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Genome-wide association studies have demonstrated that 
polygenic risks shape Alzheimer’s disease (AD). To eluci-
date the polygenic architecture of AD phenotypes at a cellu-
lar level, we established induced pluripotent stem cells from 
102 patients with AD, differentiated them into cortical neu-
rons and conducted a genome-wide analysis of the neuronal 
production of amyloid β (Aβ). Using such a cellular dissec-
tion of polygenicity (CDiP) approach, we identified 24 sig-
nificant genome-wide loci associated with alterations in Aβ 
production, including some loci not previously associated 
with AD, and confirmed the influence of some of the corre-
sponding genes on Aβ levels by the use of small interfering 
RNA. CDiP genotype sets improved the predictions of amy-
loid positivity in the brains and cerebrospinal fluid of patients 
in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
cohort. Secondary analyses of exome sequencing data from 
the Japanese ADNI and the ADNI cohorts focused on the 24 
CDiP-derived loci associated with alterations in Aβ led to the 
identification of rare AD variants in KCNMA1.

An abundance of genetic research on Alzheimer’s disease (AD) 
has provided plentiful evidence that late-onset AD has heritability 
estimates of 56–79%1. After the advance of genomic cohort research 
and establishment of the human genome database, genome-wide 
association study (GWAS) has enabled us to investigate the genetic 
backgrounds associated with diverse human traits2 and speci-
fied more than 50 loci as AD-associated genes3. Although previ-
ous GWASs of onset age, brain atrophy or biomarkers in serum or 
cerebrospinal fluid (CSF)4–9 have revealed the genetic background, 
cellular polygenicity behind the disease pathomechanism has as 
yet not been clearly elucidated10,11,16. In this study, we conducted 
genome-wide analysis by using amyloid β (Aβ), produced from 
induced pluripotent stem cell (iPSC)-derived cortical neurons in 
an AD cohort, as a pathological trait. We then conducted cellular 

dissection of polygenicity (CDiP) to reveal a complex pathomecha-
nism in a neuron-specific manner (Fig. 1a).

To analyze the AD pathology of neurons, we established iPSCs 
from patients in a sporadic AD (SAD) cohort (N = 102) (Fig. 1b,c 
and Extended Data Fig. 1a,b) and established iPSCs showing nor-
mal karyotype and in vitro ability to generate all three embry-
onic germ layers as well as X-inactive specific transcript (XIST) 
similar to that of human embryonic stem cells12 (Supplementary  
Table 1). We directly differentiated all iPSC clones into cortical neu-
rons by forced expression of the human NGN2 gene (Extended Data  
Fig. 1c–f)13. In this differentiation protocol, exogenous NGN2 was 
well suppressed after day 8 and Aβ phenotypes were constant from 
days 8 to 14. The complex AD pathology consists of various kinds 
of molecules or biological events like Aβ and tau, which can be can-
didates of GWAS traits. We selected Aβ for a pathological trait in 
cortical neurons because Aβ is a triggering molecule in the initia-
tion of a long-term pathological cascade of AD, resulting in demen-
tia14,15. We quantified Aβ40 and Aβ42, as protective and toxic Aβ, 
respectively and the Aβ42/40 ratio in the culture supernatant of 
SAD cortical neurons. The APP and PSEN1 genes, which play a cen-
tral role in the Aβ production pathway, are known to affect neural 
development16–19 and neural differentiation propensity from human 
iPSCs20. Therefore, when evaluating Aβ among different patients’ 
iPSCs, it is important to maintain homogenous purity of neuronal 
differentiation and to normalize variability in the number of neu-
rons per well. The direct differentiation method used in this study 
results in uniform and high-purity cortical neurons (Extended Data  
Fig. 1d–f), but evokes variability in neuronal density among patients 
due to the stress of direct conversion from day 0 to day 5 (Extended 
Data Fig. 1c,d) and this variability will affect the amount of Aβ. To 
normalize the variability in the number of neurons per well, we used 
the total protein concentration extracted from the neurons in the 
whole well, as changes in protein concentration linearly reflected 
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Fig. 1 | CDiP using induced cortical neurons from human iPSCs. a, Experimental design for polygenic analysis to investigate the correlation between 
genotype and disease phenotype in a cell-type-specific manner. b, Flowchart for patient enrollment and establishment of iPSCs. c, Variable Aβ phenotypes 
in cortical neurons differentiated from AD iPSC (representative images from three independent experiments for both iPSCs and neurons) cohort were 
quantified and compared among different patients with AD. Scale bars, 200 μm for iPSCs and 50 μm for cortical neurons. d, GWAS for CDiP was 
conducted to identify the genetic loci related to the Aβ42/40 ratio. Linear association between SNPs and the Aβ42/40 ratio was analyzed. Manhattan 
plot showing observed –log10 P of all tested SNPs with Aβ42/40 ratio (y axis). Chromosomes are presented on the x axis. The red line corresponds to a 
genome-wide Bonferroni-corrected significance threshold of P < 5 × 10−8. e, Knockdown of identified genes altered the Aβ42/40 ratio. Aβ phenotypes were 
analyzed after siRNA treatment, which targeted identified genes in CDiP, Aβ-related genes, including APP and BACE1. Non-target siRNA was used as a 
negative control. JNJ-40418677 1 μM, second generation of γ-secretase modulator to suppress Aβ42/40 ratio, was used as a positive control for altered 
Aβ phenotypes. The x axis shows the alteration level in Aβ42/40 ratio compared with the non-treatment control (n = 2 biological replicates). Shown is 
mean ± s.d. *P < 0.05; **P < 0.01; ***P < 0.005; ****P < 0.001 (one-way analysis of variance with uncorrected Fisher’s least significant difference).
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the number of neurons per well in different independent clones or 
patients (Extended Data Fig. 2a–d). To investigate the correlation 
with genomic information, we investigated the correlation of Aβ 
species with APOE genotypes (Extended Data Fig. 3a–d), which is 
the strongest genetic risk for AD. APOE ε4 genotypes were modestly 
correlated with the Aβ42/40 ratio (Extended Data Fig. 3c), as proven 
by other modalities21–23 and was not correlated with the amount of 
Aβ (Extended Data Fig. 3a,b) nor protein concentration (Extended 
Data Fig. 3d). Previous reports using genetic modification tech-
niques have also shown that APOE4 alleles affect Aβ phenotypes 
of iPSC-derived neurons with an identical genetic background24,25. 
However, alteration of Aβ phenotypes in different SAD populations 
with APOE3/3 versus 4/4 (1.09-fold change in the present study) 
was less than that by genome-correction (approximately 1.2-fold or 
twofold change in previous reports) (Extended Data Fig. 3c). We 
also analyzed the correlation between quantified Aβ phenotypes 
in cortical neurons and clinical status, including onset age and sex. 
The amount of Aβ species and ratio were not correlated with onset 
age (Extended Data Fig. 4a–c) or sex (Extended Data Fig. 4d–f). 
These results indicate that Aβ phenotypes of SAD were affected by 
the diverse polygenic architecture of SAD. Therefore, we conducted 
a genome-wide investigation using Aβ in SAD cortical neurons for 
a pathological trait of AD.

To understand the polygenicity of Aβ, we conducted genome-
wide analysis with the Aβ42/40 ratio in cortical neurons as a 
pathological trait (Extended Data Fig. 5a). Statistical analyses were 
adjusted for the APOE status and the false discovery rate for mul-
tiple testing was applied. The overall results did not show a large 
deviation from what was expected by chance (λ = 0.9659), meaning 
that there was no evidence for bias or inflation of our test statistics 
due to population stratification (Extended Data Fig. 5b). To esti-
mate the effect of APOE genotypes, we conducted CDiP without 
adjustment for APOE genotypes at first (Extended Data Fig. 5c). 
As a result, the P value of rs429358 (T/C, locus of APOE ε4) was 
0.794, which was not statistically significant. APOE ε4 has a strong 
risk for clinical AD, but CDiP showed that the Aβ42/40 ratio in a 
single-cell-type culture of iPSC-derived neurons is mainly affected 
by other complex gene sets than solely APOE ε4. Therefore, we 
conducted CDiP with adjustment for APOE genotypes and identi-
fied the genotypes of 24 single-nucleotide polymorphisms (SNPs) 
and related loci (P < 5 × 10−8 or loci containing >10 SNPs with 
P < 5 × 10−5), which are related to the altered Aβ42/40 ratio (Fig. 1d 
and Supplementary Table 2). The SNP with the highest genome-
wide association was identified on chromosome 11 for rs34033747, 
an intronic SNP in DENN Domain Containing 2B (DENND2B) 
(P = 1.91 × 10−9) (Table 1). Five loci and related genes, including 
CUL1, QRFP, CTNNA3, DAB1 and DCC, were known to be asso-
ciated with the Aβ production26–31. Further, eight loci and related 
genes, including MAGI1, TMTC1, TRPM1, KCNMA1, DAB1, 
CPXM2, ROBO2 and ANO3, have been reported as AD-related loci 
in clinical GWASs32–36 or as clinical biomarkers37–39. Twelve loci and 
related genes were new as Aβ- or AD-related genes (Supplementary 
Table 3). In addition, most of the identified genes are expressed 
in the brain (Genotype-Tissue Expression (GTEx) portal, https://
gtexportal.org/home/) and the expression patterns of 19 genes are 
highly expressed in neurons (Brain RNA-Seq portal, https://www.
brainrnaseq.org/)40 (Supplementary Table 3). Unbiased pathway 
analysis41 identified ‘calcium signaling pathway’ as the top canonical 
pathway (P = 2.51 × 10−5) (Extended Data Fig. 5d). These networks 
are known to alter the Aβ metabolism22,42. These results proved that 
SNPs and related genes identified by the presented analysis of poly-
genic architecture contribute to the Aβ42/40 ratio and Alzheimer’s 
pathology in cortical neurons as a cell-type-specific trait for AD 
pathology. In addition, as p231-tau, phosphorylated tau at threo-
nine-231, is a sensitive marker for the diagnosis or tracing progres-
sion of AD43,44, we quantified p231-tau/total tau ratio (p231-tau 

ratio) to apply p231-tau ratio to CDiP. APOE ε4 genotypes, sex and 
onset age of AD were not correlated with p231-tau ratio (Extended 
Data Fig. 6a–c). We conducted CDiP by using p231-tau ratio as the 
trait (Extended Data Fig. 6d,e) with or without adjustment for the 
APOE genotypes, we could determine the SNPs and related loci 
(P < 5 × 10−5) (Supplementary Tables 4 and 5). The lowest SNP P 
value was for rs6888116 (P = 1.24 × 10−6) at the TNFAIP8 locus, an 
inflammation-related molecule (Supplementary Table 4).

To prove the direct interaction between Aβ phenotype and the 
identified 24 genes in CDiP, we quantified Aβ species during knock-
down of the identified genes (Fig. 1e and Extended Data Figs. 7a 
and 8a–c). When suppressing the expression of amyloid precur-
sor protein (APP) or β-site APP cleaving enzyme 1 (BACE1), key 
components in Aβ production, the amounts of Aβ were decreased 
as expected (Extended Data Fig. 8a,b). Knockdown of 8 among 24 
genes, identified in CDiP, significantly altered the Aβ42/40 ratio 
(Fig. 1e). Especially, we focused on CTNNA3, ANO3 and CSMD1, 
which are the top three target genes with the largest reduction in 
Aβ42/40 ratio. Regarding the Aβ amount, knockdown of 23 among 
24 genes, identified in CDiP, altered the amount of Aβ42 or Aβ40 
(Extended Data Fig. 8a,b). Before selecting genes to focus on, we 
quantified the protein concentration after short interfering RNA 
(siRNA) treatment because the altered density of neurons must 
affect the amount of Aβ42. As a result, we found that knockdown 
of QRFPR, INFLR1, ZNRF2, ROBO2, DCC and APP reduced 
total protein concentration, as previously reported31,45–47 (Extended 
Data Fig. 8c) and thus we excluded ZNRF2, INFLR1, DCC and 
APP from the latter interpretation for the altered amount of Aβ42. 
After that, we focused on ZFPM2, TMTC1 and KCNMA1, which 
are the top three target genes with the largest reduction in the  
amount of Aβ42.

To narrow down the potential target of knockout therapy, we 
need to select genes whose expression is elevated in the neurons 
of AD brains. To examine the expression status of focused genes 
in AD neurons, we utilized the single-cell-based transcriptome 
data of the cortex of six AD brains and six control brains, which 
provide the transcriptome data for individual cell types, including 
neurons, astrocytes, oligodendrocyte progenitor cells, oligoden-
drocytes, microglia and endothelial cells48. We plotted the aver-
aged expression of focused genes, including CTNNA3, ANO3 and 
CSMD1 for the Aβ42/40 ratio, ZFPM2, TMTC1 and KCNMA1 for 
Aβ42, specifically in neurons (Extended Data Fig. 8d,e) and found 
that expression of CTNNA3, ANO3 and KCNMA1 was higher in 
AD brains. Taken together, we concluded that CTNNA3 and ANO3 
for the Aβ42/40 ratio and KCNMA1 for the amount of Aβ42 could 
be potential therapeutic targets of AD (Extended Data Fig. 8f). The 
encoded protein of CTNNA3 plays a role in cell–cell adhesion and 
mutation in CTNNA3 causes familial arrhythmogenic right ven-
tricular dysplasia49, caused by mishandling of electrolytes such as 
potassium and calcium. The encoded protein of KCNMA1 consists 
of voltage and calcium-sensitive potassium channels (KCa1.1) that 
regulate smooth muscle tone and neuronal excitability50. KCa1.1 is 
known as a target of cromolyn51, notably having been tested in phase 
III trials for AD52. The encoded protein of ANO3 is reported to have 
functions in endoplasmic reticulum-dependent calcium signaling 
and ANO3 mutation causes familial dystonia type 24 via abnormal 
excitability of neurons53. From these results, identified therapeutic 
targets may be involved in calcium handling and excitability, an 
important pathway for Aβ modulation42,54. In summary, we dis-
sected the complex cell types in AD into cortical neurons and con-
ducted genome-wide analysis by setting neuron-specific Aβ and tau 
phenotypes as pathological traits of AD. As a result, CDiP revealed 
genotype sets partially contributing to the polygenic architecture 
behind the disease pathomechanism of AD.

Next, we assessed the analogy between in vitro datasets and  
real-world data consisting of positron emission tomography (PET) 
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imaging for brain Aβ deposition of patients who provided the 
peripheral blood mononuclear cells (PBMCs) for iPSC establish-
ment in this study. We analyzed the correlation between quanti-
fied Aβ phenotypes in cortical neurons and brain Aβ deposition 
as measured by Pittsburgh Compound-B (PiB)-PET imaging55,56 
(Extended Data Fig. 9a). However, neither age at onset nor Aβ phe-
notypes were correlated with brain Aβ deposition (Extended Data 
Fig. 9b–e). From these facts we confirmed that the simple quan-
tified disease phenotypes without genetic information could not 
reflect real-world data. Therefore, we examined whether, by using 
these genotype sets, we could predict real-word big data from inde-
pendent AD cohorts. We utilized the database of the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI)57–59, including genome-
wide genotypes, brain Aβ deposition (AV45-PET), CSF Aβ42, 
CSF total tau (t-tau) and CSF phosphorylated tau (p-tau). First, we 
attempted to predict the positivity of brain Aβ deposition by using 
only covariates consisting of age, sex, genotype of APOE-ε4 allele 
or covariates plus genotype sets. We established machine-learning 
models to predict the positivity of brain Aβ deposition by using 
only covariates consisting of age, sex, genotype of APOE-ε4 allele 
or covariates plus identified genotype sets. By using trained models, 
we attempted to predict brain Aβ and compared the area under the 
curve (AUC) between two different models. The AUC by covari-
ates plus genotype sets (AUC = 0.76) was statistically higher than 
that for only covariates (AUC = 0.66) (Fig. 2a). Similarly, covariates 
plus genotype sets could predict the decrease in CSF Aβ42 with sig-
nificantly higher accuracy compared to only covariates (Fig. 2b). 
However, when predicting CSF t-tau or CSF p-tau, there was no sig-
nificant difference between the AUCs of covariates and covariates 

plus genotype sets (Fig. 2c,d). Collectively, with the genotype sets 
identified by CDiP, we could predict real-world clinical data of AD.

To confirm the further applicability of the system to real-world 
clinical data, we examined whether the identified gene sets shaped 
SAD. We examined the relevance of the genes identified in the cur-
rent study as rare variants, which are known to be low frequency 
but minor factors in the development of AD. We examined the rare 
variants in the identified loci using genome-wide exome data from 
the J-ADNI60 (Extended Data Fig. 9f). We investigated the rare vari-
ants in 24 gene loci, in association with the Aβ42/40 ratio, by inves-
tigating exome data from healthy donors (n = 152) and patients with 
SAD (n = 255). Rare variants in KCNMA1 (P = 0.032; odds ratio 
(OR), 1.45) showed a relationship with AD (Supplementary Table 6 
and Supplementary Data 1). To confirm the reproducibility of rare 
variants in different cohorts and different ethnicities, we conducted 
a meta-analysis to investigate rare variants in 24 gene loci and we 
identified rare variants in KCNMA1 loci (P = 0.010; OR, 1.49) again 
(Table 2 and Supplementary Data 1 and 2) by meta-analysis of 
J-ADNI and ADNI (Extended Data Fig. 9f). These results indicate 
that identified gene sets are applicable for elucidating predisposing 
factors for the development of SAD.

In the current research, risk SNPs, genes in which SNPs locate 
and molecular pathways affecting the Aβ production in cortical 
neurons were identified. In fact, 5 of the 24 genes, namely TMTC1, 
CTNNA3, KCNMA1, CPXM2 and ANO3, identified by CDiP, were 
consistent with the reported results of a clinical genome-wide study, 
which is based on clinical data, with disease onset or brain Aβ 
deposition (summarized in Supplementary Table 3). This advantage  
may stem from the fact that we used a homogeneous population of 

Table 1 | List of identified SNPs and related loci, based on Aβ42/40 ratio in cortical neurons

Chr position (bp) dbSNP ID β s.e.m. Minimum P value Allele Gene name Gene ID

11 8853774 rs34033747 2.55 × 10−2 3.84 × 10−3 1.91 × 10−9 C/T DENND2B (ST5) 6764

3 65873820 rs58687721 1.92 × 10−2 2.89 × 10−3 1.97 × 10−9 T/G MAGI1 9223

7 148438804 rs11974639 1.57 × 10−2 2.53 × 10−3 1.26 × 10−8 C/T CUL1 8454

13 108015726 rs75174938 1.24 × 10−2 2.01 × 10−3 1.65 × 10−8 G/A FAM155A 728215

13 103486018 rs76029744 2.16 × 10−2 3.57 × 10−3 2.63 × 10−8 A/T BIVM-ERCC5 100533467

8 4801168 rs75778595 2.73 × 10−2 4.55 × 10−3 3.45 × 10−8 G/A CSMD1 64478

12 29790399 rs10843457 9.36 × 10−3 1.61 × 10−3 7.98 × 10−8 T/C TMTC1 83857

8 106566606 rs34823616 3.23 × 10−2 5.62 × 10−3 1.04 × 10−7 T/C ZFPM2 23414

5 41442044 rs318065 1.66 × 10−2 2.96 × 10−3 1.80 × 10−7 T/C PLCXD3 345557

4 122249973 rs6821123 2.55 × 10−2 4.68 × 10−3 3.98 × 10−7 C/T QRFPR 84109

7 148530294 rs10245290 1.78 × 10−2 3.30 × 10−3 4.85 × 10−7 T/C EZH2 2146

10 67784976 rs10996833 2.47 × 10−2 4.70 × 10−3 8.74 × 10−7 A/G CTNNA3 29119

6 105721926 rs72938040 2.43 × 10−2 4.75 × 10−3 1.66 × 10−6 A/G PREP 5550

15 31294343 rs12898290 2.91 × 10−2 5.77 × 10−3 2.19 × 10−6 A/T TRPM1 4308

10 78859025 rs80058374 7.81 × 10−3 1.57 × 10−3 2.78 × 10−6 T/C KCNMA1 3778

1 24495722 rs4649197 9.86 × 10−3 2.03 × 10−3 4.76 × 10−6 A/G IFNLR1 163702

7 30370786 rs11974360 1.08 × 10−2 2.23 × 10−3 5.12 × 10−6 A/G ZNRF2 223082

1 58715824 rs117567026 1.52 × 10−2 3.20 × 10−3 6.69 × 10−6 C/G DAB1 1600

10 125679317 rs72631124 1.35 × 10−2 2.92 × 10−3 1.09 × 10−5 G/A CPXM2 119587

9 19642563 rs16937677 9.40 × 10−3 2.05 × 10−3 1.36 × 10−5 G/A SLC24A2 25769

3 77035984 rs67172613 1.73 × 10−2 3.80 × 10−3 1.60 × 10−5 T/C ROBO2 6092

18 50295649 rs28592006 1.17 × 10−2 2.62 × 10−3 2.12 × 10−5 C/G DCC 1630

11 26600213 rs61877058 2.20 × 10−2 4.93 × 10−3 2.14 × 10−5 G/A ANO3 63982

4 147199809 rs60367087 2.13 × 10−2 4.87 × 10−3 3.15 × 10−5 C/T SLC10A7 84068

Chr, chromosome; dbSNP ID, dbSNP accession code; allele, reference allele/minor allele; gene ID, NCBI Gene identifier
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cortical neurons, a main cell type serving as resources for Aβ pro-
duction. The genes (Table 1) newly identified in this study may play 
a pivotal role in AD pathogenesis as well as represent potential bio-
markers and candidates for therapeutic targets.

To expand the presented systems, other kinds of neuronal phe-
notypes in AD pathology may be applicable to CDiP to identify 
the genetic background specific to each trait, such as synaptic loss, 
neuronal death, drug response and vulnerability to environmental 
stresses. In addition, new combinations of variable cell types such 
as glial cells61 and cell-type-specific pathologies will uncover new 
genetic architecture of molecular pathology, which was masked in 
clinical GWASs2. In recent research, the concept that AD is the sum-
mation of pathologies in diverse cell types has been emphasized. 
Based on ideas similar to the present study, single-nucleus tran-
scriptomes from autopsied AD brains provided the information 
regarding gene expression for different cell types48,62,63. However, 
such an approach based on autopsied brain samples can take a 
snapshot of the end stage in AD pathology, which had continued to 
change for decades. In contrast, CDiP can investigate the separated 
AD pathology with cell-type specificity and also model the baseline 
state without confounding factors, which can be a noise in genome-
wide studies.

The limitation of CDiP is that CDiP is based on a two-dimen-
sional monolayer culture consisting of a single cell type. To 
understand the cellular interaction among various cell types, the 
combination of CDiP and single-nucleus transcriptomes from 

autopsy brains of patients with AD may be two of the most impor-
tant tools to investigate the polygenicity of AD as presented in this 
study (Extended Data Fig. 8d–f). In addition, CDiP with neurons 
identified rare variants and potential therapeutic targets associated 
with Aβ phenotypes. On the other hand, SNPs associated with tau 
phenotypes showed more moderate statistically significant correla-
tions. This difference between Aβ and tau indicated that Aβ pathol-
ogy is mainly based on the polygenicity of neurons, whereas tau 
pathology might consist of multiple type of cells other than solely 
neurons. In fact, previous reports showed that inflammatory condi-
tions and brain networks with microglia and astrocytes accelerate 
tau pathology64–66. Furthermore, there is clinical evidence suggest-
ing that APOE regulates tau pathology independently of Aβ pathol-
ogy67. CDiP with neurons may suggest one aspect of discontinuity 
between Aβ and tau pathology (Extended Data Fig. 10a). In the 
future, it is hoped that an integrated and comprehensive under-
standing of the genetic background obtained by these cell-type-spe-
cific analytical approaches will lead to a better understanding of the 
complex pathogenesis of AD.

In this study using CDiP we predicted AD real-world data, 
stratified rare-variant-related AD and identified CTNNA3, ANO3 
and KCNMA1 as potential therapeutic targets. CDiP is useful as a 
screening tool for linking pathological phenotypes with hidden gen-
otypes. On the other hand, it is also important to accumulate evi-
dence using different modalities such as mouse models and patient 
specimens for adaptation to real AD pathology, which is composed 
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Fig. 2 | Genotype sets identified by CDiP can be a key clue for predicting real-world data of Alzheimer’s cohort with genetic risk for AD. a, Clinical 
phenotypes of the ADNI database were classified as AD-like condition positive or negative and were predicted using covariates (age, sex, genotype of 
APOE-ε4 allele) or covariates plus genotype sets, identified in CDiP. In the case of brain Aβ deposition examined by AV45-PET, the AUCs predicted by 
covariates plus genotype sets (right) were significantly higher than the AUCs predicted by covariates only (left) (paired Student’s t-test P < 0.05). b, In the 
case of CSF Aβ (1–42), the AUCs predicted by covariates plus genotype sets (right) were significantly higher than the AUCs predicted by covariates only 
(left) (paired Student’s t-test P < 0.05). c, In case of CSF t-tau, AUCs predicted by covariates plus genotype sets (right) were higher than those predicted 
by only covariates (left), but the difference was not statistically significant. d, In the case of CSF p-tau, AUCs predicted by covariates plus genotype sets 
(right) were higher than those predicted by only covariates (left), but the difference was not statistically significant.
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of various cell types and is also completed over a period of decades. 
CDiP will provide a key to understanding a complex pathology as a 
sum of polygenicity in disease-target cells and traits, paving the way 
toward precision medicine.

Methods
Patient cohort and establishment of iPSCs. The present study was approved by 
the Ethics Committee of the Center for iPS Cell Research and Application, Kyoto 
University (approval nos. CiRA19-05 and CiRA20-14). For the establishment of 
iPSCs from human PBMCs, PBMCs of patients with AD were collected according 
to the research project, which was approved by the Ethics Committee of the 
Department of Medicine and Graduate School of Medicine, Kyoto University 
(approval nos. R0091, G259 and G0722). Written, informed consent was 
obtained from all participants in this study. Human complementary DNA for 
reprogramming factors was transduced in human PBMCs with episomal vectors 
(SOX2, KLF4, OCT4, L-MYC, LIN28 and dominant negative p53). Several days 
after transduction, PBMCs were collected and replated on dishes coated with 
laminin 511-E8 fragment (iMatrix 511, Nippi). The medium was changed to 
StemFit AK03 the next day. Following that, the medium was changed every second 
day. Twenty days after transduction, iPSC colonies were picked up. Established 
PBMC-origin iPSCs were expanded for neural differentiation.

Induced cortical neurons from human iPSCs. We utilized a direct conversion 
technology to establish a robust, quick differentiation method. Human neurogenin2 
(NGN2) cDNA, under tetracycline-inducible promoter (tetO), was transfected into 
iPSCs by a piggyBac transposon system and Lipofectamine LTX (Thermo Fisher 
Scientific). We used the vector containing tetO::NGN2. After antibiotic selection of 
G418 disulfate (Nacalai Tesque), we picked out colonies and selected subclones that 
could efficiently differentiate into neurons by inducing the temporal expression of 
NGN2, with MAP2/4,6-diamidino-2-phenylindole at 96% purity.

Karyotyping and genotyping. Karyotyping was performed by LSI Medience 
(Tokyo, Japan). Genotyping of single-nucleotide mutation was performed 

by PCR amplification of genomic DNA and directly sequenced (3100 
Genetic Analyzer; Thermo Fisher). The APOE gene was amplified by PCR 
(forward primer TCCAAGGAGCTGCAGGCGGCGCA; reverse primer 
ACAGAATTCGCCCCGGCCTGGTACACTG). PCR products were digested by 
HhaI at 37 °C for 2 h and then subjected to electrophoresis to analyze the band size.

Quantitative PCR of XIST expression. Total RNA was purified from human 
iPSCs or human embryonic stem cells H9 clone by using RNAeasy kit 
(QIAGEN) and was reverse transcribed by using RevaTra Ace kit (Toyobo). 
Quantitative PCR (qPCR) was conducted by using the SYBR Green PCR kit 
(Takara) and QuantStudio5 (Thermo Fisher) following the manufacturer’s 
instructions. Results were normalized to ACTB and XIST expression was 
calculated by the 2−ΔΔCt method. The sequence of qPCR primers was (forward) 
AGAGCTACGAGCTGCCTGAC and (reverse) CGTGGATGCCACAGGACT 
for ACTB and (forward) AGCTCCTCGGACAGCTGTAA and (reverse) 
CTCCAGATAGCTGGCAACC for XIST12.

Immunocytochemistry. Cells were fixed in 4% paraformaldehyde (pH 7.4) at 
room temperature and were permeabilized in PBST containing 0.2% Triton X-100. 
Nonspecific binding was blocked with BlockingONE histo (Nacalai Tesque) for 
60 min at room temperature13. Cells were incubated with primary antibodies 
overnight at 4 °C and then labeled with fluorescent-tagged secondary antibodies. 
Nuclei were labeled with 4,6-diamidino-2-phenylindole (Thermo Fisher). Images of 
cells were acquired on high-content confocal microscope IN Cell analyzer 6000 (GE 
Healthcare). We used the following primary antibodies for immunocytochemistry: 
NANOG (1:100 dilution, Abcam ab80892), TRA1-60 (1:400 dilution, CST 4746), 
MAP2 (1:4,000 dilution, Abcam ab5392), SATB2 (1:400 dilution, Abcam ab92446), 
Alexa 488-conjucated antibody (1:400 dilution, Thermo Fisher, A11029), Alexa 
488-conjucated antibody (1:400 dilution, Thermo Fisher, A11039) and Alexa 
594-conjucated antibody (1:400 dilution, Thermo Fisher, A21207).

Quantification of protein concentration. On day 10, the RIPA-soluble fraction of 
total protein was extracted from differentiated neurons, cultivated in 96-well plates 
by the addition of 30 μl RIPA buffer and centrifuged at 12,000g for 30 min to collect 

Table 2 | Investigation of rare variants in gene loci by using ADNI data

Chr Gene P β s.e.m. cmafTotal cmafUsed nsnpsTotal nsnpsUsed nmiss OR s.e.m.

1 DAB1 0.223 −0.75 0.61 0.012 0.012 9 9 3,879 0.47 1.85

1 IFNLR1 0.344 0.44 0.47 0.024 0.024 13 13 5,867 1.55 1.59

3 MAGI1 0.668 −0.08 0.19 0.078 0.078 36 36 14,007 0.92 1.21

3 ROBO2 0.649 −0.13 0.28 0.052 0.052 25 25 10,463 0.88 1.33

4 QRFPR 0.389 −0.18 0.21 0.059 0.059 21 21 9,195 0.83 1.24

4 SLC10A7 0.840 −0.11 0.53 0.017 0.017 13 13 5,507 0.90 1.70

5 PLCXD3 0.145 −2.06 1.42 0.002 0.002 4 4 1,772 0.13 4.13

6 PREP 0.800 0.14 0.56 0.017 0.017 13 13 5,867 1.15 1.75

7 CUL1 0.513 −0.09 0.14 0.046 0.046 11 11 4,981 0.91 1.16

7 EZH2 0.215 0.85 0.68 0.010 0.010 6 6 2,586 2.33 1.98

7 ZNRF2 0.233 0.51 0.43 0.025 0.025 6 6 2,514 1.66 1.53

8 CSMD1 0.187 0.18 0.14 0.224 0.224 111 111 46,836 1.20 1.15

8 ZFPM2 0.242 0.31 0.26 0.064 0.064 29 29 11,900 1.36 1.30

9 SLC24A2 0.917 0.03 0.29 0.049 0.049 21 21 8,572 1.03 1.33

10 CPXM2 0.218 −0.39 0.32 0.040 0.040 25 25 10,823 0.68 1.37

10 CTNNA3 0.932 0.02 0.26 0.065 0.065 33 33 14,295 1.02 1.30

10 KCNMA1 0.010 0.40 0.16 0.093 0.093 38 38 14,007 1.49 1.17

11 ANO3 0.327 0.29 0.30 0.050 0.050 23 23 10,153 1.34 1.34

11 DENND2B 0.098 −0.40 0.24 0.081 0.081 22 22 9,962 0.67 1.28

12 TMTC1 0.954 0.02 0.28 0.054 0.054 23 23 10,009 1.02 1.33

13 BIVM-ERCC5 0.207 −0.34 0.27 0.053 0.053 41 41 16,114 0.71 1.31

13 FAM155A 0.481 0.26 0.37 0.031 0.031 9 9 3,879 1.30 1.45

15 TRPM1 0.070 0.30 0.17 0.143 0.143 55 55 23,537 1.35 1.18

18 DCC 0.460 −0.11 0.15 0.207 0.207 53 53 23,299 0.89 1.17

P, P value from the burden tests; s.e.m., approximate standard error for the effect of genotype; cmafTotal, the cumulative minor allele frequency of the gene; mafUsed, the cumulative minor allele frequency 
of SNPs used in the analysis; nsnpsTotal, the number of SNPs in the gene; nsnpsUsed, the number of SNPs used in the analysis; nmiss, the number of ‘missing’ SNPs. For a gene with a single SNP this is the 
number of individuals who do not contribute to the analysis due to studies that did not report results for that SNP. For a gene with multiple SNPs, values are totaled over the gene.
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supernatant. The protein concentration of the supernatant was measured with a 
Pierce BCA protein assay kit (Thermo Fisher) by following the kit manual.

Pathway analysis for identified gene. We performed pathway analysis of the 
230 identified genes (P < 5 × 10−5) using commercial Ingenuity Pathway Analysis 
(QIAGEN, https://www.qiagenbioinformatics.com/) software and analyzed the  
top networks.

Electrochemiluminescence assays for Aβ. All culture medium was replaced 
with 100 μl of fresh medium on day 8. Conditioned medium was collected for 
further analysis on day 10. Aβ species in culture medium were measured by 
human (6E10) Aβ 3-Plex kit (Meso Scale Discovery) for extracellular human Aβ. 
For Aβ species, this assay uses 6E10 antibody to capture Aβ peptide and SULFO-
TAG-labeled different C-terminal-specific anti-Aβ antibodies for detection by 
electrochemiluminescence with Sector Imager 2400 (Meso Scale Discovery). 
Quantified Aβ values (n = 2 wells per clone) were adjusted using total protein 
concentration of neurons to compare among conditions by minimizing the noise 
originating from the altered cell number.

Electrochemiluminescence assays for tau protein. Tau species in RIPA lysate 
extracted from iPSC-derived neurons were measured by Phospho(Thr231)/Total 
Tau kit (Meso Scale Discovery) according to the kit instructions. Quantified tau 
values (n = 2 wells per clone) were adjusted using the total protein concentration of 
neurons to compare among conditions by minimizing the noise originating from 
the altered cell number.

SNP genotyping of patients with AD and GWAS for cellular dissection of 
polygenicity. All 102 PBMC samples from patients with AD were genotyped 
with Infinium OmniExpressExome-8 v.1.4 BeadChip according to the kit manual 
(Illumina). To isolate algorithmic issues from data format issues, we standardized 
all genotype data to forward strand GRCh37.p13 orientation as is generated by 
variant calling from whole-genome sequencing data. After genotyping by using 
GenomeStudio (Illumina) and quality control (Hardy–Weinberg equilibrium, 
P > 1.0 × 10−6; minor allele frequency ≥ 0.01; linkage disequilibrium-based variant 
pruning r2 < 0.8; window size, 100 kb; step size, 5), the genotypes were imputed 
with minimac4 using 1000 Genomes Project Phase 3 as a reference panel. Overall, 
7,349,481 SNPs passed the post-imputation quality threshold (r2 ≥ 0.3, minor 
allele frequency ≥ 0.01). Linear association between SNPs and the Aβ42/40 ratio 
accumulation ratio in iPSC-derived neurons was analyzed with plink 1.9, where 
onset age, sex and genotype of the APOE-ε4 allele were included as covariates in 
linear regression models. P < 5 × 10−5 was set as the suggested level and P < 5 × 10−8 
as the significant level of the association analysis. No statistical methods were used 
to predetermine sample sizes but our sample sizes were similar to those reported in 
previous publications68.

Prediction of clinical data in ADNI datasets. The results of the Aβ 42/40 ratio 
in cortical neurons were processed through LD-based clumping (r2 > 0.2; window 
size, 1 Mb) with plink 1.9. Among independent SNPs, those above the suggested 
threshold level (P < 5 × 10−5) in genome-wide analysis were 496 SNPs, which were 
used as variables of a prediction model. A selected SNP genotype matrix of 102 
samples from patients with AD, the elements of which originally consisted of 0, 1 
or 2, was normalized and analyzed by principal-component analysis. Genotypes 
of samples from the ADNI 1/GO/2 datasets were collected (Illumina; Omni 2.5M 
BeadChip). Quality control and imputation were performed on the genotype 
data under the same conditions. The imputed genotypes of 10,121,962 SNPs were 
filtered by genome-wide analysis-derived 496 SNPs. The genotypes of SNPs that 
were listed in a CDiP list but not in ADNI datasets were complemented with 
the mean genotypes of inhouse patients with AD. Then, phenotypes of ADNI 
samples were predicted from genotypes. We predicted whether a sample belonged 
to an AD-like condition (positive) or not (negative). Samples were categorized as 
positive or negative independently according to four criteria based on reported 
results in the ADNI database: (1) the standardized uptake value ratio (reference, 
cerebellar reference region) from AV45-PET data (>1.1, a threshold for positive); 
(2) Aβ(1–42) in CSF (<977 pg ml−1, a threshold for positive);69 (3) t-tau/Aβ(1–42) 
in CSF (>0.27, a threshold for positive); and (4) p-tau/Aβ(1–42) in CSF (>0.025, a 
threshold for positive)69. All reported results were obtained from the ADNIMERGE 
dataset at baseline. Samples with both genotype data and phenotype data were 
included in the study (standardized uptake value ratio AV45; N = 512; CSF 
Aβ(1–42), t-t-tau/Aβ(1–42), p-tau/Aβ(1–42); N = 581). Genotype vectors of ADNI 
samples were mapped to the principal-component space derived from the genotype 
matrix of inhouse patients with AD. We performed tenfold cross validation. 
ADNI samples were split into training samples and test samples. A random forest 
classifier (100 estimators) was trained with the training samples, where target 
variables (AD-like condition positive/negative) were predicted from the top three 
principal components in the genotype matrix and covariates (age, sex, genotype 
of APOE-ε4 allele). The performance of prediction was evaluated with AUC of 
receiver operating characteristics curve results from prediction in test samples. 
The prediction performance was compared to the case when target variables were 
predicted only from covariates. Significance of AUC improvement was tested with 
a Wilcoxon signed-rank test (significant threshold, P < 0.05).

Knockdown of target genes. Cells at an initial density of 3,000,000 cells per well 
of six-well plates were disseminated on day 5. At 24 h after dissemination (day 6), 
culture medium was replaced with neurobasal medium containing 1 μM Accell 
SMARTpool siRNA (Horizon Discovery). We cultivated iPSC-derived neurons 
for 72 h from days 6 to 9 to maximize the Accell siRNA effect. At 72 h after adding 
siRNA (day 9), culture medium was refreshed with neurobasal medium containing 
fresh 1 μM Accell SMARTpool siRNA or 1 μM JNJ-40418677 (Sigma-Aldrich) and 
collection was performed on day 11 to analyze the Aβ phenotypes.

Investigation for rare variants related to AD onset. Whole-exome sequencing 
was performed on 407 blood-derived genomic DNA samples obtained from 
255 patients with AD and 152 cognitively healthy controls participating in the 
J-ADNI project60. Exonic sequences were enriched via hybridization using Agilent’s 
SureSelect Human All Exon kit (V6) and sequenced on Illumina HiSeq4000 
using paired-end read chemistry. Short-read sequences in the target region were 
mapped to the human reference genome (hg38) using BWA-MEM v.0.7.15-r1140 
with default settings. The subsequent analyses (read processing, variant calling 
and variant filtration) were conducted according to GATK4 Best Practices 
recommendation70, followed by variant annotation using snpEff v.4.3t. Among all 
variants identified by whole-exome sequencing, we focused on nonsynonymous, 
nonsense, splice-site, insertion or deletion variants. We further narrowed this 
down to variants with mean allele frequency < 0.05 in publicly available databases 
using the publicly available databases ExAC (release 0.3; http://exac.broadinstitute.
org/), gnomAD (release 2.1.1 for exomes and r.3.0 for genomes; https://gnomad.
broadinstitute.org/), HGVD v.2.3 (http://www.hgvd.genome.med.kyoto-u.ac.jp/) 
and ToMMo v.8.3KJPN (https://jmorp.megabank.tohoku.ac.jp). A gene-based 
association study of the variants was performed using a burden test47 on an R 
package seqMeta v.1.6.7 using J-ADNI (N = 407) and ADNI (N = 479) exome data.

Statistics and reproducibility. Except for prediction of clinical data in ADNI 
datasets and investigation of rare variants related to AD onset, we conducted 
statistical analysis as below. All data are shown as mean ± s.d. We conducted two 
or three experimental replicates to confirm reproducibility. Data distribution was 
assumed to be normal but this was not formally tested. Comparisons of mean 
among three groups or more were performed by one-way analysis of variance 
followed by a post hoc test using Tukey’s multiple comparisons test or uncorrected 
Fisher’s least significant difference test (GraphPad Prism 7.0 software (GraphPad)). 
P values < 0.05 were considered significant.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data used in the preparation of this article were obtained from the ADNI 
database (adni.loni.usc.edu). ADNI was launched in 2003 as a public–private 
partnership, led by principal investigator M.W.W.. The primary goal of ADNI has 
been to test whether serial magnetic resonance imaging, PET, other biological 
markers and clinical and neuropsychological assessments can be combined to 
measure progression of mild cognitive impairment and early AD. SNP array 
data are available in the National Bioscience Database Center (data ID hum031; 
JGAS000383/JGAD00049). All data generated or analyzed during this study are 
included in this article and its Supplementary Information files.

Code availability
All code for data management and analysis is archived online at GitHub (https://
github.com/HaruhisaInoue/iSNPs4ADNIpred). All other codes as described above 
are openly available in the developer site.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Establishment of cortical neurons from iPSCs of patients with sporadic AD. (a) Clinical information of patients who provided 
somatic cells as resource for iPSC establishment. (b) Generated iPSC lines expressed pluripotency markers TRA1-60 (green) and NANOG (red). 
Representative images from three independent experiments were shown. Nuclei were stained with 4’,6-diamidino-2-phenylindole: DAPI (blue). Scale 
bars = 200 μm. (c) Schema of differentiation method and assay (d) iPSC-derived neurons expressed excitatory cortical neuron markers, including MAP2 
(green) and TBR2 (red) on day 8 of differentiation. Representative images from three independent experiments were shown. Scale bars = 50 μm. Purity of 
day 8 cortical neurons was shown as positivity for MAP2 (e) and SATB2 (f) with no significant variation among different patients (p = 0.7727 for MAP2, 
p = 0.3675 for SATB2, one way ANOVA). Data represent mean ± SD (n = 3 for each patient clone).
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Extended data Fig. 2 | Correlation between total protein concentration and cell density or Aβ species. (a) Correlation plot between total protein 
concentration (μg/μL), Y-axis and disseminated cell density (104 cells per well of 96-well-plate). Linear fit (grey lines) is shown for three different clones 
from three different patients (n = 3 per clone). (b) Correlation plot between Aβ40 (pg/mL), Y-axis and total protein concentration (μg/μL), X-axis. Linear 
fit (blue lines) is shown for three different clones from three different patients (n = 3 per clone). (c) Correlation plot between Aβ42 (pg/mL), Y-axis and 
total protein concentration (μg/μL), X-axis. Linear fit (blue lines) is shown for three different clones from three different patients (n = 3 per clone). (d) 
Correlation plot between Aβ42/40 ratio, Y-axis and total protein concentration (μg/μL), X-axis. Linear fit (blue lines) is shown for three different clones 
from three different patients (n = 3 per clone).
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Extended Data Fig. 3 | Comparison of APOE genotype and Aβ phenotypes in induced cortical neurons from AD iPSCs. Plots show the distribution of 
(a) Aβ40, (b) Aβ42, (c) Aβ42/40 ratio and (d) protein concentration among different genotypes. X-axes correspond to APOE ε4 genotypes (patients, 
N = 44 for APOE3/3, N = 44 for APOE3/4, N = 14 for APOE4/4) and Y-axes represent (a) Aβ40 amounts, (b) Aβ42 amounts, (c) Aβ42/40 ratio, and (d) 
protein concentration of iPSC-derived cortical neurons. Horizontal lines are the median weights within a genotypic group, and error bars indicate standard 
deviation (S.D.). p > 0.05: not significant (N.S.) (one-way ANOVA with (two-way ANOVA with Tukey’s multiple comparisons test). Abbreviation: APOE, 
Apolipoprotein E.

Nature Aging | www.nature.com/nataging

http://www.nature.com/nataging


Letters NATURE AGInGLetters NATURE AGInG

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | There was no significant correlation between Aβ phenotypes in AD iPSC-derived cortical neurons and clinical status. Scatter 
plots (N = 102) show Aβ phenotypes, including (a) Aβ40 (left panel, blue), (b) Aβ42 (right panel, red), and (c) Aβ42/40 ratio (Y-axis). X-axis shows the 
onset age of cognitive dysfunction. The scatter plot does not show statistically significant correlation between Aβ phenotypes and age at onset (R-squared 
= 0.03, p-value = 0.074 for Aβ40; R-squared = 0.000030, p-value = 0.87 for Aβ42; R-squared = 0.000023, p-value = 0.96 for Aβ42/40 ratio). The plots 
show the distribution of Aβ phenotypes between genders. X-axes correspond to gender, male or female (patients, n = 36 for male, n = 66 for female), and 
y-axes represent (d) Aβ40 dose, (e) Aβ42 dose, and (f) Aβ42/40 ratio in the culture supernatant of iPSC-derived cortical neurons. Horizontal lines are the 
median weights within a genotypic group, and error bars indicate standard deviation (S.D.).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Cellular dissection of polygenicity identified the genetic loci and molecular pathway related with Aβ42/40 ratio in AD cortical 
neurons. (a) Flowchart for genome-wide analysis. (b) Quantile-quantile (Q-Q) plot of observed – log10 (p-value) from genome-wide association analysis 
of Aβ42/40 ratio level versus those expected under null hypothesis. Genomic inflation factor (λ) was 0.9659, suggesting that there was no population 
stratification effect. (c) Genome-wide association study for CDiP was conducted to identify the genetic loci related to the Aβ42/40 ratio without 
adjustment for the APOE status. Linear association between SNPs and the Aβ42/40 ratio was analyzed. Manhattan plot showing observed –log10 (p-value) 
of all tested SNPs with Aβ42/40 ratio (y-axis). Chromosomes are shown on the x-axis. The red line corresponds to genome-wide Bonferroni-corrected 
significance threshold p < 5 × 10−8. (d) Pathway analysis for 24 genes, identified in CDiP with Aβ42/40 ratio A selection of top canonical pathways 
found using Ingenuity Pathway Analysis (IPA) package to identify the enriched canonical pathways which were significantly enriched by using gene sets, 
identified in CDiP with Aβ42/40 ratio. Pathway analysis identified 14 pathways (p < 0.01), including 5 neuron-related pathways (red) and 2 pathways 
known to alter Aβ production (blue). Horizontal axis = p-value by Fisher’s exact test of pathway analysis.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | CDiP for p231-phosphorylated tau / total tau ratio of AD cortical neurons. (a) Plots show the distribution of the p231-tau / 
total tau ratio (p231-tau ratio) among different APOE genotypes. X-axes correspond to APOE ε4 genotypes (patients, n = 44 for APOE3/3, n = 44 for 
APOE3/4, n = 14 for APOE4/4), and Y-axes represent p231-tau ratio of iPSC-derived cortical neurons. Horizontal lines are the median weights within a 
genotypic group, and error bars indicate S.D. (b) The plots show the distribution of p231-tau ratio between genders. X-axes correspond to gender, male 
or female (patients, n = 36 for male, n = 66 for female), and y-axes represent p231-tau ratio of iPSC-derived cortical neurons. Horizontal lines are the 
median weights within a genotypic group, and error bars indicate S.D. (c) Scatter plots (N = 102) of p231-tau ratio (Y-axis) and onset ages of cognitive 
dysfunction (X-axis). The scatter plot does not show statistically significant correlation between p231-tau ratio and age at onset. (d) Genome-wide 
association study for CDiP was conducted to identify the genetic loci related to the p231-tau ratio with adjustment for the APOE status. Linear association 
between SNPs and the p231-tau ratio was analyzed. Manhattan plot showing observed –log10 (p-value) of all tested SNPs with p231-tau ratio (Y-axis). The 
red line corresponds to genome-wide Bonferroni-corrected significant threshold p < 5 × 10−8. (e) Genome-wide association study for CDiP was conducted 
to identify the genetic loci related to the p231-tau ratio without adjustment for the APOE status. Linear association between SNPs and the p231-tau ratio 
was analyzed. Manhattan plot showing observed –log10 (p-value) of all tested SNPs with p231-tau ratio (Y-axis). The red line corresponds to genome-wide 
Bonferroni-corrected significant threshold p < 5 × 10−8.

Nature Aging | www.nature.com/nataging

http://www.nature.com/nataging


Letters NATURE AGInGLetters NATURE AGInG

Extended Data Fig. 7 | Alteration of gene expression by siRNA treatment. (a) Relative expression of target gene for siRNA treatment was quantified. 
Y-axis shows fold change VS. non-targeted control siRNA. Data represent mean ± S.D. (n = 2 for each target gene).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Genes identified by CDiP can be potential therapeutic targets for Aβ phenotypes. (a) Aβ40, (b) Aβ42, and (c) total protein 
concentration was analyzed after siRNA treatment, which targeted identified genes in cellular dissection of polygenicity (CDiP), Aβ-related genes, 
including APP, and BACE1. Non-target siRNA was used as negative control. JNJ-40418677 1 μM, second generation of γ-secretase modulator (GSM) to 
suppress Aβ production, was used as positive control for altered Aβ phenotypes. X-axis shows alteration level in Aβ40 compared with non-treatment 
control (n = 2 biological replicates). Shown is mean ± S.D. p < 0.05: *; p < 0.01: **; p < 0.001: ***.; p < 0.0001: **** (one way ANOVA with Uncorrected 
Fisher’s LSD) (d) Comparing neuronal expression of genes, whose siRNA altered the Aβ42/40 ratio, between the brains of Alzheimer’s disease and 
non-demented control. Transcriptome data from Single-cell atlas of the Entorhinal Cortex in Human Alzheimer’s Disease was analyzed. (e) Comparison of 
neuronal expression of genes whose siRNA reduced Aβ42, between the brains of Alzheimer’s disease and non-demented control. (f) The single-cell-based 
transcriptome data of six AD brains and six control brains, which provide the transcriptome data for individual cell types, was utilized to investigate the 
expression status of focused genes. Genes with higher expression in AD brains were selected as the potential therapeutic target.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Clinical status of Aβ deposition in brain did not correlate with Aβ phenotypes in induced cortical neurons from AD iPSCs. (a) 
Schema of small cohort (N = 19), including the clinical status of Aβ deposition, measured by PiB-PET. (b) There was no difference in age at onset between 
Aβ-negative and Aβ-positive patients. The box and whiskers plot showed the range (whiskers) from minimum to maximum, the median (horizontal line) 
and the 25% and 75% (box) percentiles. Clinical status of Aβ deposition in the brain did not affect Aβ phenotypes in induced cortical neurons, from human 
iPSCs including (c) Aβ40, (d) Aβ42, and (e) Aβ42/40 ratio (patients, n = 4 for Aβ negative, n = 15 for Aβ positive). Horizontal lines are the median weights 
within groups, and error bars indicate standard deviation (S.D.). (f) J-ANDI and ADNI population for investigating rare variants of Alzheimer’s disease. 
Abbreviation: PiB PET: Pittsburgh Compound-B positron emission tomography, ANDI: Alzheimer’s Disease Neuroimaging Initiative, J-ANDI: Japanese 
ADNI.
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Extended Data Fig. 10 | Dissecting Alzheimer’s pathology into cellular polygenic architecture of the pathological traits to reveal the polygenicity of AD. 
(a) CDiP can provide the information of genetic background, linked to each cell-type and trait in Alzheimer’s pathology.
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