interpretation of the results.  
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This study has several limitations. Firstly, serial magnetic resonance imaging (MRI) 

factors such as brain structural volume, as well as the potential presence of underlying 

diseases, including vascular risk factors, were not included. Secondly, to assess Aβ positivity, 

we used a quantitative SUVR cut-off rather than a visual interpretation. However, although 

visual assessment can be more easily used in clinical settings, the SUVR cut-off is more 

sensitive for predicting the probability of the risk of decline. Despite these limitations, our 

novel prediction model highlights the clinical utility and applicability of risk prediction for 

disease progression. 

 

5. Conclusions 

In summary, our analysis provides novel insights into the different cognitive 

trajectories among patients with Aβ+ MCI. The prediction model that was developed in this 

study could facilitate the classification of patients with Aβ+ MCI, which could be employed 

in future clinical trials researching the role of Aβ deposition in AD. 
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