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ARTICLE INFO ABSTRACT
Keywords: Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and
Mild cognitive impairment atrophy in the medial temporal lobe (MTL) and subsequent brain regions. Structural magnetic resonance imaging

Alzheimer’s disease (sMRI) has been widely used in research and clinical care for diagnosis and monitoring AD progression. However,

Demem_la L atrophy patterns are complex and vary by patient. To address this issue, researchers have made efforts to develop
Magnetic resonance imaging . . . i . .
Biomarker more concise metrics that can summarize AD-specific atrophy. Many of these methods can be difficult to interpret

clinically, hampering adoption.

In this study, we introduce a novel index which we call an “AD-NeuroScore,” that uses a modified Euclidean-
inspired distance function to calculate differences between regional brain volumes associated with cognitive
decline. The index is adjusted for intracranial volume (ICV), age, sex, and scanner model. We validated AD-
NeuroScore using 929 older adults from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, with a
mean age of 72.7 years (SD = 6.3; 55.1-91.5) and cognitively normal (CN), mild cognitive impairment (MCI), or
AD diagnoses.

Our validation results showed that AD-NeuroScore was significantly associated with diagnosis and disease
severity scores (measured by MMSE, CDR-SB, and ADAS-11) at baseline. Furthermore, baseline AD-NeuroScore
was associated with both changes in diagnosis and disease severity scores at all time points with available data.
The performance of AD-NeuroScore was equivalent or superior to adjusted hippocampal volume (AHV), a widely
used metric in AD research. Further, AD-NeuroScore typically performed as well as or sometimes better when
compared to other existing sMRI-based metrics.

Abbreviations: AD, Alzheimer’s Disease; ADAS-11, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
AD-PS, Alzheimer’s Disease Pattern Similarity; aMCI, Amnestic Mild Cognitive Impairment; AUC-ROC, Area Under the Receiver Operator Characteristic Curve;
ANOVA, Analysis of Variance; CSF, Cerebrospinal Fluid; CDR-SB, Clinical Dementia Rating Scale Sum of Boxes; CN, Cognitively Normal; DTI, Diffusion Tensor
Imaging; ENIGMA, Enhancing Neuro Imaging Genetics Meta-Analysis; FA, Fractional Anisotropy; FTD, Frontotemporal Lobe Dementia; GM, Grey Matter; ML,
Machine Learning; MTL, Medial Temporal Lobe; MCI, Mild Cognitive Impairment; MMSE, Mini-Mental State Exam; MRDATS, MRI-Based Dementia of Alzheimer’s
Type Score; PHI, Protected Health Information; ROC, Receiver Operator Characteristic; ROI, Region of Interest; RVI, Regional Vulnerability Index; SD, Standard
Deviation; SPARE-AD, Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s Disease; STAND, STructural Abnormality iNDex; sMRI, Structural
Magnetic Resonance imaging; SuStaln, Subtype and Stage Inference; UMI, Univariate Morphometry Index; VBM, Voxel-Based Morphometry; WM, White Matter;
ZWE, Z-Weighted Euclidean.
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In conclusion, we have introduced a new metric, AD-NeuroScore, which shows promising results in detecting
AD, benchmarking disease severity, and predicting disease progression. AD-NeuroScore differentiates itself from
other metrics by being clinically practical and interpretable.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease character-
ized by initial cognitive decline and early atrophy of the medial tem-
poral lobe (MTL) followed by atrophy of other brain regions.
Neurodegeneration often precedes cognitive decline (Gomez-Isla et al.,
1996), making structural magnetic resonance imaging (sMRI) an ideal
clinical biomarker for detecting AD early and predicting future cognitive
and functional decline, as it is a passive, widely accessible, and cost-
effective measurement. Improving quantitative sMRI reporting could
enhance its value in clinical and research settings, and detecting AD
before irreversible neurodegeneration could improve the efficacy of
available treatments (Coupé et al., 2015).

Extensive research efforts have been directed towards understanding
AD-related neurodegeneration (Chen et al., 2007), with significant focus
on the hippocampus and the MTL. While hippocampal or other MTL
regions are often used as sMRI metrics due to their strong associations
with cognition, diagnosis, and AD-etiology (Gosche et al., 2002; Jack
et al., 2002; Csernansky et al., 2004; Jack et al., 1997), other parts of the
brain also provide important information for differential diagnosis of
mild cognitive impairment (MCI), AD, and frontotemporal lobe de-
mentia (FTD) (Rabinovici et al., 2008). Over time, neurodegeneration
can spread from the MTL (Rabinovici et al., 2008) to other brain regions
(Gomez-Isla et al., 1996; Rabinovici et al., 2008; Thompson et al., 2003;
Braak et al., 1997; Frisoni et al., 1999; Thompson et al., 2007; Laakso
et al., 1996; Laakso et al., 1998; Dickerson et al., 2001; Vercelletto et al.,
2002), including the parietal lobe (Lindeboom and Weinstein, 2004;
Cabeza et al., 2008; Jacobs et al., 2012), posterior temporal, lateral
occipital (Rabinovici et al., 2008), left frontal regions, as well as limbic
structures including the thalamus, cingulate gyrus, and nucleus
accumbens (Nie et al., 2017).

Medical imaging companies have implemented regional brain vol-
ume reports in patient care settings to help clinicians understand the
overall pattern of neurodegeneration (Ahdidan et al., 2015; Brewer
et al., 2009; Cavedo et al., 2022). However, assessing a patient’s overall
neurodegeneration from several numbers can be difficult, as the
spatiotemporal pattern of atrophy varies widely among patients. Addi-
tionally, the current tools do not account for differences in scans per-
formed at different facilities using different scanners, which can affect
the validity of longitudinal follow-up reports. Therefore, a valid,
harmonized summary score utilizing multiple brain atrophy-related
features is needed to complement existing regional brain volume re-
ports. Such a score could enhance clinical comparability and diagnostic
sensitivity, while allowing for the integration of measures across
research settings and facilitating meta-analyses.

Early sMRI-based, multivariate approaches primarily focused on
classifying cognitively normal (CN) and AD (Diciotti et al., 2012; Vemuri
et al., 2009). However, as the field has progressed, researchers have
expanded their focus to include classification of more disease stages (i.e.,
CN, MCI, and AD) (Rallabandi et al., 2020; Popuri et al., 2020) and
predicting which patients will stabilize or decline (Coupé et al., 2015;
Popuri et al., 2020; Ezzati et al., 2019; Wang et al., 2021). Many of these
multivariate scoring methods use machine learning (Diciotti et al., 2012;
Vemuri et al., 2009; Casanova et al., 2018) and some combine SsMRI with
other imaging, biochemical, demographic, or clinical features to
improve performance (Vemuri et al., 2009; Dukart et al., 2013; Salva-
tore et al., 2018). The STructural Abnormality iNDex (STAND)-score
(Vemuri et al., 2008; Vemuri et al., 2008), AD Pattern Similarity (AD-PS)
(Casanova et al., 2018; Casanova et al., 2013), Subtype and Stage
Inference (SuStaln) (Young et al., 20142014; Archetti et al., 2021;

Young et al., 2021); MRI-Based Dementia of Alzheimer’s Type Score
(MRDATS) (Popuri et al., 2020), Spatial Pattern of Abnormality for
Recognition of Early AD (SPARE-AD) (Davatzikos et al., 2009; Da et al.,
2014), Univariate Morphometry Index (UMI) (Wang et al., 2021), and
Regional Vulnerability Index (RVI) or the ENIGMA Dot Product
(Kochunov et al., 2022) are examples of such metrics. These scores
demonstrate that a multivariate summary approach offers promise for
clinical diagnosis and research purposes.

However, the implementation of existing metrics in neurological
practices is limited due to the requirement for quality control in
radiology-based measures (Larson and Boland, 2019). Furthermore,
these metrics lack both patient-level and model-level interpretability
(Pinto et al., 2022). In contrast, narrowly focused region-of-interest
(ROI)-based reports are commonly used in clinical practice because
they allow for control over feature segmentation quality and are inter-
pretable (Coupé et al., 2015; Ahdidan et al., 2015; Brewer et al., 2009;
Casanova et al., 2013; Archetti et al., 2021; Davatzikos et al., 2009;
Achterberg et al., 2014; Sgrensen et al., 2016). However, it is important
to note that existing interpretable ROI-based approaches generally
demonstrate inferior performance compared to more complex metrics.

The objective of this study is to develop and validate a clinically
translatable biomarker which we call an “AD-NeuroScore.” This score
summarizes AD-related neurodegeneration using only sMRI-measured
regional volumes, which are currently integrated within clinical elec-
tronic health records (Ahdidan et al., 2015; Brewer et al., 2009; Cavedo
et al., 2022) and can be visually inspected by a radiologist. We chose
these features because simplicity (Hwang and Park, 2020), clinical
availability (Eweje et al., 2022), quality controllability (Larson and
Boland, 2019), and interpretability (Pinto et al., 2022) are crucial for
clinical adoption. Our approach involves creating a vector of region of
interest (ROI)-based features that are associated with cognitive decline
and calculating a computationally inexpensive summary score. The
relative contribution of atrophy within each feature is transparent and
holds clinical significance. We believe that these advantages will facil-
itate widespread clinical deployment and research applications.

2. Methods
2.1. Participants

2.1.1. Data acquisition and demographics

CN individuals and patients with MCI or AD diagnosis were drawn
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu) (Mueller et al., 2005; Mueller et al., 2005; Jack et al.,
2008). The ADNI is a global research study launched in 2003, primarily
aimed at evaluating biological markers to measure the progression of
MCI and early AD. For up-to-date information, see www.adni-info.org.

All ADNI studies were conducted according to the Good Clinical
Practice guidelines, the Declaration of Helsinki, the U.S. 45 Code of
Federal Regulations (CFR) Part 46 and 21 CFR Part 50 - Protection of
Human Subjects, and 21 CFR Part 56 - Institutional Review Boards.
Written informed consent and HIPAA authorizations were obtained
from all participants or authorized representatives prior to the con-
ducting of protocol-specific procedures. The ADNI protocol was
approved by the Institutional Review Boards of all participating in-
stitutions, listed in File 1 in Supplementary Materials (Mukherji et al.,
2021).

In this work, a total of 1,619 subjects with available 3 T, accelerated,
T1-weighted MR images at baseline were collated from the ADNI-GO,
ADNI-2, and ADNI-3 study phases; of these, 388 participants were
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Table 1

Demographic Information. Full description of all cohort demographics at base-
line. Total number of participants (n), sex (by percentage female), age, and
education in years are reported for each cohort in full (All), as well as for CN,
MCI, and AD diagnostic subdivisions. The CN Template Cohort was comprised of
only CN individuals. Values for age and education are summarized in the form
mean (+standard deviation), with age ranges also given in the form min-max.

Dataset Clinical Group
Measure
CN MCI AD All
ROI n 50 50 50 150
Selection
% Female 62 48 42 51
Age 68.6 71.9 74.9 71.8
(+6.5) (+8.6) (+£7.3) (+£7.9)
55.1-88.7  55.2-88.7  55.3-89.7  55.1-89.9
Education 17.2 16.2 15.7 16.4
(+£1.9) (+£2.3) (+£2.4) (+£2.3)
Template n 152
% Female 50
Age 71.7
(+£5.9)
55.6-85.3
Education 16.9
(£2.2)
Experimental n 286 514 129 929
% Female 64 45 43 50
Age 72.5 72.1 74.7 72.6
(+6.3) (£7.5) (+8.3) (£7.3)
56.3-90.2 55.1-91.5 55.7-90.4 55.1-91.5
Education 16.5 16.2 15.7 16.2
(+2.5) (+2.6) (+2.6) (+2.6)

discarded due to incomplete data used to calculate or validate the
biomarker, including diagnosis (n = 42), sex (n = 45), age (n = 8),
scanner manufacturer (n = 3), and at least one brain volume (n = 298).
Acquisition methods are detailed by Chow et al. (Chow et al., 2015). The
remaining cohort of 1,231 individuals was comprised of 488 CN, 564
MCI, and 179 mild AD. Participants were diagnosed at baseline and
reassessed at each study visit (Petersen et al., 2010). The study sample
was subdivided into the following three cohorts: region of interest (ROI)
selection, cognitively normal template creation, and experimental (see
Table 1 for a full description of all cohort demographics).

2.1.2. Region of interest selection cohort

To determine the regional volumes that were associated with
cognitive impairment, a sample of 150 age- and sex-matched individuals
from the overall participant pool were pseudo-randomly selected using
the numpy random module (Harris et al., 2020) with equivalent pro-
portions of each diagnostic category (see Table 1 for a full description of
ROI selection cohort demographics).

2.1.3. Cognitively normal template cohort

A sample of cognitively normal, age- and sex-matched individuals
were randomly selected from the remaining participant pool to generate
a CN template. The purpose of this template was to represent the
average, healthy older adult brain (see Table 1 for a full description of
CN template demographics). The sample size for this cohort was set to
152 individuals, the same number used to construct the widely adopted
MNI152 template (Mazziotta et al., 1995; Mazziotta et al., 1995).

2.1.4. Experimental cohort
The remaining 929 participants were grouped into an experimental
cohort for sMRI metric extraction and testing (see Table 1 for a full
description of experimental cohort demographics). Baseline analyses
were conducted for all 929 participants of the experimental cohort.
Longitudinal analyses were conducted on all participants who had
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follow-up data available. These participants were classified as those who
worsened in diagnosis (denoted as Diagnosisgecline) and those who did
not change in diagnosis or, in rare cases, improved (denoted as Diag-
nosisgaple), based on their diagnosis at 12, 24, 36 and 48-month follow-
up sessions. Diagnosisgecline is thus composed of those who declined from
CN to MCI or CN to AD (CNgecline) and from MCI to AD (MClgecline);
Diagnosissaple is the group who either did not change in diagnosis or
improved (composed of MClgable, CNstable, and ADgeaple). There was no
later stage diagnostic category than AD in this sample, and therefore all
AD participants were ADgaple, With N0 ADgecline group (see Fig. 1 for a
flowchart detailing the construction of longitudinal cohorts).

2.2. Neurocognitive assessments

Participant scores on the Clinical Dementia Rating Scale Sum of
Boxes (CDR-SB) (Morris, 1993; Hughes et al., 1982; O’Bryant et al.,
2008; Balsis et al.,, 2015), Alzheimer’s Disease Assessment Scale
Cognitive Subscale (ADAS-11) (Grochowalski et al., 2016), and Mini-
Mental.

State Exam (MMSE) (Folstein et al., 1975) were collated for all
participants in the experimental cohort who had scores available at each
time point.

2.3. AD-NeuroScore

Cortical reconstruction and volumetric segmentation of the 3 T,
accelerated, T1-weighted MR images was performed with version 7.1 of
the Freesurfer image analysis suite, which is documented and freely
available for download online (https://surfer.nmr.mgh.harvard.edu/).
The details of these procedures are described in previous publications
(Dale et al., 1999; Reuter et al., 2010; Segonne et al., 2007; Fischl et al.,
1999; Ségonne et al., 2004; Jovicich et al., 2006; Fischl et al., 1999;
Fischl et al., 2002; Fischl et al., 2001; Fischl et al., 2004; Fischl et al.,
2004; Desikan et al., 2006). With these methods, eighty-four cortical and
subcortical regional volumes were estimated at baseline for each sub-
ject. Additionally, results were reviewed using the ENIGMA structural
imaging quality control protocols (https://enigma.usc.edu/) (Stein
et al., 2012).

2.3.1. ROI selection

To determine the brain regions most sensitive to diagnosis at base-
line, we first performed an Analysis of Variance (ANOVA) in our ROI
selection cohort to test for an effect of diagnosis for each of the 84 re-
gions (using a Bonferroni-corrected alpha of 0.05/84; see Supplemen-
tary File 2 for a complete list of the 84 cortical and subcortical regions
tested). Forty-one regions were found to be significant. All these regions
were consistent with the existing literature (Yin et al., 2013; Zanchi
et al.,, 2017; Harper et al., 2017) and were used to compute AD-
NeuroScore (Table 2).

2.3.2. Cognitively normal template

To generate a CN template vector representative of the healthy
average older adult brain, each volume that was determined from the
ROI selection process was averaged across all CN template cohort par-
ticipants (see Table 2). Data harmonization procedures were applied to
each region in the CN template vector (see Methods Section 2.3.3. Data
Harmonization). This CN template vector had the same dimensions as
vectors extracted from experimental cohort participants. These two
vectors were used to compute the distance metrics evaluated in this
work (see Methods Section 2.3.4. Calculating the Z-Weighted Euclidean
Distance).

2.3.3. Data harmonization

To account for interindividual variations in head size, age, sex, and
MRI acquisition features like scanner model and manufacturer, we
adjusted ROI volumes using a w-score, a data harmonization approach
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1,619 subjects with 3T, accelerated,
T1-weighted MR images available at baseline
collated from ADNI-GO, ADNI-2, and ADNI-3
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Fig. 1. Flowchart visualizing baseline allocation of participants into the 3 experimental cohorts (ROI Selection, CN Template, and Experimental) and longitudinal
construction of the stable and decline groups at 12, 24, 36, and 48-months. Patients whose diagnosis progressed relative to baseline were classified into a Diagnosis
(decline) group, while those who did not worsen were categorized as Diagnosis (stable) for each respective time point.

previously validated on sMRI data (Popuri et al., 2020; Ma et al., 2019).
This approach uses a generalized linear model (GLM) framework, where
the structural volume for a given region of each participant is modeled
as the linear combination of all covariates as shown in Eq. (1):

NC .
Vi= S B e &)

Here, the volume V] of region r for subject i, is modeled as the sum
over NC covariates (age, sex, scanner model, and total ICV) of coefficient
B, for covariate c, multiplied by the value of the covariate, x.;, plus the
residual term, €.

To compute the w-score, w},also known as the standardized residual,
we took the z-transformation of the residual term from Eq. (1), €], as
shown in Eq. (2):

W = M )
O.E

where ] and o] represent the mean and standard deviation, respec-

tively, of the residual term for a given subject’s regional brain volume.

2.3.4. Calculating the Z-Weighted Euclidean distance

To compute the difference between each experimental cohort
participant and the CN template, we employed a novel modified
Euclidean inspired distance function which we call the Z-weighted
Euclidean distance (ZWE). A traditional Euclidean distance metric is
calculated by treating the list of significant, harmonized regional vol-
umes as a vector in n-dimensional space, where n is the number of re-

gions, and computing the Euclidean distance between each participant
and the CN template vectors. The ZWE distance function differed in that
each region was multiplied by a weight resulting from each region’s
level of significance (z-score) as determined during ROI selection pro-
cess as shown in Eq. (3):

NR 1/2

ZWE = (Y [(wF = w))z]) @)

i=1

where z; refers to the average of the z-scores associated with the p-values
across the three possible pairwise comparisons (CN vs MCI, CN vs AD,
and MCI vs AD) for a given region, i, and NR denotes the total number of
regions. The ZWE distance was computed between the harmonized re-
sidual of each subject, w;, and the CN template, w!. Thus, the more
significant a region was in ROI-selection, the greater its contribution to
the computed AD-NeuroScore. The concept of weighing multivariate
sums by measures of significance has been used in a number of appli-
cations since its inception in the proposal of Hotelling’s T? distance in
1947 (Hotelling et al., 1947; Gutman et al., 2013; Hua et al., 2013). The
significant ROIs listed in Table 2 are visualized in Fig. 2, with a color
scale indicating respective z; weighting.

We investigated several other methods for computing the difference
between each experimental cohort subject and the CN template. Each of
these algorithms similarly involved computing a distance function be-
tween like objects constructed from the harmonized, significant regional
brain volumes, which we determined in the ROI selection step. Gener-
ally, the distance functions fell into one of two categories (curves and



G.T. Kress et al.

Table 2

Significant ROIs by Z-Score Ranking and CN Template Values. Resulting 41
significant regions of interest (ROIs) extracted by performing ANOVA for each of
the 84 regions in the ROI selection cohort are reported in the above table along
with corresponding z scores. Significance was established based on an alpha =
0.05, Bonferroni corrected. Structures are identified by the FreeSurfer version
7.1 ROI labels. Mean volumes and standard deviations (SD) of the CN template
cohort are included for each respective region.

FreeSurfer ROI Label z CN Template Mean Vol (+SD) (mm?)
Left-Hippocampus 9.12 0.48 (£0.74)
Left-Amygdala 8.43 0.60 (+0.79)
Right-Amygdala 8.37 0.54 (+0.80)
Right-Hippocampus 7.82 0.45 (£0.71)
1h_middletemporal_volume 6.53 0.40 (£0.88)
1h_fusiform_volume 6.20 0.27 (+0.82)
1h_inferiorparietal_volume 6.11 0.33 (£0.90)
rh_middletemporal_volume 6.12 0.42 (+0.92)
1h_inferiortemporal_volume 5.88 0.36 (+£0.85)
1h_precuneus_volume 5.81 0.26 (+0.91)
1h_rostralmiddlefrontal_volume 5.69 0.16 (£1.06)
rh_inferiortemporal_volume 5.54 0.27 (+£0.87)
rh_precuneus_volume 5.50 0.34 (+0.93)
rh_inferiorparietal volume 5.48 0.33 (+0.88)
rh_superiortemporal_volume 5.44 0.35 (+0.94)
rh_entorhinal_volume 5.39 0.12 (£0.77)
Left-Thalamus 5.17 0.33 (£+1.01)
rh_lateralorbitofrontal_volume 5.02 0.14 (+£0.91)
1h_superiortemporal_volume 5.01 0.28 (+0.87)
1h_insula_volume 4.86 0.19 (+0.86)
1h_bankssts_volume 4.75 0.12 (£0.93)
1h_lateralorbitofrontal_volume 4.67 0.26 (£0.89)
1h_isthmuscingulate_volume 4.66 0.20 (£1.04)
rh_parahippocampal_volume 4.64 0.21 (£0.91)
Right-Accumbens-area 4.58 0.33 (+£0.88)
1h_entorhinal_volume 4.56 0.23 (+£0.74)
rh_rostralmiddlefrontal_volume 4.50 0.18 (+1.04)
1h_superiorparietal_volume 4.44 0.14 (+£0.87)
Right-Thalamus 4.42 0.31 (£1.02)
1h_superiorfrontal_volume 4.38 0.17 (+0.89)
rh_fusiform_volume 4.25 0.23 (+0.88)
rh_insula_volume 4.14 0.21 (£0.93)
1h_lateraloccipital_volume 4.08 0.31 (+0.87)
rh_superiorfrontal_volume 3.96 0.16 (£0.99)
1h_posteriorcingulate_volume 3.86 0.29 (£0.98)
rh_isthmuscingulate_volume 3.78 0.13 (+0.87)
rh_superiorparietal_volume 3.75 0.26 (£1.00)
rh_parsorbitalis_volume 3.70 0.19 (+0.92)
rh_posteriorcingulate_volume 3.60 0.24 (+0.90)
Left-Accumbens-area 3.60 0.45 (+1.04)
rh_lateraloccipital_volume 3.47 0.24 (+0.83)

points). For the distance functions that computed distances between
curves, in addition to projecting the curve in one dimensional space, the
k-false nearest neighbors method was implemented to embed each curve
in n-dimensions (see Supplementary File 3 for further details). The
functions which computed a distance between curves included the
Fréchet distance and the Hausdorff distance. The Fréchet Distance is one
method used to quantify the similarity between two curves or sets of
points in space, with an emphasis on the location and ordering of points
(Dumitrescu and Rote, 2004). Similarly, the Hausdorff distance mea-
sures how far two subspaces of a metric space are from each other;
however, it does not account for the flow or order of points (Maiseli,
2021). The vector-based distance functions included the Euclidean and
ZWE distance. Further details along with equations modeling these
mathematical distances are included in Supplementary File S3.

Statistical analyses tested the performance of each distance metric
based on sensitivity to diagnosis, disease severity, and progression (See
Table S1-S3 in Supplementary Materials). All metrics evaluated were
benchmarked using AHV, an NIA-AA diagnostic biomarker for Alz-
heimer’s disease (Jack et al., 2018) (Supplemental Table S1). The
optimal biomarker, the ZWE distance, was selected as our “AD-Neuro-
Score” (See Section 2.4 Validation Procedures).
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2.4. Validation procedures

2.4.1. Baseline validation procedures

At baseline, we evaluated sensitivity to diagnosis of AD-NeuroScore
by calculating the area under the Receiver Operating Characteristic
curve (AUC-ROC) and the associated 95% confidence intervals, using a
logistic regression model for each pairwise comparison of diagnostic
groups (CN vs MCI, MCI vs AD, and CN vs AD). Specificity, sensitivity,
and accuracy were evaluated at the optimal false positive rate of 0.145
determined by a Youden index analysis. These results were then con-
verted to minimum sample size estimation for statistical power using a
two-sided test and standard significance level of 0.05. Sensitivity to
diagnosis was further assessed using pairwise, two-tailed t-tests for each
possible diagnostic group comparison, using a Holm-Bonferroni-
corrected alpha of 0.05. Results were then converted to z-scores and
Cohen’s d was calculated to indicate effect size.

Baseline associations of AD-NeuroScore and AHV with disease
severity, operationalized as MMSE, ADAS-11, and CDR-SB scores, were
tested using linear regression, both in the overall baseline experimental
cohort and in each diagnostic sub-group. In addition to examining the
significance of the slope using a Holm-Bonferroni-corrected alpha of
0.05, we also estimated the correlation coefficients and compared the
performance of AD-NeuroScore and AHV by conducting a Fisher’s z-test
of the z-transformed correlation coefficients, using the Holm-Bonferroni
method to adjust for the 3 comparisons at baseline.

2.4.2. Longitudinal validation procedures

To determine if AD-NeuroScore might be predictive of disease pro-
gression, we assessed the relationship between AD-NeuroScore at
baseline and both the change in diagnosis and change in disease severity
at 12, 24, 36, and 48 months. Logistic regression was used to examine
whether baseline AD-NeuroScore was predictive of change in diagnosis
(Diagnosisdecline VS. Diagnosissaple); AUC-ROC (and associated 95% CI)
was used as a metric of the predictive ability. We also compared the
baseline distribution of AD-NeuroScore between Diagnosisqecline and
Diagnosisgaple groups using pairwise, two-tailed t-tests in the full
experimental cohort and subsequently further stratified by baseline
diagnosis (MCI or CN) to investigate if the ability to predict decline is
driven by a specific patient population. Similar to the baseline validation
procedures, the results for all comparisons were converted to z-scores,
and Cohen’s d was calculated to assess effect size.

Longitudinal association with disease severity was tested using linear
regression between baseline metric scores and the change in the neu-
ropsychological assessment scores (MMSE, ADAS-11, and CDR-SB) from
baseline, at each respective longitudinal session. Significance was
assessed using a Holm-Bonferroni-corrected alpha of 0.05. All absent
longitudinal comparisons were excluded due to insufficient sample size.

2.5. Validation using clinically implemented ROI

To validate AD-NeuroScore in the context of the alternative imaging
analysis tools frequently used by and accessible to clinicians, a vector of
Neuroreader®-analogous ROI volum was approximated by transforming
the FreeSurfer results into a less granular vector of regions closely
matching the Neuroreader® atlas. 80 out of the 84 brain regions esti-
mated by FreeSurfer were systematically mapped to create the 22 ROI
structures in Neuroreader®. However, four regions (left and right nu-
cleus accumbens and insula) estimated by FreeSurfer did not have cor-
responding ROIs in Neuroreader®, and therefore, they were excluded
from this specific analysis. The calculation and validation methods uti-
lized for computing and validating the FreeSurfer-based AD-NeuroScore
were applied to the pseudo-Neuroreader® ROI vector. (Supplementary
Table S4-S7).
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Fig. 2. The 41 significant regions of interest (ROIs) extracted by performing ANOVA for each of the 84 regions in the ROI selection cohort are visualized above on the
Allen 500-ym Human Brain Atlas. The color scale depicts the z-score-based weighting of each ROI in AD-NeuroScore (ADNS), as described in Section 2.3.1. The
Brainrender python library (https://github.com/brainglobe/brainrender) was used to create this figure. The following letters denote anatomical orientation: Anterior
(A), Posterior (P), Superior (S), Inferior (I), Left Lateral Surface (LL), Left Medial Surface (LM), Right Lateral Surface (RL), Right Medial Surface (RM).

Table 3

Baseline Results for AD-NeuroScore Sensitivity to Diagnosis. Sensitivity to
diagnosis assessed using pairwise, two-tailed t-tests performed for each possible
diagnostic group comparison. Resulting z-scores, effect sizes (Cohen’s d) with
95% confidence intervals (CI), AUC-ROC values with 95% CI, and minimum
sample size estimation for statistical power are included. Results using AHV are
included for benchmarking. Significant results from group comparisons are
denoted by * to indicate p < 0.05, ** to indicate p < 0.01, and *** to indicate p
< 0.001, Holm-Bonferroni corrected.

Group Metric AUC Cohen’s z-score Min.
Comparison [95% d [95% CI] Sample
CI] Estimate
CN vs MCI AD- 0.66 —0.56 —7.46 110
NeuroScore [0.59, [-0.59,
0.73] —0.53]***
AHV 0.65 0.55 [0.52, -7.27 126
[0.58, 0.58]***
0.72]
CN vs AD AD- 0.91 —2.06 -16.37 14
NeuroScore [0.86, [—2.24,
0.96] —1.88]***
AHV 0.88 1.72 [1.55, -14.27 16
[0.81, 1.89]***
0.95]
MCI vs AD AD- 0.80 -1.16 —-11.23 38
NeuroScore [0.71, [-1.19,
0.89] —1.14]%**
AHV 0.76 0.92 [0.90, —9.04 52
[0.67, 0.94]%***
0.84]

2.6. Data availability

Full, open access to all de-identified ADNI imaging and clinical data
is publicly and freely available to individuals who register with the ADNI
and agree to the conditions in the “ADNI Data Use Agreement,” upon
approval of a request that includes the proposed analysis and the named
lead investigator (contact via https://adni.loni.usc.edu/data-samples
/access-data/). Additional details about the ADNI data acquisition and
sharing policies can be found at https://adni.loni.usc.edu/wp
-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf.

The code supporting the findings of this study is openly available in
[repository name: “AD-NeuroScore”] at https://github.com/jb
ramen/AD-NeuroScore. The Python programming language (version
3.9) was used for all analyses (Python Software Foundation, http
s://www.python.org/).

3. Results
3.1. Baseline validation

3.1.1. Baseline sensitivity to diagnosis

AD-NeuroScore was significantly associated with diagnosis at base-
line (p < 0.001 for all comparisons, Holm-Bonferroni corrected;
Table 3). AD-NeuroScore performed best at distinguishing AD from
other groups (CN and MCI) and least well at distinguishing CN and MCI
participants. AD-NeuroScore performed as well as our benchmark, AHV
(p < 0.001 for all comparisons, Holm-Bonferroni corrected), in this
cross-sectional validation (Table 3). AUC-ROC values of AD-NeuroScore
and AHV were similar across all group comparisons. Visual inspection of
the overlaid AD-NeuroScore and AHV AUC-ROC curves for AD com-
parisons (CN vs AD and MCI vs AD) indicated that at low false positive
rates, the AD-NeuroScore true positive rate tended to be higher (Fig. 3).
Examining the distribution of AD-NeuroScore and AHV for each diag-
nostic group at baseline (Fig. 4), AD-NeuroScore qualitatively
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Fig. 3. Overlaid AUC-ROC curves visualizing baseline classification perfor-
mance of AD-NeuroScore and AHV across the 3 diagnostic group comparisons.
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Fig. 4. Violin plots depicting the distribution of AD-NeuroScore and AHV for
each diagnostic group at baseline.

demonstrated greater separation between diagnostic category medians,
with more centrally concentrated distributions and longer tails in CN
and MCI groups at the edges of the distribution.

3.1.2. Baseline association with disease severity (MMSE, ADAS-11, and
CDR-SB)

In the overall baseline experimental cohort, we found that AD-
NeuroScore was significantly associated with disease severity, as
measured by MMSE, ADAS-11, and CDR-SB scores (Table 4; Fig. 5; all p-
values < 0.001, Holm-Bonferroni corrected). In sub-analyses stratified
by baseline diagnosis, we found significant associations between AD-
NeuroScore and metrics of disease severity in participants with MCI
(MMSE, ADAS-11, and CDR-SB) and AD (ADAS-11, and CDR-SB).
Conversely, we found no significant association with disease severity
in CN individuals.

AD-NeuroScore generally performed as well or better than our
benchmark, AHV, in this cross-sectional validation using the overall
baseline experimental cohort (Table 4; Supplementary Fig. S1). Results
from z-tests conducted using Fisher z-transformed correlation co-
efficients revealed that associations between both CDR-SB and ADAS-11
and AD-NeuroScore were significantly stronger than with AHV (p =
0.006 for CDR-SB and p = 0.024 for ADAS-11). Sub-analyses stratified
by baseline diagnosis revealed that AD-NeuroScore and AHV performed
the most similarly in participants with MCI, and the most differently in
participants with AD (AD-NeuroScore: p < 0.01 for ADAS-11 and p <
0.05 for CDR-SB, both Holm-Bonferroni corrected, AHV: NS for all).

3.2. Longitudinal validation

3.2.1. Metric sensitivity to progression
In the overall baseline experimental cohort, we found that baseline



G.T. Kress et al.

Table 4
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Relationship Between AD-NeuroScore and Disease Severity. Baseline rows include results from cross-sectional analysis of AD-NeuroScore and disease severity,
operationalized as MMSE, ADAS-11, and CDR-SB scores. All other rows include results from longitudinal analysis of baseline AD-NeuroScore and change in disease
severity scores at 12, 24, 36, and 48 months. Testing was performed with linear regression in the overall experimental cohort and in each diagnostic sub-group.
Performance of AHV is included for benchmarking. Significant associations are indicated by * for p < 0.05, ** for p < 0.01, and *** for p < 0.001, Holm-

Bonferroni corrected.

Class Time Metric r n
CDR-SB MMSE ADAS-11 CDR-SB MMSE ADAS-11
All Baseline AD-NeuroScore 0.52%** 926 926 926
AHV —0.43%** 926 926 926
12 AD-NeuroScore —0.27 525 697 721
AHV 0.23 525 697 721
24 AD-NeuroScore —0.40%** 402 614 626
AHV 0.32%** 402 614 626
36 AD-NeuroScore —0.38%** 285 332 345
AHV 0.34%%** 285 332 345
48 AD-NeuroScore 205 369 375
AHV 205 369 375
CN Baseline AD-NeuroScore —0.08 —0.01 0.10 286 286 286
AHV 0.00 —0.01 -0.17 286 286 286
12 AD-NeuroScore —0.81* —0.02 0.09 13 183 180
AHV 0.53 —0.03 0.01 13 183 180
24 AD-NeuroScore —0.69* 0.02 —0.09 17 220 221
AHV 0.45 —0.08 0.05 17 220 221
36 AD-NeuroScore - —0.06 0.01 1 44 36
AHV - -0.19 0.03 1 44 36
48 AD-NeuroScore —0.12 0.00 0.01 5 126 133
AHV 0.52 —0.21 —0.01 5 126 133
MCI Baseline AD-NeuroScore 0.23%** 0.33%** 511 511 511
AHV 511 511 511
12 AD-NeuroScore 418 423 452
AHV 418 423 452
24 AD-NeuroScore —0.39%** 357 357 377
AHV 357 357 377
36 AD-NeuroScore 284 273 309
AHV 284 273 309
48 AD-NeuroScore 199 226 242
AHV 199 226 242
AD Baseline AD-NeuroScore 0.27* -0.17 0.33** 129 129 129
AHV —0.08 0.08 —0.14 129 129 129
12 AD-NeuroScore 0.09 0.04 0.00 94 91 89
AHV —0.08 —0.03 —0.22 94 91 89
24 AD-NeuroScore 0.03 0.16 —0.36 28 37 28
AHV —0.34 —0.10 —0.20 28 37 28
36 AD-NeuroScore - -0.13 - 0 15 0
AHV - —0.09 - 0 15 0
48 AD-NeuroScore - 0.28 - 1 17 0
AHV - —0.11 - 1 17 0

AD-NeuroScore differentiated Diagnosisgiaple from Diagnosisgecline
significantly at all timepoints (12, 24, 36, and 48-months; Table 5; p <
0.001, Holm-Bonferroni corrected, for all). Sub-analyses stratified by
baseline diagnosis revealed that AD-NeuroScore’s ability to predict
decline was primarily driven by individuals with MCI at baseline (p <
0.001, Holm-Bonferroni corrected, for all). We found no significant ef-
fects in CN individuals.

We found that AD-NeuroScore performed as well as AHV in the
overall experimental cohort (AHV: p < 0.01 at 12-months, p < 0.001 at
all successive sessions, Holm-Bonferroni corrected). While there were no
significant differences between AD-NeuroScore and AHV, qualitatively,
AD-NeuroScore tended to do modestly better than AHV at differenti-
ating DiagnosiSstaple, from Diagnosisgeciine participants at 12- and 24-
months, and slightly worse at 36- and 48-months. Sub-analysis by
baseline diagnosis revealed similar patterns; AD-NeuroScore performed
equivalently to AHV in individuals with MCI. However, AHV demon-
strated somewhat higher sensitivity to change in diagnosis in the CN
group.

3.2.2. Longitudinal association with disease severity (MMSE, ADAS-11,
and CDR-SB)

In the overall longitudinal cohort, we found that baseline AD-
NeuroScore was also significantly associated with the change in dis-
ease severity scores (Table 4; p < 0.001, Holm-Bonferroni corrected, for
all), as measured by the change in MMSE, ADAS-11, and CDR-SB scores
from baseline to each time point (12, 24, 36, and 48-months). Sub-
analysis by baseline diagnosis revealed that AD-NeuroScore’s associa-
tion with the change in disease severity scores was also primarily driven
by individuals with MCI at baseline. We found significant associations
between AD-NeuroScore and the change in MMSE, ADAS-11, and CDR-
SB scores in participants with MCI at all time points (p < 0.001, Holm-
Bonferroni corrected for all). Conversely, we found no significant asso-
ciation with the change in disease severity in AD individuals, and only
two significant associations in CN individuals (CDR-SB at 12- and 24-
months; p < 0.05, Holm-Bonferroni corrected, for both).

AD-NeuroScore generally performed as well or better than our
benchmark, AHV, in this longitudinal validation (Table 4). As with AD-
NeuroScore, correlations between AHV at baseline and change in disease



G.T. Kress et al.

AD-PS

SuStaln

Intuitive
Algorithm

Neurolmage: Clinical 39 (2023) 103458

AD-

MRDATS NeuroScore

SPARE-AD

Produces
Interpretable
Score

Features
Common in
Clinical
Workflows

Harmonizes
with Scanner
Model

Possible to
Generate Score
Breakdown

X | X | X | N
X | X | X | X

< | X | NN X

NS ENEN
NIEN RN EN

Performance
Relative to AD-
NeuroScore

Fig. 5. Compares the features that are most important for the widespread clinical and investigational implementation of the algorithms discussed in this study. *
Indicates differences in the tests used to compare metrics. See Table 6 for more information on performance of previous metrics relative to AD-NeuroScore.

severity scores were significant in the overall longitudinal cohort
(Table 4; p < 0.001, Holm-Bonferroni corrected, for all timepoints).
Results from z-tests conducted using Fisher z-transformed correlation
coefficients revealed that correlations between AD-NeuroScore and 24-
month change in ADAS-11 were significantly stronger than with AHV (p
= 0.003, Holm-Bonferroni corrected). In the MCI group, AD-NeuroScore
performed as well or somewhat better than AHV (AD-NeuroScore: p <
0.001 for all; AHV: p < 0.05 for MMSE across all time points, p < 0.01 for
ADAS-11 at 12-months, and p < 0.001 for all other scores and time
points, all Holm-Bonferroni corrected).

In the AD group, neither AD-NeuroScore nor AHV were significantly
associated with change in disease severity scores. The AD sub-analysis
was limited by sample size longitudinally. In the CN group, both AD-
NeuroScore and AHV had generally weak correlations, none of which
were significant aside from AD-NeuroScore and CDR-SB at 12- and 24-
months (both p < 0.05, Holm-Bonferroni corrected).

3.3. Comparison of similar existing metrics

We also compared performance of AD-NeuroScore against other
benchmarks, and we present the results in Table 6. This table presents an
overview of the methods, features, comparisons, and performance of
several sMRI-based benchmarks in addition to AD-NeuroScore. This
comparative analysis demonstrates that in general, AD-NeuroScore
performs as well as these other biomarkers.

3.4. Alternative atlas analysis

3.4.1. Baseline and longitudinal validation

Results from analyses repeated using the Neuroreader® ROI-based
AD-NeuroScore were similar to those obtained with the Freesurfer-
based AD-NeuroScore, including all cross-sectional and longitudinal
analyses. Benchmarking the pseudo-Neuroreader® ROI-based AD-Neu-
roScore against AHV also produced results analogous to those of the
original analysis (Supplementary Table S5-S7).

4. Discussion

We developed AD-NeuroScore, a Euclidean inspired sMRI-based
distance metric, which demonstrated significant associations with
diagnosis (CN, MCI, and AD) and disease severity (MMSE, ADAS-11, and
CDR-SB scores) at baseline, and performed as well as or better than AHV.
AD-NeuroScore was also significantly associated with changes in all
three disease severity scores over a 48-month follow-up period, which
was largely driven by the MCI group due to the limited sample size of CN
and AD participants with available longitudinal data. AD-NeuroScore
and AHV were both able to differentiate between participants who
declined in cognitive status and those who remained stable in longitu-
dinal analyses. Qualitatively, AD-NeuroScore performed slightly better
than AHV at earlier time points (12- and 24-months) and slightly worse
at later sessions (36- and 48-months).

ROIs included in AD-NeuroScore based on ROI selection were
generally consistent with the literature (Gomez-Isla et al., 1996; Rabi-
novici et al., 2008; Thompson et al., 2003; Braak et al., 1997; Frisoni
et al., 1999; Thompson et al., 2007; Laakso et al., 1996; Laakso et al.,
1998; Dickerson et al., 2001; Vercelletto et al., 2002; Jacobs et al., 2012;
Nie et al., 2017). However, we expected but did not find lateral ven-
tricular volumes to be significant during ROI selection, even though
ventricular dilation is frequently observed in patients with AD (Attier-
Zmudka et al., ; Ott et al., 2010; Nestor et al., 2008). We did find a large
overlap in total ventricular volumes of patients and controls, which is
consistent with previous cross-sectional volumetric studies (Nestor
et al., 2008; Giesel et al., 2006; Schott et al., 2005). Therefore, absolute
ventricular change may be a more sensitive measure of AD-pathology
than total ventricular volume.

In this study, we also evaluated the performance and approach of
AD-NeuroScore in comparison to several similar metrics. Our findings
indicate that AD-NeuroScore outperforms or is at least comparable to
these scores. We compared AD-NeuroScore with SuStaln (Young et al.,
2021), UMI (Wang et al, 2021), MRDATS (Popuri et al., 2020),
aSTAND-score (Vemuri et al., 2008; Vemuri et al.,, 2008), AD-PS
(Casanova et al., 2018), and the SPARE-AD index (Davatzikos et al.,
2009). SuStaln (Young et al., 20142014; Young et al., 2021) utilizes
multi-modal disease data from several data sources and acquisition
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Table 5

Relationship Between AD-NeuroScore and Longitudinal Diagnosis Transitions.
Sensitivity to diagnostic transition category assessed using pairwise, two-tailed
t-tests performed between groups with a stable or declining diagnosis from
baseline, at each respective time point. Resulting z-scores, effect sizes (Cohen’s
d) with 95% confidence intervals (CI)s, and AUC-ROC values with 95% CIs are
included. Performance was evaluated both in the overall experimental cohort
and in sub-groups based on starting diagnosis (CN or MCI). Results using AHV
are included for benchmarking. Significant results from group comparisons are
denoted by * to indicate p < 0.05, ** to indicate p < 0.01, and *** to indicate p
< 0.001, Holm-Bonferroni corrected.

Comparison time  Metric AUC Cohen’s Z-score
[95% d [95%
cI] @1}
Stable vs. All 12 ADNS 0.67 0.64 [0.35, —4.35
Decline months [0.53, 0.93]%**
0.80]
AHV 0.65 —0.53 —3.57
[0.50, [-0.81,
0.80] —0.24]1**
24 ADNS 0.71 0.84 [0.61, —7.00
months [0.59, 1.08]%**
0.82]
AHV 0.71 —0.79 —6.58
[0.61, [-1.02,
0.82] —0.55]***
36 ADNS 0.69 0.72 [0.46, —5.42
months [0.53, 0.98]***
0.85]
AHV 0.72 -0.79 —5.88
[0.60, [-1.05,
0.85] —0.52]***
48 ADNS 0.67 0.74 [0.47, —-5.36
months [0.52, 1.01]%**
0.83]
AHV 0.72 -0.79 —5.66
[0.62, [-1.06,
0.83] —0.51]***
CN 12 ADNS 0.35 —0.06 -0.17
months [0.08, [-0.70,
0.62] 0.59]
AHV 0.72 —0.59 -1.79
[0.35, [-1.23,
1.09] 0.06]
24 ADNS 0.64 0.55[0.08, —2.32
months [0.41, 1.01]
0.88]
AHV 0.74 —0.79 —3.34
[0.53, [-1.26,
0.95] —0.33]**
36 ADNS 0.59 0.34 —0.98
months [0.21, [-0.36,
0.97] 1.05]
AHV 0.78 —0.84 —2.30
[0.46, [-1.57,
1.09] —0.11]
48 ADNS 0.44 0.11 -0.39
months [0.14, [-0.44,
0.75] 0.65]
AHV 0.72 —0.65 -2.34
[0.46, [-1.20,
0.98] —0.10]
MCI 12 ADNS 0.77 1.08 [0.75, —6.39
months [0.65, 1.42]%*
0.90]
AHV 0.68 —0.69 —4.14
[0.51, [-1.02,
0.85] —0.36]***
24 ADNS 0.76 1.05 [0.77, —7.36
months [0.64, 1.34]%*
0.88]
AHV 0.73 —0.85 —5.99
[0.59, [-1.12,
0.86] —0.57]%**
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Table 5 (continued)

Comparison time Metric AUC Cohen’s Z-score
[95% d [95%
(@] CI]
36 ADNS 0.73 0.87 [0.59, —5.99
months [0.62, 1.16]%**
0.84]
AHV 0.73 —0.86 —-5.87
[0.56, [-1.14,
0.90] —0.57]***
48 ADNS 0.73 0.78 [0.46, —4.83
months [0.57, 1.10]%**
0.89]
AHV 0.69 -0.76 —4.71
[0.51, [-1.08,
0.88] —0.44]***

methods with an event-based model to subtype individuals based on
their likelihood to stabilize or decline (Fonteijn et al., 2012). UMI is
derived using a low-rank and sparse subspace decomposition algorithm
to extract common group structure and impose regularization con-
straints from morphological and connectivity features to predict cogni-
tive status decline (Wang et al., 2021). Additionally, MRDATS uses w-
corrected brain ROI volumes in an ensemble-learning algorithm to
arrive at a score between 0 and 1 to indicate CN to dementia progression
(Popuri et al., 2020). The aSTAND-score uses a support vector machine
classifier which takes in SMRI input features such as GM, WM, and CSF
tissue densities and demographic information to assign a numerical
value to classify a patient as CN or AD (Vemuri et al., 2008). AD-PS uses
the same sMRI input features (Casanova et al., 2013) and high dimen-
sional regularized logistic regression to classify a patient as CN or AD
(Casanova et al., 2018). The SPARE-AD index (Davatzikos et al., 2009)
uses high-dimensional pattern classification of volumetric atrophy and
is highly predictive of cognitive status, with its rate of change particu-
larly sensitive in comparisons between CN individuals and patients with
MCI. AD-NeuroScore shares the most similarity with RVI or the ENIGMA
Dot Product (Kochunov et al., 2022), which also weighs a multivariate
sum by a metric describing the effect of a group status with harmonized
phenotypes. However, RVI uses several metrics derived from multiple
scan types, including gray matter thicknesses and fractional anisotropy
values. Furthermore, it averages the hemispheric volumes, which may
lead to loss of interpretable clinical information about laterality.

Although these metrics accurately classify patients, they are not
widely used in clinical settings likely due to various barriers to trans-
lation. These barriers include the use of features that are from multiple
image modalities (Hwang and Park, 2020), are not readily available in
clinics (Eweje et al., 2022), or cannot be inspected by a radiologist to
assure quality (Larson and Boland, 2019). Moreover, many metrics lack
interpretability at both the patient and model levels (Pinto et al., 2022).
Finally, lack of harmonization in data collected on different scanners
significantly hinders the interpretability of inter-site and longitudinal
follow-up in many existing approaches. Fig. 5 provides a visual com-
parison of the features that affect the clinical translatability of AD-
NeuroScore and similar metrics as well as their relative performance.
SPARE-AD is the most accurate, but least translatable score. RVI is the
most translatable of the previous metrics summarized, but AD-
NeuroScore is more so and significantly outperforms it in disease stage
separation.

AD-NeuroScore was developed with the aim of enhancing patient-
level interpretability of sMRI reports, recognizing the importance for
clinicians to fully understand the patient’s condition to make a diagnosis
and treatment plan. An ideal metric should provide an easily under-
standable score, accompanied by a report that breaks down its clinically
relevant features. Fig. 6 demonstrates how AD-NeuroScore can be
broken down, allowing for quick assessment of the harmonized atrophy
pattern that contributes to the total score, making it a useful tool for
clinicians. In addition to facilitating diagnosis, this could be helpful in



G.T. Kress et al.

Neurolmage: Clinical 39 (2023) 103458

Table 6
Comparison Between AD-NeuroScore and Similar Metrics. Each relevant biomarker and its performance are reported as well as the method, input features used, and
AD-NeuroScore benchmark for the performance metric; *** indicate p < 0.001 for the statistical comparison between the performance metric of the related biomarker
and corresponding performance metric of AD-NeuroScore.™ © ¢ ¢
Biomarker = Method Features Comp. Benchmark Performance ADNS
Performance
aSTAND Linear support vector machine (ML) sMRI: GM, WM, and CSF density; CN vs AD Accuracy: 89% Accuracy: 85%
demographics Sensitivity: 88% Sensitivity: 83%
Specificity: 90% Specificity: 86%
AD-PS High dimensional regularized logistic sMRI: GM, WM, and CSF density CN vs AD AUC = 0.89 [0.79, 0.99] AUC =0.91
regression (ML) [0.86, 0.96]
CN vs MCI AUC = 0.70 [0.61, 0.79] AUC = 0.66
[0.59, 0.73]
12 MO: MCI p < 0.001 P < 0.001
stable vs decline
SuStaln Unsupervised learning algorithm (ML) SMRI: regional volumes; MMSE; 12 MO: MCI AUC = 0.76 AUC = 0.77
demographics, CSF: Ap1-42 stable vs decline [0.65, 0.90]
concentration
UMI Low-rank and sparse subspace sMRI: morphology; connectivity 18/24 MO: MCI AUC = 0.749 (18 months) AUC = 0.76 (24
decomposition algorithm stable vs decline months)
MRDATS Ensemble-learning algorithm (ML) sMRI: regional volumes (GM, and CSF); CN vs AD AUC = 0.964" AUC = 0.91
demographics; scanner information [0.86, 0.96]
0-3 YR MCIstable ~ AUC = 0.75 AUC = 0.75"
vs decline
SPARE- High-dimensional pattern classification SMRI: regional volumes (GM, WM, and CN vs MCI® AUC = 0.89 AUC = 0.66
AD using a Support Vector Machine (ML) CSF) [0.59, 0.73]
CN vs AD AUC = 0.98 AUC =0.91
[0.86, 0.96]
12 MO: MCI p < 0.001 P < 0.001
stable vs decline
RVI Correlation of harmonized phenotypes’ sMRI: regional volumes, GM thicknesses;  CN vs AD Cortical thickness model:

effect sizes with their absolute magnitude DTI: FA; demographics

Cohen’s d = 1.28%**
Subcortical GM volume
model: Cohen’s d = 0.81***
WM model: Cohen’s d =
0.90%**

DTI = diffusion tensor imaging; ML = machine learning; VBM = voxel-based morphometry.

@ Statistical comparison was only conducted in training set.

b 0-3 year AUC value was approximated by averaging AUC at 12, 24, and 36 months.

¢ Based on rate of change of SPARE-AD.

targeting treatments.

Apart from its clinical utility, AD-NeuroScore has the potential to
benefit researchers as well. By replacing multiple anatomical regions of
interest (ROIs) with a single endpoint, it can enhance the sensitivity of
research studies while encapsulating more information. Moreover, AD-
NeuroScore could potentially provide an affordable participant
screening tool to capture AD-specific neurodegeneration (Jack et al.,
2016), particularly in retrospective studies lacking amyloid or tau
biomarker data.

There are several important avenues for future research that could
enhance the clinical and research utility of AD-NeuroScore. For instance,
the value of AD-NeuroScore in the differential diagnosis of AD and
related dementias could be explored, including its validation in data that
includes other dementias such as FTD, and its association with
biomarker data. Furthermore, developing norms and cutoffs and
examining the sensitivity of these ranges in combination with modeling
disease progression are important in deploying AD-NeuroScore. To this
end, examining the sensitivity of these ranges in combination with
modeling disease progression through Cox univariate hazard ratios
represents an important future direction of this research. Additionally,
incorporating the rate of change of AD-NeuroScore, a feature inspired by
SPARE-AD (Davatzikos et al., 2009), could be explored in future studies

11

to improve its performance.

However, there are some limitations that need to be addressed in
future research. The sample size of patients with AD was much smaller
than the CN and MCI cohorts, and this number decreased longitudinally,
rendering some later tests underpowered. The AD subset only included
patients with mild AD dementia, leaving more progressed patients
understudied with regards to the metric. Furthermore, repeating this
study in a real-world clinical sample that better represents the AD pa-
tient class at various stages of disease advancement would strengthen
the findings presented in this work.
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Fig. 6. Comparison of AD-NeuroScore breakdown for two patients with AD. Patient A shows relatively greater cortical involvement, especially within parietal and
temporal cortices and with some frontal involvement, while Patient B exhibits relatively greater subcortical involvement. The center of the images represents the AD-
NeuroScore value, and the bar heights depict the unweighted term in the score summation that represents the harmonized atrophy of the corresponding region.

Different parts of the brain are coded by color.

Data availability

Open access to all imaging/clinical data is freely available with the
ADNI. The code is openly available in [repository: “AD-NeuroScore”] at
https://github.com/jbramen/AD-NeuroScore.
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