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A B S T R A C T   

Multi-modal medical imaging information has been widely used in computer-assisted investigations and di-
agnoses. A typical example is that the combination of information from multi-modal medical images allows for a 
more accurate and comprehensive classification and diagnosis of the same Alzheimer’s disease (AD) subject. This 
paper proposes an image fusion method to fuse Magnetic Resonance Images (MRI) with Positron Emission To-
mography (PET) images from AD patients. In addition, we use 3D convolutional neural networks to evaluate the 
effectiveness of our image fusion approach in both dichotomous and multi-classification tasks. The 3D convo-
lution of the fused images is used to extract the information from the features, resulting in a richer multi-modal 
feature information. Finally, the extracted multi-modal traits are classified and predicted using a fully connected 
neural network. The experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) public 
dataset show that the proposed model achieves better results in terms of accuracy, sensitivity and specificity.   

1. Introduction 

The most frequent kind of senile dementia is Alzheimer’s disease. 
This central nervous system degeneration illness usually has an insidious 
beginning and progresses slowly. And the corresponding brain failure 
cannot be reversed. According to data, the aging of the world’s popu-
lation is increasing year by year. Therefore, the number of AD patients 
with the elderly as the main disease population will inevitably increase 
[1]. According to a 2018 ADNI research, 50 million individuals globally 
sustain from dementia, with the figure anticipated to rise to 82 million 
by 2030, and there will be 152 million dementia patients by 2050, which 
is three times the number of dementia patients in 2018. At the same 
time, the report also pointed out that the research on dementia is inef-
ficient. Searching articles showed that there were more than 250,000 
articles on dementia and neurodegenerative diseases, and the ratio of 
articles on tumor and cancer was only about 1:12 [2]. 

AD is a progressively developing disease, so far the research on AD 
has not made much breakthrough. Because it is impossible to determine 
the cause of the illness. As a result, most patients have already reached 
the advanced stage when the disease is discovered, and missed the 
critical period of treatment, thus greatly reducing the treatment effect. 
Therefore, early diagnosis is crucial for the treatment of AD. Mild 
Cognitive Impairment (MCI) [3] is an intermediate state between AD [4] 
and health. Patients with MCI seem to be more likely than individuals 

who have never had the condition to acquire AD, according to studies. 
And the yearly rate of exchange of MCI to AD might be as high as 10% to 
15%. It can be seen that paying more attention to the study of the dif-
ference among healthy, MCI, and AD people can greatly contribute to 
the early diagnosis of AD. 

In recent years, non-invasive medical imaging of the brain has been 
widely used in AD diagnosis [5–7]. This imaging modality is non- 
invasive to human brain tissues and highly effective based on these 
advantages [8]. Based on these advantages, non-invasive medical brain 
imaging has been widely chosen by physicians as one of the most 
important diagnostic decision aids. Because of the different imaging 
methods and principles, images of different modalities can highlight 
different textural structures and regional features of the brain. By 
learning these features, we can classify and identify patients more 
effectively, so that the disease can be detected and treated early.While 
current deep learning approaches are effective in evaluating medical 
images of AD pathology. Most present research methods slice 3D images 
and perform 2D convolutional learning, or artificially match 3D brain 
images with templates to identify specific spatial regions of interest for 
learning [9]. Nowadays, a three-dimensional convolutional neural 
network (3D-CNN) [10] is proposed to be applied with magnetic reso-
nance imaging (MRI) to perform binary and ternary disease classifica-
tion models. The 3D-CNN-Support Vector Machine (SVM) has been 
shown to give the best results. This approach eliminates the need to 
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perform any prior feature extraction manually and is completely inde-
pendent of the imaging protocol and scanner variability. Simulta-
neously, many scholars have focused on the studies based on individual 
modal image data. Using a mix of MRI and PET modal images, we pre-
sent a model structure based on a 3D CNN to diagnose and categorize AD 
in this research [11]. Preprocessing is utilized to combine MRI and PET 
images. The gray matter region of the brain in the MRI image is 
extracted and integrated into the PET image to achieve image fusion. 
Finally, a fully connected neural network classifies and outputs this 
image. 

Based on the aforementioned issues, we present a deep learning- 
based Alzheimer’s disease detection strategy. The method employs 3D 
convolutional neural networks, followed by feature enhancement and 
multi-modal feature fusion.The following are the paper’s main 
contributions:  

• A three-dimensional convolutional network structure is proposed for 
detecting multi-modal fused features with rich semantic and image 
details for AD detection. And we add Sparse autoencoder to the 
network to increase the feature description ability of the network.  

• A new image fusion strategy is proposed, where MRI and PET images 
are fused and fed into the network.  

• Through our image fusion method, the features of images can be 
expressed more intuitively, making our results interpretable. 

In this paper, we learn and optimize the proposed method model to 
achieve higher accuracy and better practical performance in the classi-
fication of AD, MCI and NC [12], and to improve the efficiency of timely 
detection of AD in a comprehensive and accurate way. In turn, further 
targeted early treatment and effective suppression can be provided to 
slow down the disease progression and prolong its onset. Experimental 
results on the classification performance of the ADNI dataset show that 
the model blocks used to extract features in the proposed model are 
much smaller in size than the complex 3D convolutional model. In the 
future, this paper will also optimize and improve the data enhancement, 
oversampling, and more detailed classification of MCI datasets into sMCI 
(stable MCI) and pMCI (progressive MCI). The work in this paper can be 
used as a common way to effectively screen for AD. And our study has 
value in distinguishing AD and MCI subjects from normal controls. And 
it can also be valuable for the daily diagnosis of AD in ordinary people. 

2. Related work 

In the study of AD, some studies sliced PET images along sagittal, 
coronal and cross-sectional directions, respectively. Then a multi-region 
image information combination method based on Regions Of Interest 
(ROI) was used for classification [13]. Since both MRI and PET are three- 
dimensional images, one study attempted to use MRI images as tem-
plates, and then spatially segmented several regions of interest based on 
the templates after spatial alignment of fluorodeoxyglucose positron 
emission tomography (FDG-PET) images and MRI image templates for 
the same subject. Finally, the FDG-PET image region of interest features 
are extracted and input into a support vector machine model for analysis 
and prediction [14]. Most of these ROI-based methods are based on prior 
knowledge in the domain to determine the region of interest. Although 
these methods are effective, they also have significant limitations.For 
starters, it might include some human mistakes. Because the signs of 
Alzheimer’s disease are unclear, there is a considerable risk of omission 
while defining the study area. This will have a significant impact on the 
outcomes of early diagnosis. Second, most ROI-based illness diagnostic 
approaches need a considerable quantity of experimental data for 
training in order to assure the accuracy of prediction, resulting in high 
time and labor expenses. Besides, complex and diverse preprocessing 
steps are widely needed to extract medical brain image features in a 
large number of current studies. 

There are many good methods for medical image segmentation in 

existing deep learning methods. li et al. [15] proposed a dual codec 
structure of X-shaped network (X-Net). It can be a good alternative to the 
traditional pure convolutional medical image segmentation network. It 
can also extract both local and global features to obtain better results. 
Zhu et al. [16] proposed an image fusion scheme based on image cartoon 
texture decomposition and sparse representation. The fused cartoon and 
texture components are fused together according to texture enhance-
ment fusion rules. The experimental results show excellent performance 
in visual and quantitative evaluation. 

Although the ROI-based approach can lead to better actual perfor-
mance of the model, the native images without feature region extraction 
or complex preprocessing are also potentially rich in features and per-
formance. Silveira et al. [17] used the Boosting method, which in-
tegrates a simple classifier to classify and predict the whole brain PET 
images. Although this method is plain, its accuracy on AD:NC is 90.97%. 
This is sufficient to show the inspiration of the method. In addition, Liu 
et al. [18] also used the whole FDG-PET 3D image sliced in three di-
rections: sagittal, coronal and cross-sectional, and used convolutional 
neural network to extract features from the slices. The features were 
then fed into a recurrent neural network for classification, and the 
classification results of the three directions were finally fused for the 
final classification prediction. These research methods select only single- 
modality medical images of the brain for diagnosis and classification of 
AD. However, multi-modal images provide a large number of useful 
features for AD pathology, and combining images from different mo-
dalities can better represent the features and changes in the human brain 
for early and more accurate diagnosis of AD. 

Although the above methods perform feature extraction for 3D im-
ages as a whole, there are still some limitations. That is, the 2D convo-
lution operation is used to extract features of 3D brain images by slicing, 
which weakens the spatial correlation of 3D images to some extent and 
potentially enhances the spatial feature loss. For example, Ahemed et al. 
[19] used an improved 3D convolution model for image segmentation of 
a 3D image (kidney of African clawed toad) based on the original 2D 
convolution model. Jose et al. [20] used 3D full convolutional neural 
network to segment intracranial brain structures, and finally achieved 
significant results in segmentation of 3D brain MRI images. The exper-
imental results show that there is great potential for plain 3D convolu-
tional operations on the original 3D brain images (MRI images in the 
experiments). The lightweight 3D convolutional model has good per-
formance compared to even complex models that do not require tedious 
data preprocessing. However, in the experiments, the authors also 
consider a potential pitfall: if multiple binary classifications are used 
instead of a multi-classification task, then it may have the potential 
problem of “ambiguity zones”. 

The use of multi-modal image data can show more significant and 
comprehensive experimental performance and potential value. Different 
modalities of medical brain images have different imaging principles, 
which also enable different modal images to highlight the pathological 
features of different brain diseases. For example, MRI images of brain 
structures are better able to represent the anatomical structure of the 
brain [21], which can better represent the anatomical structure and 
texture of the brain tissue, while PET images are better able to represent 
the metabolic activity of the brain, which can better detect metabolic 
abnormalities in pathological regions [22]. Thus, for the same subject, 
the combined usage of multiple modal images can capture more 
comprehensive pathological information and features in terms of 
different characteristics. In addition, Liu et al. proposed a network 
model based on the combination of MRI image modality and PET image 
modality for the classification and recognition of AD using multi-modal 
image data, and achieved satisfactory classification results. However, 
this method uses a 2D convolutional neural network to operate on 3D 
images and requires a large number of complex preprocessing steps such 
as rigid alignment, non-rigid alignment and ROI extraction for each 
modality image data. 
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3. Materials and methods 

3.1. Datasets 

The dataset for this experiment was obtained from the ADNI public 
dataset. The ADNI is a combination of public and private datasets, which 
includes multiple sources of biomarker images including MRI and PET 
images for AD subjects, as well as basic subject information and ratings 
[23]. ADNI also includes data from multiple institutions at different 
times, locations and machine models for selection and use [24]. In this 
paper, we use the public dataset as the basis, according to three cate-
gories by retrieving the subjects of pre-processed MRI modal images and 
FDG-PET images with both T1 weights. MPRAGE-labeled MRI images 
were chosen because they were thought to be the greatest in terms of 
quality. 

The three classifications of the experimental dataset were AD, MCI, 
and NC. The number of topics obtained by retrieval was 370. Since the 
MRI and FDG-PET images of each subject contained several different 
images at different times, the most recent MRI images of each subject 
were selected as the MRI modal image data. Also, the first FDG-PET 
image was selected as the FDG modal image data for this subject by 
selecting the standardized image. The total number of the experimental 
data set was 740 3D images after the secondary screening of the data set 
in the above way. 

The number of themes corresponding to the 3 categories was 111 AD 
themes, 129 MCI themes, and 130 NC themes, respectively. The specific 
age and gender statistics of the corresponding themes in each category of 
the dataset are shown in Table 1. It is important to mention that each 
participant only had one good MRI and one good FDG-PET scan. There 
are 370 structural MRI modality pictures and 370 FDG-PET modality 
scans in total. To test the performance of the algorithms in this paper, 
subsequent experiments were conducted using a 10-fold cross-validation 
approach. 

3.2. Proposed image fusion 

To make the multi-modal fusion method more interpretable, we 
recommend integrating MRI and PET images in the picture area. After 
that, a single-channel network is used to diagnose the subject using the 
combined image modality. This approach dramatically decreases the 
number of design variables when compared to the multi-channel input 
network with feature fusion. Our suggested AD diagnostic system, which 
incorporates a heterogeneous image fusion approach, is shown in Fig. 1. 
Some of the components include image fusion, feature extraction, and 
classification. We can develop a new medium combining MRI and PET 
data using our image fusion method. 

The suggested multi-modal image fusion approach is capable of 
combining complimentary information from various modal pictures. As 
a result, the composite modality describes the information more accu-
rately than a single input picture. As demonstrated in Fig. 2 and Fig. 3, 
our suggested image fusion approach exclusively recovers the GM area 
from FDG-PET, which is critical for AD diagnosis, and employs an 
anatomical mask from an MRI scan. The fusion image mode includes 
structural MRI data as well as functional PET data. The following are the 
steps in our image fusion approach in detail. 

3.2.1. MRI image processing 
Our preprocessing models include FreeSurferare and FSL used in this 

paper. 
The module in FreeSurfer 6.0 is used to conduct skull-stripping on 

structural MRI images, as illustrated in Fig. 2. The bones and other non- 
brain material may be removed from the brain size using the watershed 
segmentation approach, producing in a brain size with significantly 
fewer distortion and redundant data. The technique retains solely 
intracranial tissue structure while removing regions of unnecessary 
anatomical organs, as predicted [25]. As shown in Fig. 2, the FLIRT 
package in the FSL package is used to affine translate MRI after skull 
removal to MNI152 space, the global brain map model. FLIRT is an intra- 
and inter-modal brain object recognition technique that is totally 
automated, dependable, and exact. The registration procedure aims to 
minimise translation and revolutions from a normal alignment and erase 
any spatial variances between individuals in the scanner. The organ 
separation that follows will be more accurate as a result of this. The 
input modality for AD classification tasks is this recorded MRI [26]. The 
GM area is segmented from the MRI image using the FAST module from 
the FSL software. FAST separates a three-dimensional brain picture into 
distinct tissue types with taking into account variances in geographic 
brightness [27]. This sort of tissue is called for bias field in-
homogeneities or RF inhomogeneities. The concept is based on a hidden 
Markov random field model and a related anticipation technique. A 
slanted adjusted input picture, as well as probability and full volumetric 
tissue separation, may be obtained from the full automated approach. It 
is more robust and trustworthy than other limited mixture prototype 
techniques, which are subject to noise. The segmentation output the 
gray matter tissue. 

3.2.2. FDG-PET image processing 
PET image after registration is created by utilizing the FSL FLIRT 

module to co-register the FDG-PET picture with its corresponding MRI 
image after registration, as illustrated in Fig. 3. The FDG-PET picture 
will have the same spatial orientation, image size, and voxel dimensions 
as the MNI-MRI image. The MNI-PET and MNI-MRI acquired after co- 
registration are in the same sample space. The anatomical mask 
created from the gray matter MRI acquired is utilized to cover the whole 
PET image after registration. A mapping process is used to obtain fusion 
image, as shown in Fig. 3. So far, we’ve used FDG-PET scans to deter-
mine the anatomical anatomy of GM. However, following MNI152 
spatial registration, the projected luminance levels in fusion photos 
differ significantly from the original PET from radicular and circum-
ferential views, and therefore cannot depict actual metabolic data as 
well as the origin PET. As shown in Fig. 3, the fusion image is co- 
registered to the relevant the origin PET image using the FLIRT 
component to create the fusion image after registration. On the one side, 
the above enrollment procedure eradicates affine transformation- 
induced variance and conserves the original PET image’s real gray- 
scale allocation; on the other side, it guarantees that the fusion image 
after registration has the same dimension of the feature as the origin 
PET, in other words, the fusion image size of 182× 218× 182 is whittled 
down to the original PET size of 160× 160× 121. This drop in quality 
might potentially conserve processing and memory time. 

3.3. Networks 

The anatomical backdrop in the direction orthogonal to the 2D plane 
is totally eliminated in the 2D CNN technique, which processes 3D 
medical pictures layer by layer. As previously mentioned, using 3D data 
as a full input can considerably enhance speed, albeit the computational 
complexity and memory cost rise owing to the high number of factors 
[28]. As a result, this paper employs 3D CNN, which was created by 
studying the features of AD classification jobs, as detailed below. 

We use a two-step strategy: first, we train a 3D sparse autoencoder to 
develop convolution layers, and afterwards we create a CNN using the 

Table 1 
Data set statistics in our experiments.   

AD  MCI  NC   

Number of topics/Persons 111 129 130  
Age (Average age ± Standard 

deviation)  
76.9 ± 6.7  76.4 ± 6.2  75.7 ± 5.7   

Sex (Male/Female) 62/59  78/51  76/54    
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autoencoder’s filtration as the first layer. 

3.3.1. Sparse autoencoder 
An autoencoder is a three-layer neural network that uses an image as 

input to extract features. Sparsity reconstructions may offer a clear 
explanation of the input information in form of a limited set of features 
by finding the structure hidden in the data. The autoencoder’s source 
and destination layers have the equal amount of troops, but the hidden 
layer has more for a scant and complete description. The encoder 
operator transforms input x to symbol h, while the decoder operator 
transforms symbol h to output x. In our challenge, we employ 3D regions 
derived from scanning as the network’s input. The decoder operator is in 
charge of reconstructing the input from h, which is a hidden form. A 

hidden layer output of 1 means that the node is ”active” and a hidden 
layer output of 0 means that the node is ”inactive”. Based on this, we 
introduce the KL dispersion to measure the similarity between the 
average activation output of a hidden layer node and the sparsity we set. 

KL = ρlog
ρ
ρ̂j
+(1 − ρ)log

1 − ρ
1 − ρ̂j

(1) 

Therefore, we can add the KL dispersion as a regular term to the loss 
function as a way to bound the sparse rows of the whole self-encoder 
network. 

3.3.2. 3D CNN 
The 3D CNN is then trained in the second step. The CNN we utilized 

Fig. 1. Proposed AD diagnostic framework with multi-modal image fusion method.  

Fig. 2. MRI processing method. Pictures from left to right are the original MRI; the MRI after removing the skull; the registered image; the cropped GM part.  
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for this project consists of 1 convolutional layer, 1 pooling layer, 2 linear 
layers, and finally a log softmax layer. After training the sparse 
autoencoder, we employ the encoder’s weights and biases from the 
learned architecture in a 3D filter of a 3D convolutional layer of a 1-layer 
convolutional neural network. Fig. 4 depicts the network’s architecture. 

4. Experiment and results 

4.1. Pre-processing 

As inputs to CNN, 3D information with a greater fidelity would need 
greater computer resources while training stage. To reduce the time it 
takes to calculate singular information, we manipulate the input data 
utilizing cropping and sampling techniques. Outside of the brain tissue 
area, each modality picture contains numerous background areas with 
pixel values of 0, as illustrated in Fig. 2. We correctly minimize these 
useless background locations to lower the amount of input information 

without harming the brain tissue regions. MRI has been trimmed from 
182× 218× 182 to 176× 208× 176 pixels. Furthermore, both PET 
image and GM-PET image are cropped from 160× 160× 121 to 121×

145× 121. 

4.2. Experimental setup 

The main hardware experiment environment is 1 i7-8700 k CPU and 
1 GTX3070ti GPU, and the model is built on the basis of Tensorflow 
framework [29]. The model is trained and tested using a ten-fold cross- 
validation method after performing a preprocessing process on the raw 
data. For the binary classification task, after several experiments and 
parameter adjustments, the final choice of batchsize was set to 3, the 
number of iterations epoch was set to 200, the learning rate lr was 10− 7, 
and the deactivation rate dropout was 0.5. Such parameter settings 
enabled the model to achieve the desired performance. In this paper, we 
also adjusted and tested the parameters for several times, and finally 

Fig. 3. PET image processing method. The pictures from left to right are the original PET image; the registered PET image; the GM part cropped from the MRI is 
mapped into the PET image; the final registered fused image. 

Fig. 4. 3D CNN architecture for AD classification.  
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determined that the greatest results were obtained while the training 
data of learning rate was set at 30× 10− 6, and the other parameters were 
set the same as the model for the two classification tasks. The model 
training outputs the training accuracy once per step and the test ACC 
results once every 10 steps. For the triple classification task, only the test 
ACC results are output, and the output step interval is set the same as 
that of the two classification. When the model training is stable, the “test 
ACC ± standard deviation” is selected as the final model evaluation 
index. 

4.3. Performance 

The commonly used performance assessment metrics in AD testing 
are accuracy, sensitivity, and specificity. Sensitivity is the percentage of 
true positives, the percentage of positive samples detected out of all 
positive samples. The higher the sensitivity, the better the detection of 
positive samples. The greater the specificity, the better the detection of 
negative samples. The equations for accuracy, sensitivity and specificity 
are as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (2)  

Sensitivity =
TP

TP + FN
× 100% (3)  

Specificity =
TN

FP + TN
× 100% (4) 

There are four possible predictions for positive and negative cases: 
positive cases are predicted to be positive (recorded as true positive, TP); 
positive cases are predicted to be negative (recorded as false negative, 
TN); negative cases are predicted to be positive (recorded as false pos-
itive, FP); and negative cases are predicted to be negative (recorded as 
true negative, TN). 

4.3.1. AD: NC 
Table 2 illustrates the findings of unimodal and multimodal modal-

ities with various networks in the categorization of AD: NC. Multi- 
modality-based techniques like the joint optimization technique and 
the recommended image compression technique perform better since 
they effectively fuse MRI and PET data. Our picture fusion approach 
outperforms other two multi-modal methods in terms of overall in-
dicators. Our image fusion technique achieved the best classification 
ACC(accuracy) of 93.21±5.0 percent, SPE(specificity) of 95.42±4.5 
percent, and SEN(sensitivity) of 91.43±6.0 percent using the 3D CNN. 
The feature fusion approach had the highest sensitivity (94.44±7.9%) 
but the lowest accuracy and specificity. In the AD: NC classification test, 
the actual quality of our image fusion approach was the best. 

4.3.2. MCI: NC 
Table 3 displays the findings for several treatments in the categori-

zation of MCI: NC using various networks. The proposed picture fusion 
approach outperformed the competition by a substantial margin. Our 
picture fusion technique has the greatest sort ACC of 86.52±6.4 percent, 
SEN of 94.34±6.5 percent, and SPE of 81.64±7.3 percent using the 3D 
CNN. It also exhibited increases in classification ACC, SEN, and SPE of at 
least 6.11, 1.25, and 11.62 percent over the feature fusion approach, 

showing that the suggested image fusion method effectively combines 
multidimensional data. In general, the suggested image fusion approach 
outperformed the competition in the MCI: NC classification challenge. 

4.3.3. AD: MCI 
Table 4 illustrates the findings of two different modalities with 

various networks in the categorization of AD: MCI. Our image fusion 
technique for Alzheimer’s disease diagnosis used the 3D CNN and ach-
ieved the greatest categorization ACC of 85.63±7.8%, SPE of 95.54±6.1 
percent, and SEN of 81.21±9.8 percent. Furthermore, the suggested 
image fusion approach outperformed unimodal methods by at least 
6.53, 10.83, and 5.00 percent, respectively, in categorization ACC, SEN, 
and SPE. In the AD: MCI classification challenge, our technique beat the 
other methods and had the greatest overall performance. 

4.3.4. AD: MCI: CN 
The findings of several modalities for the categorization of AD: MCI: 

NC with the 3D CNN are shown in Table 5. The multi-class task in-
troduces numerous confounding elements since MCI is a transitory 
condition between AD and NC. Clearly, the AD: MCI: NC classification 
job is more challenging than the previous binary-categorization prob-
lems. In this scenario, our image fusion technique outperformed the 
unimodal and feature fusion methods on all evaluation indices, but the 
three-classification task required more power from the unimodal and 
feature fusion methods. The classification accuracy of the 3D CNN was 
87.67±5.1 percent. Our image fusion technique greatly improved the 
classification accuracy when comparing with the previous methods. 
Clearly, our image fusion approach outperformed the competition in the 
multi-class task. 

4.3.5. Comparisons with state-of-the-art methods 
The suggested image fusion approach was evaluated and contrasted 

to state-of-the-art multi-modal algorithms for every task-specific cate-
gorization. The results are shown in Table 6. For each AD diagnostic 
task, the findings show that our technique had the best accuracy and 
outperformed previous multi-modal methods. Although the pre- 
processing procedures of our image fusion technique are time- 
consuming, the network parameters are substantially decreased since 
just the composite picture is given into the categorization networks 
rather than a set of pictures from several modalities. To put it another 
way, the proposed picture fusion method’s computational difficulty and 
storage cost are equivalent to that of existing techniques. 

4.4. Discussion 

For the diagnosis of Alzheimer’s disease, we offer a picture fusion 
approach that successfully combines heterogeneous imaging informa-
tion from MRI and PET images because multi-modal data can give more 

Table 2 
Results of different modalities with 3D CNN for AD: NC (UNIT:%).  

Network Modalities ACC SEN SPE  

3D CNN Unimodal MRI 89.80 ± 4.7  86.31 ± 12.0  91.97 ± 5.5    
Unimodal PET 92.10 ± 5.8  89.13 ± 9.7  94.27 ± 4.1    
Proposed image 
fusion 

93.21 ± 5.0  91.43 ± 6.0  95.42 ± 4.5    

Table 3 
Results of different modalities with 3D CNN for MCl: NC (UNIT:%).  

Network Modalities ACC SEN SPE  

3D CNN Unimodal MRI 79.46 ± 9.4  87.50 ± 16.1  69.15 ± 10.7    
Unimodal PET 72.00 ± 7.8  72.81 ± 10.5  70.56 ± 12.2    
Proposed image 
fusion 

86.52 ± 6.4  94.34 ± 6.5  81.64 ± 7.3    

Table 4 
Results of different modalities with 3D CNN for AD: MCl (UNIT:%).  

Network Modalities ACC SEN SPE  

3D CNN Unimodal MRI 79.46 ± 9.4  80.32 ± 7.1  69.15 ± 10.7    
Unimodal PET 72.00 ± 7.8  72.81 ± 10.5  70.56 ± 12.2    
Proposed image 
fusion 

85.63 ± 7.8  81.21 ± 9.8  95.54 ± 6.1    
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complete pathology information. Based on the fact that gray matter is 
the tissues region of most interest in AD diagnostic research, the sug-
gested fusion approach gathers and fuses the gray matter tissue of brain 
MRI and FDG-PET in the imaging area to generate a fusion modality. As 
demonstrated in Fig. 2 and Fig. 3, not only does the fusion image 
maintain the subject’s brain structure data from MRI, but it also saves 
the subject’s metabolism data from PET. Furthermore, as compared to 
techniques based on multi-modal feature learning, our suggested image 
fusion method handles the problem of heterogeneous features alignment 
between multi-modal pictures better through its registration operation. 

Multimodal medical image fusion is a more intuitive approach 
compared to existing feature fusion strategies. It integrates relevant and 
complementary information from multiple input images into a single 
fused image to facilitate more accurate diagnosis and better treatment. 
The fused images not only have richer modal features, but also have 
stronger information representation capabilities. 

In addition, the 3D CNN is shown performing 4 Alzheimer’s disease 
categorization tasks, 3 binary and one multi categorization. In addition, 
the proposed AD diagnosis methodology employs a single network 
rather than the multiple-input networks utilized in feature matching 
approaches since our image fusion methodology merges multi-modal 
image scanning into a single aggregate picture [37]. As a result, the 
number of CNN parameters may be substantially reduced using our 
image fusion approach. 

To assess the performance of our suggested picture fusion approach, 
we conducted several tests and studies. According to the classification 
findings in Tables 2–5, the proposed image fusion method, out-
performed unimodal methods because multi-modal methods included 
more and complementary information. In the challenging three- 
classification problem, our image fusion method has made great prog-
ress compared with previous research. Furthermore, the 3D CNN 
generated approving results, showing that the image fusion approach 
had the greatest overall performance and was very adaptable to various 
classification networks. In addition, when compared to SOTA multi- 
modal-learning-based methods, our picture fusion method performs 

better. Although the suggested image fusion approach consistently 
demonstrated the highest accuracy, its sensitivity and specificity were 
not always optimum. To address this issue, we will focus even more on 
WM and CSF tissues in the future, combining their data with the existing 
gray matter data to give stronger support for Alzheimer’s disease 
diagnosis. 

5. Conclusion 

For AD diagnosis, we offer an image fusion technique that combines 
MRI and PET pictures into a composite fusion modality. The fusion 
modality provides both anatomic and metabolic information about the 
brain and gently reduces picture noise so that the viewer may focus on 
the important features. We also proposed improvements to the network. 
We have added a sparse autoencoder to the network. This allows the 
network to learn the characteristics that best express the sample in a 
harsh environment, and can effectively reduce the dimensionality of the 
sample. The effectiveness of the suggested picture fusion approach was 
proven by a series of experiments utilizing the 3D CNN. Our proposed 
image fusion methodology beat the unimodal method by a large margin 
in terms of experimental outcomes. 
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