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A B S T R A C T

Introduction: Volumetric biomarkers for Alzheimer disease (AD) are attractive due to their wide availability and
ease of administration, but have traditionally shown lower diagnostic accuracy than measures of neuropatho-
logical contributors to AD. Our purpose was to optimize the diagnostic specificity of structural MRIs for AD using
quantitative, data-driven techniques.
Methods: This retrospective study assembled several non-overlapping cohorts (total n = 1287) with publicly
available data and clinical patients from Barnes–Jewish Hospital (data gathered 1990–2018). The Normal Aging
Cohort (n = 383) contained amyloid biomarker negative, cognitively normal (CN) participants, and provided a
basis for determining age-related atrophy in other cohorts. The Training (n = 216) and Test (n = 109) Cohorts
contained participants with symptomatic AD and CN controls. Classification models were developed in the
Training Cohort and compared in the Test Cohort using the receiver operating characteristics areas under curve
(AUCs). Additional model comparisons were done in the Clinical Cohort (n = 579), which contained patients
who were diagnosed with dementia due to various etiologies in a tertiary care outpatient memory clinic.
Results: While the Normal Aging Cohort showed regional age-related atrophy, classification models were not
improved by including age as a predictor or by using volumetrics adjusted for age-related atrophy. The optimal
model used multiple regions (hippocampal volume, inferior lateral ventricle volume, amygdala volume, en-
torhinal thickness, and inferior parietal thickness) and was able to separate AD and CN controls in the Test
Cohort with an AUC of 0.961. In the Clinical Cohort, this model separated AD from non-AD diagnoses with an
AUC 0.820, an incrementally greater separation of the cohort than by hippocampal volume alone (AUC of 0.801,
p = 0.06). Greatest separation was seen for AD vs. frontotemporal dementia and for AD vs. non-neurodegen-
erative diagnoses.
Conclusions: Volumetric biomarkers distinguished individuals with symptomatic AD from CN controls and other
dementia types but were not improved by controlling for normal aging.

1. Introduction

Typical Alzheimer disease (AD)-specific biomarkers rely on in vivo

detection and quantification of amyloid-β and tau, AD's hallmark pro-
teins. These biomarkers are increasingly used to narrow the differential
diagnosis and refine the treatment of symptomatic patients in clinical
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practice (Rabinovici et al., 2019) based upon their appropriate use
criteria (Johnson et al., 2013; Shaw et al., 2018). Despite this increased
use, histological confirmation (the diagnostic reference standard) cur-
rently confirms an AD diagnosis for only 83% of AD patients at autopsy
(Beach et al., 2012). In clinical trials, biomarkers can improve accuracy,
utility, and cost effectiveness of screening, and can assess response to
investigational therapies (Jack et al., 2018; Sevigny et al., 2016;
Sperling et al., 2014). Their value is expected to further increase as AD-
modifying therapies are realized, creating a need and rationale for
population-level screening and an influx of patients requiring timely
diagnosis and treatment (Liu et al., 2017).

Established AD biomarkers require cerebrospinal fluid analyses or
positron emission tomography (PET) imaging, which are limited by
expense and inaccessibility. In addition, PET imaging exposes patients
to radioactivity and lumbar punctures may cause back pain, headache,
and bleeding (Duits et al., 2016). These issues highlight the need for
accessible, AD-specific biomarkers that can be applied to broad clinical
populations. The solution may lie in brain magnetic resonance imaging
(MRI), which is already standard of care in the United States for diag-
nostic evaluation of patients with new cognitive complaints
(Knopman et al., 2001).

Current MRI biomarkers match the high accuracy of PET and cer-
ebrospinal fluid markers in separating AD from unimpaired individuals
(Frisoni et al., 2010; Morris et al., 2016). However, MRI biomarkers
cannot maintain the high accuracy of amyloid biomarkers in cohorts of
patients with various causes of dementia (Ossenkoppele et al., 2018;
Wollman and Prohovnik, 2003). One thing likely impairing MRI-based
biomarkers is the confounding influence of age-related brain atrophy or
other undetected co-pathologies attributed to aging (Fotenos et al.,
2005). For example, the confounding influence of preclinical AD in
cohorts of cognitively normal (CN) older adults for other neuroimaging
and cognitive measures has been shown previously (Brier et al., 2014;
Hassenstab et al., 2016; Jack et al., 2014).

Taking this into account, we sought to optimize the diagnostic
specificity of structural MRIs for AD using quantitative, data-driven
techniques. Specifically, we considered whether individually adjusting
volumetric measures for age-related atrophy would improve volu-
metric-based AD biomarkers. We compared unadjusted AD classifica-
tion models to those using normal aging curves generated from CN
participants free from biomarker evidence of AD. These models were
validated in a research cohort with biomarker-confirmed AD and CN
individuals and in a large clinical cohort containing patients with var-
ious neurodegenerative dementing diseases (including AD) who un-
derwent MRI as part of their diagnostic evaluation for the cause of
dementia.

2. Methods

2.1. Participants

The 1287 participants in the Normal Aging (n = 383), Training
(n = 216), Test (n = 109), and Clinical (n = 579) Cohorts were
composed from research studies or clinical patient records (collected
1990–2018). All procedures in this retrospective study were HIPAA
compliant and approved by the Washington University Institutional
Review Board. Informed consent was waived for the Clinical Cohort and
gained for all others. Those not in the Clinical Cohort were from open
source datasets and have been reported in various previous publica-
tions; the analyses of this paper and the inclusion of the participants in
the Clinical Cohort are unique. All participants are described in Table 1,
and Supplemental Table S1 gives these demographics separated by data
source and diagnosis. All participants met the inclusion criteria de-
scribed in Supplemental Table S2, which at minimum included a clin-
ical assessment.

The Normal Aging Cohort was restricted to CN participants who had
a global Clinical Dementia Rating (CDR) of 0 (Morris, 1993) stable

across longitudinal follow-up, and were free of substantial AD pa-
thology as determined by a negative amyloid PET scan (defined in
Section 2.2 Imaging). See Supplemental Table S2 for full inclusion
criteria and Supplemental Figure S1 for distribution of ages. These
participants were sourced from Open Access Series of Imaging Studies 3
(OASIS) and the Dominantly Inherited Alzheimer Network (DIAN).
OASIS is an open-source dataset that is a retrospective compilation of
data for >1000 participants. OASIS data was collected across several
ongoing projects through the Knight Alzheimer Disease Research Center
over the course of 30 years and includes CN controls and AD patients at
various stages of impairment (LaMontagne et al., 2019). DIAN is a si-
milar open source dataset that includes a greater number of younger
controls due to its focus on dominantly inherited AD.

The Training and Test Cohorts contained CN and amyloid negative
controls as well as cognitively impaired (CDR > 0) participants with a
clinical diagnoses of AD and a PET scan indicating cerebral amyloidosis
(full inclusion criteria in Supplemental Table S2). Participants were
sourced from OASIS and the Alzheimer's Disease Neuroimaging
Initiative (ADNI). ADNI is another open source dataset that includes
several hundred healthy controls and AD patients at various stages of
impairment from multiple sites across the United States. Two-thirds of
the CN and symptomatic AD participants from these sources (not
overlapping with the controls in the Normal Aging Cohort) were ran-
domly assigned to the Training Cohort with the remaining one-third
becoming the Test Cohort. Random assignment was done separately for
the CN and AD participants to maintain equal distributions of AD di-
agnoses.

The Clinical Cohort drew from patients seen at the Washington
University Memory Diagnostic Center outpatient clinic in Saint Louis,
MO. Patients were split into symptomatic AD diagnoses and various
non-AD diagnoses (including CN). See Supplemental Table S2 for full
inclusion criteria. Patients listed separately as “Uncertain” (153/579)
did not have an etiologic cause of dementia indicated; without this,
they could not be used to test the classification models. The AD and
non-AD groups were also split into groups of more specific diagnoses
(Supplemental Table S3).

All participants underwent a clinical assessment conducted by ex-
perienced clinicians including a semi-structured interview with the
participant and a knowledgeable collateral source as well as a thorough
neurological examination (see Supplemental Table S2 for full inclusion
criteria). A clinical diagnoses of dementia was considered at the con-
clusion of each assessment, integrating results from the clinical as-
sessment and bedside measures of cognitive function (Day et al., 2017).
Dementia severity was classified using the participant's CDR in ac-
cordance with established scoring rules (Morris, 1993). Etiologic di-
agnoses of dementia conformed to diagnostic criteria in use in clinical
and research practices for AD (McKhann et al., 2011), dementia with
Lewy bodies (McKeith et al., 2017), frontotemporal dementia
(Rascovsky et al., 2011), and vascular cognitive impairment
(Skrobot et al., 2018). See Supplemental Table S3 for a breakdown of
specific diagnoses in the Clinical Cohort. Clinical diagnosis was made
blinded to amyloid status in the OASIS participants, but not in the ADNI
participants.

All CDRs and Mini Mental State Exams (MMSEs) (Folstein et al.,
1975) used in this study occurred within a year of MRI, and those
sourced from DIAN and ADNI all had a time difference of 0 days.
Participants sourced from OASIS had an average time difference of 99
days and the Clinical Cohort had an average time difference of 118
days.

2.2. Imaging

All volumetric T1-weighted images underwent regional tissue seg-
mentation with FreeSurfer 5.3 (freesurfer.net) using the Desikan-
Killiany atlas (Desikan et al., 2006). Regional volumes (cortical and
subcortical) underwent intracranial volume adjustment using a

L.N. Koenig, et al. NeuroImage: Clinical 26 (2020) 102248

2



regression approach (Buckner et al., 2004), which fits a line to each
region and the intracranial volume calculated by FreeSurfer. While
studies typically fit this line to their entire cohort, we used the Normal
Aging Cohort alone to mimic the conditions that would be used if the
tool were to be implemented into clinical practice, enabling reprodu-
cibility at the single-subject level. Volumes after intracranial volume
correction were summed across hemispheres and cortical thicknesses
(not corrected for intracranial volume per standard practice) were
averaged across hemispheres. For more specific imaging details see
Supplemental Table S4.

Amyloid PET imaging used Florbetapir ([18F]-AV45) or [11C]-
Pittsburgh compound B and was processed with an in-house pipeline
using Freesurfer-derived regions (PET Unified Pipeline, github.com/
ysu001/PUP) with a cerebellar cortex reference region. Partial volume
correction in order to address signal spillover was done with a regional
spread function (geometric transfer matrix) technique based on the
scanner point spread function (determined at each imaging site) and the
relative distance between regions (Su et al., 2015, 2013). We defined a
negative amyloid PET scan as having a mean cortical standard uptake
value ratio with regional spread function applied (SUVR rsf) < 1.42
(Centiloid < 16.4) for [11C]-Pittsburgh compound B-PET or SUVR
rsf < 1.19 (Centiloid < 20.6) for Florbetapir-PET. The mean cortical
SUVR rsf was defined as the average SUVR rsf from the precuneus,
prefrontal cortex, gyrus rectus, and lateral temporal regions (Su et al.,
2019). We used cutoffs determined individually for each tracer, as
opposed to a unified centiloid cutoff, since these individually estab-
lished cutoffs are likely more accurate due to the imperfect nature of
harmonization procedures such as centiloid conversion (see Supple-
mental Table S5 for centiloid conversion details). Further imaging de-
tails varied by cohort (Supplemental Table S4).

2.3. Normal aging curves

To describe age-related atrophy, normal aging curves were gener-
ated for each FreeSurfer region using the Normal Aging Cohort data.
For each cortical thickness and intracranial-corrected volume at each
age, the mean for each cortical thickness and intracranial-corrected
volume was calculated using a locally weighted scatter-plot smoother

regression and a smoothed sliding window of two years for standard
deviation. The Training, Test, and Clinical Cohorts were then adjusted
for age-related atrophy by transforming the volumes and cortical
thicknesses into z-scores using these age-specific means and standard
deviations (Fig. 1). The hemisphere-combined volumes and thicknesses,
with volumes adjusted for intracranial volume, are referred to as ‘un-
adjusted for age-related atrophy’. The unadjusted dataset that has un-
dergone the z-score adjusted described above is referred to as ‘adjusted
for age-related atrophy’. This adjustment for age-related atrophy
greatly reduced the correlation of volumetric data with age (examples
in Supplemental Table S6).

2.4. Region selection for AD classification

Volumetric measures that optimally predicted symptomatic AD re-
lative to CN controls were selected using the Training Cohort. For 1000
iterations, a random 50% sample of the Training Cohort was fit to a
least absolute shrinkage and selection operator logistic regression. All
regional volumes and cortical thicknesses, as measured by FreeSurfer,
participant age, sex, and scanner strength (1.5 or 3T), were included as
predictors (see Supplemental Fig. S2 for entire list). This regression
minimizes the sum of squared errors and has a bound on the sum of the
absolute values of the coefficients, which sets many coefficients to zero.
The variables not set to zero within each iteration were recorded, de-
termining the frequency each variable was selected. This process was
done using data adjusted with the normal aging curves and separately
using unadjusted data (volumes still corrected by intracranial volume).
The final region set included regions selected in over half the iterations
for both sets of data.

2.5. Development of classification models

All classification models in this study used a logistic regression
model (R package ‘stats’) fit to the Training Cohort to predict an AD
diagnosis. The Age model included only chronological age as a pre-
dictor. The Hippocampal Volume (HCV) model used only hippocampal
volume. The Select Atrophied Regions in Alzheimer disease (SARA)
model used the regions selected in the region selection process

Table 1
Demographics.

Normal aging cohort Training cohort Test cohort Clinical cohort – defined
diagnosis

Clinical cohort – uncertain
diagnosis

n 383 216 109 426 153
n by Data Source
DIAN 134 0 0 0 0
OASIS 249 136 77 0 0
ADNI 0 80 32 0 0
MDC 0 0 0 426 153

Diagnosis (% with symptomatic AD) 0 43.5 43.1 61.5 NA
Age (median) 18–88 (60) 57–88 (75) 57–86 (74) 46–88 (73) 55–87 (73)
Sex (% Men) 35.8 49.1 52.3 48.1 49.0
CDR [0,0.5,1,2,3] 383,0,0,0,0 122,43,44,5,2 62,17,26,4,0 50,235,97,26,0* 8,122,10,3,0*
MMSE (median) 24-30 (30)* 7-30 (28) 9-30 (28) 1-30 (20)* 1-30 (21)*
APOE (% with an E4 allele) 27.9 51.6* 39.4 NA NA
Amyloid mean cortical SUVR rsf – Centiloid

(median)
−9.34–19.0
(−0.880)*

−8.40–154 (14.0) −14.0–142 (11.4) NA NA

Race (% Caucasian) 91.2* 90.3 79.8 86.9 84.3
Education (years) (median) 9–22 (16)* 7–24 (16) 8–22 (16) Median completed college* Median completed college*

Table 1 presents the demographic information for all cohorts. The Clinical Cohort has been separated into those given either an AD or non-AD diagnosis vs. those
whose diagnosis was uncertain (and thus were not used to measure model accuracy).
A ‘*’ indicates missing data: 2 MMSEs, 124 Amyloids (all under age 45), and 6 Races from the Normal Aging Cohort; 1 APOE from the Training Cohort; 4 MMSEs, 18
CDRs, and 40 Educations from the Clinical Cohort – Defined Diagnosis; 1 MMSE, 10 CDRs, and 11 Educations from the Clinical Cohort – Uncertain Diagnosis
Abbreviations: AD – Alzheimer disease; ADNI – Alzheimer's Disease Neuroimaging Initiative (http://adni.loni.usc.edu); CDR – Clinical Dementia Rating; DIAN –
Dominantly Inherited Alzheimer Network (https://dian.wustl.edu); MDC – Memory Diagnostic Center (http://memoryloss.wustl.edu/), soon to be available as
OASIS-4; MMSE – Mini Mental State Exam; NA – Data Not Available; OASIS – Open Access Series of Imaging Studies – 3 (LaMontagne et al., 2019) (https://www.
oasis-brains.org); SUVR rsf – Standard Uptake Value Ratio (Regional Spread Function applied)
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described in Section 2.4. The HCVadj and SARAadj models differ from
HCV and SARA in that they use data that has undergone the z-score
adjustment to remove age-related atrophy, as described in Section 2.3,
while the HCV and SARA models use the unadjusted data (volumes still
corrected by intracranial volume). The models HCV+Age, SARA+Age,
HCVadj+Age, and SARAadj+Age added chronological age as an addi-
tional predictor. In this way, the HCVadj+Age and SARAadj+Age
models used age as a risk factor for AD, and separately to determine
age-specific means and standard deviations when normalizing age-re-
lated changes in brain volumes and cortical thicknesses.

Each models’ receiver operating characteristics area under the curve
(AUCs) were compared using the Delong method (DeLong et al., 1988)
with significance set to p < 0.003 (Bonferroni-corrected p < 0.05), and
confidence intervals computed using 2000 stratified bootstrap re-
plicates. Accuracy statistics, when reported, used thresholds de-
termined by the maximal Youden's J statistic within the Training Co-
hort (Youden, 1950).

3. Results

3.1. Participants

Table 1 details the demographics for each cohort, while Supple-
mental Table S1 breaks down demographics by data source and AD/
Non-AD diagnosis.

3.2. Normal aging curves

Fig. 1 displays the age-related atrophy observed in the Normal

Aging cohort, which is free of biomarker evidence of AD. Graphs of
other regions can be accessed at https://github.com/benzinger-icl/
SARA.

3.3. Region selection for AD classification

The hippocampal volume, inferior lateral ventricle volume, amyg-
dala volume, entorhinal cortical thickness, and inferior parietal cortical
thickness were selected in over half of the iterations in both the ad-
justed and unadjusted data and were thus used in all multi-region
(SARA) models. Unadjusted coefficients for all models are in Table S7.
Age and nucleus accumbens were additionally selected when using data
adjusted for age-related atrophy, while inferior parietal volume and
banks of the superior temporal sulcus volume were selected only when
using unadjusted data. Frequency of selection for all regions can be
found in Supplemental Fig. S2.

3.4. Classification models: impact of adjusting for age-related atrophy

AUCs for each model within the Test and Clinical Cohorts are shown
in Table 2; p-values for all comparisons are in Table 3. In the Test
Cohort, no significant differences were found between models using
adjusted and unadjusted data. In the Clinical Cohort, HCV+Age vs
HCVadj+Age, and SARA+Age vs SARAadj+Age similarly showed no
statistical difference in their AUCs, but HCV and SARA had higher AUCs
than their counterparts HCVadj (0.801 vs 0.743, p < 0.001) and SAR-
Aadj (0.820 vs 0.764, p < 0.001). Thus, our adjustment for age-related
atrophy did not improve classification ability within our cohorts and
instead lowered classification ability in models that did not include age.

Fig. 1. Examples of region-specific atrophy observed
in normal aging
Fig. 1 shows Hippocampal volume (1a) and superior
temporal thickness (1b) as representatives of the
normal aging curves used to adjust other participants’
volumes and cortical thicknesses for age-related
atrophy. The red line displays the estimated average
volumes. The red ribbon and blue line display the first
and second standard deviations from that average,
which is calculated locally. 1a additionally displays
two black dots representing how two hypothetical
participants at different ages could have different vo-
lumes but the same z-score after adjustment for age-
related atrophy. Standard deviation is fairly consistent
across the adult lifespan for both regions, but the
averages suggest increasingly rapid atrophy at later
ages for Hippocampal volume vs. a steady decline for
superior temporal thickne.
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Without reason to pursue the more complex processing required to
adjust for age-related atrophy, further analyses were limited to un-
adjusted models.

3.5. Classification models: Impact of age as a predictor

In the Test Cohort, HCV and SARA models showed no statistical
differences from their counterparts HCV+Age and SARA+Age

(Table 3), but did outperform the Age model (0.944 vs 0.675,
p < 0.001; and 0.961 vs 0.675, p < 0.001). In the Clinical Cohort, HCV
and SARA had higher AUCs than their counterparts HCV+Age and
SARA+Age (0.801 vs 0.792, p = 0.001 and 0.820 vs 0.799,
p < 0.001), but only SARA maintained a significantly higher AUC than
the Age model (0.820 vs 0.742, p = 0.002).

3.6. Classification models: Selecting a model

The AUCs of HCV and SARA were not significantly different from
each other within the Test or Clinical Cohorts (Table 3), but SARA's
AUC was numerically higher than HCV's in both cohorts (Table 2).
SARA was selected as the optimal model for this reason in addition to
being the only model significantly better than age alone in the Clinical
Cohort. Fig. 2 provides more detail on the probabilities of AD predicted
by SARA for the participants in the Test and Clinical Cohorts, as well as
accuracy measures such as sensitivity and specificity. The x-axes re-
present the possible output from the SARA model, where a 1.00 in-
dicates a predicted 100% probability of a symptomatic AD diagnosis.
The y-axes indicate the probability density function, which is a
smoothed histogram normalized to an area of 1 and allows comparison
of different sized groups. An example of how to read Fig. 2a is to take
the area under the curve of the CN line from x = 0 to 0.25. This is
approximately 0.62, indicating that 62% of the CN Controls in the Test
Cohort had a probability between 0 and 25%.

3.7. Classification models: Specific diagnoses in the clinical cohort

While models were compared using their ability to separate AD
from non-AD diagnoses, the heterogeneity of the Clinical Cohort al-
lowed us to examine more specific clinical diagnoses (groups defined in
Supplemental Table S3). For non-AD diagnoses, these included other
dementia types and non-dementia diagnoses that explained the cogni-
tive complaints of the patient. For AD diagnoses, this included sub-
groups of AD to test how the model behaved in atypical AD patients.
Fig. 3 displays the unique probability density functions for each of the
more specific etiologic diagnoses in the Clinical Cohort, with the AD
and non-AD diagnoses groups included for comparison. The AUCs for
each sub-group are in Supplemental Table S8, but small group sizes
prevented robust statistical analyses. Thus, the following is qualitative
rather than an assessment of p-values.

Fig. 3a, with more detail in Supplemental Table S8, demonstrates
that AD sub-groups have a high classification accuracy with only
slightly lower predicted probabilities in the early-onset AD (<65) and
AD variant (such as Posterior Cortical Atrophy) groups as compared to
typical (amnestic, late onset) AD. Fig. 3b indicates SARA was good at
distinguishing AD from the non-neurodegenerative diagnoses, in-
cluding mood and sleep disorders; in total AD vs. non-neurodegenera-
tive diagnoses had an AUC of 0.877 (95% Confidence Interval (CI):
0.833–0.922). Fig. 3c shows SARA was less able to separate AD from
other neurodegenerative diagnoses and had a combined AUC of 0.719
(95% CI: 0.640–0.799). Only frontotemporal dementia participants
(subtypes combined due to small n) approached the same level of se-
paration from AD as the non-neurodegenerative diagnoses.

The impact of using the multi-region SARA over the simple HCV
model also varied by diagnosis (Supplemental Table S8). SARA had
only a marginally larger AUC than HCV for separating Typical AD from
non-AD diagnoses (0.827 vs 0.819), but substantial improvements were
seen for separating AD variants from non-AD diagnoses (0.795 vs
0.697).

3.8. Classification models: MMSE and CDR in the clinical cohort

Fig. 4a shows the probability density plot of the Clinical Cohort
separated by participants’ MMSE, while Supplemental Fig. S3a sepa-
rates by CDR. MMSEs and CDRs were collected within one year of the

Table 2
AUCs for All Classification Models in Test and Clinical Cohorts.

Model: Test Cohort AUCs (95% CI) Clinical Cohort AUCs (95% CI)

Age 0.675 0.742
(0.572–0.778) (0.694–0.790)

HCV 0.944 0.801
(0.902–0.987) (0.756–0.846)

SARA 0.961 0.820
(0.925–0.997) (0.776–0.864)

HCV + Age 0.950 0.792
(0.909–0.991) (0.747–0.838)

SARA + Age 0.962 0.799
(0.924–0.999) (0.753–0.845)

HCVadj 0.948 0.743
(0.905–0.992) (0.693–0.792)

SARAadj 0.952 0.764
(0.911–0.993) (0.714–0.813)

HCVadj + Age 0.949 0.793
(0.908–0.991) (0.748–0.840)

SARAadj + Age 0.961 0.799
(0.925–0.997) (0.752–0.845)

Table 2 displays each model's AUC (for AD vs. non-AD diagnoses) in the Test
Cohort and Clinical Cohort along with its associated 95% CI. The AUC of an
ROC plot (not displayed) gives a measure of model performance that does not
depend on a specific cut-off or threshold. The various SARA models include
hippocampal volume, inferior lateral ventricle volume, entorhinal thickness,
amygdala volume, and inferior parietal thickness. X + Age indicates model X
with age added as a covariate; Xadj indicates Model X using volumes and cor-
tical thicknesses that have been adjusted for age-related atrophy.
Abbreviations: AD – Alzheimer disease; AUC – Receiver Operating
Characteristics Area Under the Curve; CI – Confidence Interval; HCV –
Hippocampal Volume; SARA – Select Atrophied Regions in Alzheimer disease

Table 3
Comparisons of Classification Models’ AUCs.

Test Cohort p-
value

Clinical Cohort p-
value

Impact of adjusting for age-related
atrophy

HCV vs HCVadj 0.77 <0.001
SARA vs SARAadj 0.32 <0.001
HCV+Age vs HCVadj+Age 0.45 0.48
SARA+Age vs SARAadj+Age 0.87 0.88
Impact of Age as a Predictor
HCV vs HCV+Age 0.20 0.001
SARA vs SARA+Age 0.87 <0.001
HCV vs Age <0.001 0.02
SARA vs Age <0.001 0.002
Single vs Multi Region Model
HCV vs SARA 0.18 0.06

Table 3 states the p-values for the Delong tests comparing AUCs in order to
select the optimal classification model. Significant differences (after accounting
for multiple comparisons) are bolded. The SARA models include hippocampal
volume, inferior lateral ventricle volume, entorhinal thickness, amygdala vo-
lume, and inferior parietal thickness. X + Age indicates model X with age
added as a covariate; Xadj indicates Model X using volumes and cortical thick-
nesses that have been adjusted for age-related atrophy.
Abbreviations: AUC – Receiver Operating Characteristics Area Under the Curve;
HCV – Hippocampal Volume; SARA – Select Atrophied Regions in Alzheimer
disease
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MRI (average time difference of 118 days). The strong relationship
between level of impairment and SARA's predicted probability of
symptomatic AD reflects an alignment between an individual's level of
impairment and atrophy in the regions used in SARA (atrophy indicated
by a model output closer to one). Despite this strong relationship, SARA
maintained a fairly high AUC (0.773) within the group of participants
with MMSEs 26–29 (n = 154, Fig. 4b). This indicates the SARA model
had good classification ability beyond predicting level of impairment.
This was similarly true for participants with a global CDR of 0.5, which
had an AUC of 0.782 (n = 235, Supplemental Fig. S3b). This pattern
persisted even when considering only those whose MMSE and CDR
occurred within 30 days of their MRI, with AUCs of 0.806 (n = 63) and
0.771 (n = 101), respectively.

3.9. SARA as a possible clinical tool

To create an example of how SARA could be used in clinical prac-
tice, we developed multiple thresholds reflecting 80% and 90% sensi-
tivities and specificities. Fig. 5a shows the readout a clinician might be
given for an individual patient and Fig. 5b lists the percent of the
clinical cohort that fell into each category. Over half of the participants
who had uncertain diagnoses were given a score within the 90%

sensitivity/specificity ranges for AD or non-AD diagnoses, indicating it
would be a valuable tool to support clinical decision making.

4. Discussion

We demonstrated that volumetric models have excellent classifica-
tion abilities that would aid in diagnosing symptomatic AD in various
circumstances. We did observe region-specific atrophy even in our
unique cohort of CN participants known to be without preclinical AD.
However, controlling for this age-related atrophy did not improve
classification. Doing so actually lowered accuracy within the Clinical
Cohort if age was not included as an additional predictor. This re-
inforces the idea that age is a strong predictor of AD dementia and
implies that these models require age or age-related atrophy to main-
tain the highest levels of accuracy. Thus, age-related atrophy may either
convey increased risk for development of a neurodegenerative de-
menting illness, or, more likely, age-related atrophy may act as a proxy
for age. Either way, total atrophy appears to be more predictive than
atrophy specifically attributable to AD.

Our data-driven region selection approach, optimized to FreeSurfer,
saw a specific pattern of atrophy in AD that overlapped with the medial
temporal lobe regions reported in many previous papers. We evaluated

Fig. 2. Distribution of predicted probabilities and
accuracy statistics for the SARA model
Fig. 2a and b display the distribution of the SARA
model's output for the Test Cohort and Clinical Co-
hort, respectively. Both 2a and 2b show good se-
paration between the AD and non-AD groups. 2b
has slightly less separation and additionally displays
the Uncertain Diagnoses group – those that were
unable to be classified into the AD or Non-AD
groups. 2c displays more traditional diagnostic test
measures for SARA using a cutoff of 0.381 (derived
using the maximal Youden's J statistic in the
Training Cohort) along with the 95% CIs.
Abbreviations: AD – Alzheimer disease; CI – Con-
fidence Interval; SARA – Select Atrophied Regions
in Alzheimer disease
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if using these regions would improve classification of AD. While the
single region HCV and multi-region SARA models did not show statis-
tically different AUCs, other evidence suggested SARA was the stronger
classifier. First, in both the Test and Clinical Cohorts, the value of the
AUC was higher in SARA than HCV. Second, in the Clinical Cohort, it
was only SARA that had an AUC statistically higher than the model
using age alone, without any volumetric measures. Third, the pattern of
higher AUCs in SARA than in HCV was seen for most specific diagnostic

group within the Clinical Cohort.
Our results suggest SARA has the greatest diagnostic specificity

when distinguishing AD from frontotemporal dementia or from non-
neurodegenerative diagnoses (e.g. mood disorders, sleep disorders, CN
individuals). The high performance in frontotemporal dementia is
especially noteworthy. FDG-PET is recommended for patients with AD
vs. frontotemporal dementia diagnoses (Silverman et al., 2001), but
PET scans are limited in diagnostic sensitivity and by insurance

Fig. 3. Distribution of Predicted
Probabilities for the SARA Model for
Specific Diagnoses in the Clinical Cohort
Figure 3 displays the distribution of the
SARA model's output in the Clinical Cohort
using more specific diagnoses than the AD
and Non-AD binary from Figure 1b.
Figure 3a displays the specific AD diagnoses
along with the combined Non-AD Diag-
noses line taken from Fig. 2b. Fig. 3b dis-
plays the specific Non-AD diagnoses that
are non-neurodegenerative in nature and
overlays the combined AD Diagnoses line.
3c displays the specific Non-AD diagnoses
that are neurodegenerative in nature and
overlays the combined AD Diagnoses line.
Note the change in y-axes scale from Fig. 2
due to the tight distribution of CN patients
in 3b.
Abbreviations: AD – Alzheimer disease; CN
– Cognitively Normal; SARA – Select Atro-
phied Regions in Alzheimer disease
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coverage (Medicare will cover it, but often private insurance will not),
availability, and cost. This AD vs. frontotemporal dementia differential
is often considered, especially in younger patients, and highly available
biomarkers would help identify the correct prognosis and treatment for
these patients. The Clinical Cohort had the lowest diagnostic specificity
when distinguishing AD from other neurodegenerative disorders. This
was likely due to the disorders impacting overlapping regions and pa-
tients having co-incident diagnoses. Comorbidities increase with age
and can include multiple neurodegenerative conditions, such as con-
current AD and dementia with Lewy bodies (Irwin and Hurtig, 2018).

Another way SARA reflects clinical reality is the correlation be-
tween atrophy and level of impairment measured by MMSE and global

CDR. With this in mind, we evaluated the diagnostic utility of SARA
beyond predicting impairment and found high classification ability in
the Clinical Cohort even when limited to early symptomatic partici-
pants (CDR 0.5 or MMSE 26–29). These patients are also the ones for
whom additional biomarkers would likely be most useful. These find-
ings indicate SARA is not simply acting as a proxy for MMSE or CDR,
but provides additional diagnostic information.

Strengths of this study include the large overall sample size of al-
most 1300 participants. We benefited from having research cohorts
with participants diagnosed with the highest possible accuracy outside
of postmortem testing, as well as a heterogeneous group of real-world
patients seen at a dementia clinic. By using these cohorts in

Fig. 4. MMSE Aligns, but is not equivalent, to predicted probability in SARA
Figure 4a displays the distributions of the SARA model's predicted probability of AD for all participants (including Uncertain Diagnoses) in the Clinical Cohort,
grouped by MMSE score instead of by diagnosis. Note the change in y-axes scale due to the tight distribution of MMSE = 30 participants. 4b displays the distribution
of SARA model's predicted probability of AD as in Fig. 2b, but only includes patients with MMSE scores of 26–29 (n = 154).
Abbreviations: AD – Alzheimer disease; AUC – Receiver Operating Characteristics Area Under the Curve; MMSE – Mini Mental State Exam; SARA – Select Atrophied
Regions in Alzheimer disease
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combination, we were able to demonstrate that our model approaches
the sensitivity and specificity of amyloid PET and cerebrospinal fluid
biomarkers. Strengths of the SARA algorithm include that it is fairly
simple and transparent (unlike machine-learning algorithms), making it
easier for doctors and patients to trust, will be freely available, uses MRI
scans that are non-invasive and often already collected for dementia
patients, and has been shown to work in both research and clinical
populations. SARA and the Clinical Cohort's data will be made available
online at https://github.com/benzinger-icl/SARA and https://www.
oasis-brains.org/.

While our results indicate the potential usefulness of quantitative
volumetric biomarkers, there are some limitations of this study. Though
our cohorts had fairly good representation of African–Americans, the
general lack racial and socioeconomic diversity may bias our models.
Volumetric classification may be further improved if models, including
the regions used, are optimized to specific non-AD diagnoses and/or
incorporate longitudinal scanning. Our use of a single set of normal
aging curves and a binary AD/non-AD prediction model was due to our
limited numbers, despite surpassing the sample size of many neuroi-
maging studies. The threshold used in the reported accuracy statistics
was based upon the Training Cohort and has not been optimized to a

clinical setting. This optimization would need to be validated in a se-
parate cohort, ideally with histopathologically-confirmed diagnoses.
This confirmation was not available for the Clinical Cohort and mis-
diagnosis may have caused an under-estimation of model accuracy. An
important question for future work to address is the overlap of AD and
vascular disease, which we were unable to address due to the diagnostic
difficulty and limited presence of vascular problems in our research
cohorts.

5. Conclusions

In summary, we have shown that an MRI-based volumetric classi-
fication model can be used to separate AD from CN controls and other
dementia types. Controlling for age-related atrophy did not improve our
models, and lowered performance if age was not also included as a
predictor. SARA may be useful as a first step for selecting symptomatic
AD participants for entrance into clinical trials or as an adjunct to the
diagnostic algorithm when a clinical differential diagnosis includes AD
vs. frontotemporal dementia or non-neurodegenerative conditions.

Fig. 5. Possible Use of SARA in a Clinical Setting
Fig. 5a displays how the SARA model might be used by a clinician for a single patient, including a description of the model and multiple thresholds. The patient's
specific probability of having AD as predicted by SARA is given (4%), as well as a statement reflecting that the sensitivity at that threshold is >90%, indicating both a
measure of atrophy and the reliability of that measure. Fig. 5b displays the proportion of participants in the Clinical Cohort that fell into each bin of ranges of scores
output from SARA. The next column shows the Clinical Cohort participants with uncertain diagnoses, with the distribution of scores suggesting that SARA would have
helped provide a more certain diagnoses for the majority of the participants.
Abbreviations: AD – Alzheimer disease; SARA – Select Atrophied Regions in Alzheimer disease
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