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Morphometry of brain structures based on magnetic resonance imaging (MRI) data has become an
important tool in neurobiology. Recent multicenter studies in neurodegenerative diseases raised the issue of
the precision of volumetric measures, and their dependence on the scanner properties and imaging protocol.
A large dataset consisting of 1073 MRI examinations in 843 subjects, acquired on 90 scanners at 58 sites, is
analyzed here. A comprehensive set of image quality and content measures is used to describe the influence
of the scanner hardware and imaging protocol on the variability of morphometric measures. Scanners
equipped with array coils show a remarkable advantage over conventional coils in terms of image quality
measures. The signal- and contrast-to-noise ratio in similar systems is equal or slightly better at 1.5 T than
3.0 T, while the white/grey matter tissue contrast is generally better on high-field systems. Repeated MRI
investigations on the same scanner were available in 41 subjects, on different scanners in 172 subjects. The
retest reliability of repeated volumetric measures under the same conditions was found as sufficient to track
changes in longitudinal examinations in individual subjects. Using different acquisition conditions in the
same subject, however, the variance of volumetric measures was up to 10 times greater. Two likely factors
explaining this finding are scanner-dependent geometrical inaccuracies and differences in the white/grey
matter tissue contrast.

© 2009 Elsevier Inc. All rights reserved.
Introduction

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Hua
et al., 2008a,b; Jack et al., 2008; Mueller et al., 2005) is conducting a
large-scale, multicenter, longitudinal study to collect demographic,
cognitive, neuroimaging and genetic data about the progress of AD
and possible conversion of individuals with mild cognitive impair-
ment (MCI), a transitional state between normal aging and dementia
that carries a 4- to 6-fold increased risk, relative to the general
population. Magnetic resonance imaging (MRI) and image analysis
methods can track brain atrophy at multiple time-points, and have
revealed fine-scale anatomical changes associated with cognitive
enter, University of California,
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to the design and implemen-
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decline, e.g., (Fox et al., 2000; Jack et al., 2005). For recent neuro-
biological results of the ADNI study, refer to Hua et al. (2008a,b) and
Leow et al. (2009).

The variance in brain volume found in a healthy population is
much larger than disease-related changes. Compared to the gender-
related difference in brain volume of 8.9%, the difference in brain
volume between AD patients and healthy controls is 2.2%. The age-
related brain loss of 0.17%/year is even a magnitude smaller (Kruggel,
2006). Thus, it is important to investigate the precision of MR imaging.
Most previous studies in anatomical imaging of patient groups and
healthy subjects were conducted at a single site, and comparing
results across studies revealed puzzling unexplained differences, e.g.,
in brain volume of more than 10% or in grey/white matter volume
ratio between 1.0 and 1.5 (Kruggel, 2006).

While multicenter studies can provide additional information over
single center studies due to an increased statistical power, similar
acquisition protocols must be used to avoid possible systematic
differences between sites (Schnack et al., 2005). To demonstrate the
feasibility of multicenter studies, several groups analyzed the
influence of scanning protocols on morphometric results, however,
focusing on global measures (Ewers et al., 2005), relatively small
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subject groups (Han et al., 2006; Schnack et al., 2005), or specific
imaging aspects (Jovicich et al., 2006, 2009; Shuter et al., 2008;
Mortamet et al., 2009) only. The ADNI group diligently defined an
optimized mandatory MPRAGE imaging protocol across all sites (Jack
et al., 2008), and included repeated examinations of the same subject
on the same and different scanners.

In this study, we address the following questions: (1) to what
extent do parameters of the imaging protocol (e.g., scanner device,
head coil, field strength, repetition time, echo time, voxel size)
influence image quality (e.g., signal- and contrast-to-noise ratio,
mutual information of the histogram×gradient magnitude histo-
gram)? (2) How much do imaging protocol and image quality
parameters influence the precision of head compartment volumes
and ratios? (3) Is it possible to trace longitudinal changes in single
subjects, allowing individual risk assessment? Using a comprehensive
set of measures capturing image and segmentation precision, we
analyze the large ADNI database here (1073 MRI datasets of 843
subjects acquired on 90 scanners at 58 sites).

In the following section, we characterize the subject sample and
the MR scanner devices of the ADNI study, list the parameters studied
here, and discuss the processing and analysis methods. The next
section is devoted to an in-depth discussion of the statistical
investigation and aims to assemble a comprehensive view of factors
influencing the precision of imaging results. Conclusions of this
analysis are drawn in the final section.

Materials and methods

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public-private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.
Table 1
List of the 17 scanner types included in this study, specified by manufacturer, device name

Manufacturer Device Coil B0 [T] Sites Examinations

∑ ♀

General Electric Excite HD 1.5 4 50 9
General Electric Excite PA 1.5 19 276 117
General Electric Excite PA 3.0 5 20 13
General Electric Genesis HD 1.5 6 80 33
General Electric Genesis HD 3.0 1 6 3
General Electric HDx PA 1.5 4 23 11
General Electric HDx PA 3.0 1 3 0
Philips Achieva HD 1.5 2 25 8
Philips Achieva PA 1.5 7 82 25
Philips Achieva PA 3.0 9 48 21
Siemens Allegra HD 2.89 3 29 16
Siemens Avanto PA 1.49 6 66 28
Siemens Sonata HD 1.49 4 60 28
Siemens Sonata PA 1.49 3 47 15
Siemens Symphony HD 1.49 2 36 21
Siemens Symphony PA 1.49 9 129 71
Siemens Trio PA 2.89 13 93 48
Totals 98 1073 467

A total of 1073 examinations on 98 scanners are detailed by sites in column 5, subject in colu
conventional (quadrature birdcage) head coils, and PA for 8-channel phased array head co
The Principle Investigator of this initiative is Michael W. Weiner,
M.D., VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to
participate in the research—approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people withMCI to be
followed for 3 years, and 200 people with early AD to be followed for
2 years. For up-to-date information see www.adni-info.org.

Subject sample, imaging devices and paramaters

The ADNI dataset (Jack et al., 2008) studied here includes 1073MRI
datasets of 843 subjects: 357 females (age: 74.8±6.9 years, body
weight: 65.9±12.1 kg; 113 healthy controls, 149 MCI patients, 95 AD
patients) and 486 males (age: 75.6±6.9 years, body weight: 81.3±
15.4 kg; 119 healthy controls, 264 MCI patients, 103 AD patients). For
the clinical definition of Alzheimer's disease (AD) and mild cognitive
impairment (MCI) in this study, refer to Mueller et al. (2005).

Datasets were acquired on 98 scanners at 58 participating sites.
Devices from the following manufacturers were used: General Electric
(GE: Chalfont St. Giles, UK), Philips Medical Systems (PMS: Best,
Netherlands), Siemens (SIE: Erlangen,Germany). For thepurposeof this
study, scanner hardware (denoted as sh) is encoded as the combination
of device, coil and field strength. Details of the 17 systems included here
are compiled in Table 1. An MPRAGE imaging protocol was used on all
scanners (Jack et al., 2008). An example protocol is given for a Philips
Achieva 3T scanner, equipped with a SENSE head coil, MPRAGE
sequence, field-of-view 250 mm, matrix 256×256, 170 sagittal slices,
1.20mm slice thickness, repetition time (TR) 6.802ms, echo time (TE)
3.158ms, flip angle 8 degrees. Detailed lists of all protocol information
is publicly available (http://www.loni.ucla.edu:/ADNI/Research/
Cores/). For the number of examinations, demographic information
and clinical status per scanner hardware, refer to Table 1.

Collection of study variables

The set of variables analyzed in this study and their source is
compiled in Table 2. Data were extracted from DICOM image files,
ADNI database annotations exported as XML files, reported or derived
quality measures (qc) in the original datasets, and compartment
volumes from image segmentation (seg).
, head coil, and field strength.

Clinical status Age Encoding

♂ Normal MCI AD

41 13 23 14 73.3±8.0 Excite HD 1.5T
159 78 130 68 75.3±6.9 Excite PA 1.5T

7 10 6 4 77.0±5.3 Excite PA 3.0T
47 19 44 17 74.9±6.6 Genesis HD 1.5T
3 2 2 2 74.8±6.5 Genesis HD 3.0T

13 2 13 8 73.6±6.6 HDx PA 1.5T
3 2 1 0 74.3±2.6 HDx PA 3.0T

17 8 9 8 72.5±5.2 Achieva HD 1.5T
57 24 42 24 76.0±6.6 Achieva PA 1.5T
27 16 22 10 73.5±7.5 Achieva PA 3.0T
13 10 14 5 75.6±8.0 Allegra HD 3.0T
38 22 19 15 74.8±7.1 Avanto PA 1.5T
32 15 28 17 76.4±6.2 Sonata HD 1.5T
32 11 28 8 75.9±7.6 Sonata PA 1.5T
15 9 19 8 74.3±5.8 Symphony HD 1.5T
58 38 63 28 76.7±6.8 Symphony PA 1.5T
45 21 51 21 74.6±7.0 Trio PA 3.0T

606 300 524 249 75.2±6.0

mns 6–8, and clinical status in columns 9–11. MR coils types are abbreviated as HD for
ils.

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.adni-info.org
http://www.loni.ucla.edu


Table 2
Compilation of the variables, their meaning and origin in this study. Refer to the text for
further explanation.

Variable Meaning Source Relation Unit/factor levels

age Subject age XML Subject Years
gender Gender XML Subject m/f
weight Subject weight XML Subject kg
grp Clinical group XML Subject Normal/MCI/AD
dc Device/coil combination DICOM Device –

fs Field strength DICOM Device T
tr Repetition time DICOM Protocol ms
te Echo time DICOM Protocol ms
vs Voxel size DICOM Protocol mm3

snr Signal/noise ratio qc Protocol –

cnr Contrast/noise ratio qc Protocol –

mi Mutual information qc Protocol –

wgc WM/GM contrast ratio seg Study –

csfv CSF volume seg Study ml
icv intracranial volume seg Study ml
gmv GM volume seg Study ml
wmv WM volume seg Study ml
brv (GM+WM) volume seg Study ml
gwr gmv/wmv ratio seg Study –

brr brv/icv ratio seg Study –
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Imaging quality parameters were determined as follows: DICOM
images were converted into BRIAN format (Kruggel and Lohmann,
1996). From the converted “raw” images, a gradient magnitude image
was computed using central differences. A joint intensity×gradient
magnitude histogram was computed in 256×256 bins, discarding 5%
of the highest intensity and gradient voxels. The absolute noise level is
determined from the first peak in the marginalized gradient
magnitude histogram (Gudbjartsson and Patz, 1995). In the margin-
alized intensity histogram, the prominent intensity peaks (class 1:
roughly corresponding to grey matter (GM), muscles, and connective
tissue; class 2: white matter (WM), and fat) were determined using a
Gaussian mixture model (Bishop, 1995). The absolute signal level is
defined as themean of the intensity distribution of classes 1 and 2; the
absolute contrast is the difference of the mean intensity of classes 1
and 2. The signal-to-noise ratio (SNR) is determined as the quotient of
the absolute signal and absolute noise, the contrast-to-noise ratio
(CNR) likewise. Themutual information (MI) (Press et al., 2007) of the
joint histogram is a general parameter describing image quality: in an
ideal image with n intensity classes without noise, intensity
inhomogeneities, partial volume effect and an ideal point spread
function, this joint histogram would consist of n peaks. Any deviance
from ideal conditions smooths out peaks, and decreases the
(negative) mutual information. Thus, higher MI values correspond
to a better image quality.

Datasets were aligned with the stereotaxic coordinate system
and interpolated to an isotropic voxel size of 1 mm using fourth-
order b-spline interpolation (Kruggel and von Cramon, 1999). The
outer hulls of the brain were removed using a registration-based
approach (Hentschel and Kruggel, 2004), yielding a mask of the
intracranial compartment (IC). This compartmentwas segmented into
three classes using the “Fuzzy and Noise Tolerant Adaptive Segmen-
tation Method (FANTASM)” (Pham, 2001). This algorithm produces a
soft segmentationwhile simultaneously adapting to intensity inhomo-
geneities in the image. Constraints on the gain field are imposed to
ensure that the estimated field is smooth and slowly varying. A
Tikhonov-Phillips regularization in a multigrid approach is used here.
Optimal values for the smoothness parameters α and β were derived
by maximizing MI in the output image, and were fixed for the whole
sample. Robustness to noise is achieved by including a term in the
objective function that regularizes the class membership value of a
voxel based on the values in its neighborhood. On output, three
probability images are obtained that correspond to the likelihood that
a voxel contributes to compartments 0 (CSF), 1 (GM), and 2 (WM).
Compartment volumes were determined by integrating the voxelwise
compartment probabilities over the IC domain. The WM/GM contrast
ratiowgc is computed as the ratio of the average intensities of class 2 to
class 1.

We used the statistics software R (The R Foundation for Statistical
Computing, ISBN 3-900051-07-0) to evaluate data. Model selection
was performed by eliminating variables with the least influence,
based on the adjusted R2 (linear models) or Akaike's Information
Criterion (AIC, linear mixed effect models). Except where noted, we
discuss only strong influences only that have error rates on the null
hypothesis of pb0.001 and/or explain at least 1% of the total variance.
Processing was performed on a 10-node cluster (2×AMD64, 2.4 GHz
processor, Linux 2.6.25 operating system, 4 GB RAM per node). The
image processing chain takes about 12 min of computation time per
dataset.

Results

The results of these analyses in the following sections are
organized around the three previously identified questions. Thus we
explored the relationships between device-related and subject-
related parameters first; then the relationship between the protocol
parameters and the image quality measures and; and finally the most
important question, the relationship between the segmented com-
partment volumes and the scanner hardware and protocol imple-
mentation. We refine our analysis by selecting two subgroups of the
ADNI dataset: (1) subjects examined twice using the same conditions,
and (2) subjects examined twice on different scanners. This allows
determining the precision of brain compartment measures and the
factors that impact precision.

Independence of subjects, devices, and imaging protocol

Ideally, subject-related variables (age, gen, grp, weight) should be
independent of parameters of the imaging protocol (sh, tr, te, vs).

More males than females were included in the sample, especially
in the MCI group. Age was not different between gender and clinical
groups. Healthy controls were significantly heavier (+4.4 kg,
p=0.0002) than MCI (+2.2 kg, n.s.) or AD patients. There is a loss
of weight with age in males (−0.30 kg/y, p=0.0073) that is smaller
and non-significant in females. Gender is not balanced across clinical
groups, scanner types and participating sites. Due to this imbalance,
there is an interaction between body weight, scanner hardware and
study site.

Protocol parameters repetition time tr, echo time te and voxel size
vs trivially depend on the scanner configuration sh. With the exception
of weight, protocol parameters are independent of subject variables.

Impact of scanner hardware on image quality

Image quality was rated by the SNR, CNR, and the mutual
information MI of the intensity×gradient magnitude histogram.
Higher values in all quality measures correspond to better image
quality. The influence of scanner hardware sh and protocol parameters
protocol (tr, te, vs) on image quality (snr, cnr, mi) was examined.
Because the MPRAGE protocol was used for all examinations, protocol
parameters tr, te, and vs are highly correlatedwith the scanner type sh.

The SNR is foremost dependent on the scanner hardware sh (see
Fig. 1) and alone explains 74% of the variance. The relative
performance of the systems is ranked on the right. Ties are given if
results are statistically not different (t test, unequal variance, signifi-
cance level p=0.05). Array coils (PA) offer a significant advantage
over conventional coils (HD). Comparing the SNR on similar devices
operating at different field strengths, 1.5T systems are equal or better
than 3.0T systems (e.g., Achieva PA, HDx PA, Excite PA). Overall
examinations, SNRdecreaseswith field strength (−28.5/T), echo time



Fig. 1. Dependency of signal-to-noise ratio (SNR) on scanner hardware, sorted by median. Bars in this boxplot denote the median, boxes the 25%/75% quartiles, whiskers the
minimum/maximum range. Rankings are shown on the right. Ties denote non-significant differences (p=0.05). Refer to Table 1 for device parameters and a description of the
subject sample.
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(−45.2/ms), and increases with repetition time (+11.3/ms) and
voxel size (+29.8/mm3).

The CNR depends on the scanner type only, explaining 65% of the
variance. Using array coils leads to a profound contrast increase (see
Fig. 2) (e.g., Achieva PA vs. Achieva HD, Excite PA vs. Excite HD, Sonata
PA vs. Sonata HD). Again, 1.5T systems are equal or better than 3.0T
systems (e.g., Achieva PA, HDx PA, Excite PA). Over all examinations,
CNR decreases with field strength (−0.47/T), echo time (−0.90/ms),
and increases with repetition time (+2.36/ms) and voxel size
(+3.02/mm3). The marked differences in this ratio across systems
are–to a large extent–due to differences in the absolute noise level,
although significant differences in the WM/GM contrast ratio are
found as well (see below).
Fig. 2. Dependency of contrast-to-noise ratio (CNR) on scanner hardware, sorted by media
minimum/maximum range. Rankings are shown on the right. Ties denote non-significant
subject sample.
The overall quality measure MI is compared across scanner
hardware in Fig. 3, and again demonstrates the advantage of using
array coils, especially on Philips Achieva systems. The scanner
hardware explains 85% of the variance alone. Overall examinations,
MI decreaseswithfield strength (−0.024/T), echo time (−0.073/ms),
and increases with repetition time (+0.021/s) and voxel size
(+0.057/mm3).

The white/grey matter contrast ratio wgc in segmented and
inhomogeneity-corrected images across scanner hardware is com-
piled in Fig. 4). Here, a higher field strength offers a relative advantage
on similar systems (e.g., Achieva PA, Genesis HD, HDx PA) while using
array coils does not offer an improvement over conventional coils (e.g.,
Sonata 1.5T, Excite 1.5T, Achieva 1.5T, Symphony 1.5T). Over all
n. Bars in this boxplot denote the median, boxes the 25%/75% quartiles, whiskers the
differences (p=0.05). Refer to Table 1 for device parameters and a description of the



Fig. 3. Dependency of mutual information (MI) on scanner hardware, sorted by median. Bars in this boxplot denote the median, boxes the 25%/75% quartiles, whiskers the
minimum/maximum range. Rankings are shown on the right. Ties denote non-significant differences (p=0.05). Refer to Table 1 for device parameters and a description of the
subject sample.
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examinations, theWM/GMcontrast ratio increaseswith field strength
(+0.161/T), echo time (+0.191/ms), and decreases with repetition
time (−0.050/ms) and voxel size (−0.157/mm3). The Philips Achieva
3.0T system offers an exceptional contrast.

In summary, using array coils leads to a remarkable improvement
in image quality as measured by SNR, CNR, and MI. Quality measures
SNR and CNR in similar systems are equal or slightly better at 1.5T
than 3.0T, while the MI and the WM/GM contrast ratio are generally
better on high-field systems. The Philips Achieva 3.0T system was
ranked best over all measures.

Disregarding the confounded variable weight, subject-related
variables (age, gender, clinical group) do not influence image quality
parameters.
Fig. 4. White/grey matter contrast ratio (WGC) on scanner hardware, sorted by median.
minimum/maximum range. Rankings are shown on the right. Ties denote non-significant
subject sample.
Impact of imaging protocol on compartment volume precision

Ideally, image content (i.e., brain compartment volumes) should
be independent of the scanner hardware and protocol implementa-
tion. Compartment volumes icv, brv, gmv, wmv and the ratios brr
(brain/intracranial volume) and gwr (GM/WM matter ratio) were
tested against hardware-, protocol- and subject-related parameters.
Results are compiled in Table 3. The most parsimonous models
explained between 44 and 68% of the total variance, of which about
22% correspond to subject-related variables, the rest is scanner- and
protocol-related.

The intracranial volume depends only on gender and weight—an
effect that is explained by their correlation with body volume. The
Bars in this boxplot denote the median, boxes the 25%/75% quartiles, whiskers the
differences (p=0.05). Refer to Table 1 for device parameters and a description of the



Table 3
Dependency of compartment volumes and ratios on subject and protocol parameters.

icv (ml) brv (ml) gmv (ml) wmv (ml) brr (%) gwr (%)

Sample mean 1616.0 1195.3 555.4 604.7 71.5 93.9
Age (years) n.s −3.48 −1.21 −2.27 −0.170 0.150
Gender (f–m) 142.3 106.0 41.3 65.0 n.s −3.45
Group (AD-MCI) n.s 18.7 13.3 n.s 0.856 1.33
Group (AD-Normal) n.s 38.2 30.8 n.s 2.16 4.29
Body weight (kg) 2.78 1.64 0.802 0.888 −0.015 n.s
Field strength (T) n.s n.s 30.5 −24.0 0.820 9.89
WM/GM contrast ratio n.s −406.0 −111.4 −324.1 −27.5 32.8
Exp. variance (%) 44.2 48.0 48.1 59.9 55.0 68.6

Data in the first line are grand means in the sample, and may be used to relate to the regression coefficients in the subsequent lines (entries n.s. denote insignificant coefficients).
Entries for categorial factors (gender, group) are differences ”from-to”, e.g., males have an ICV that is 142.3 ml larger.
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absolute brain volume brv is larger in males, while the relative brain
volume brrnormalizes against bodyweight and is gender-independent.
There is an age-related loss of brain tissue of about 0.35%/year which is
stronger inWMthanGM.Degenerative processes inWMlead to a signal
decrease in T1-weighted images, and the intensity-based segmentation
used here may address any lesions to the GM compartment. This
explanation is supported by the finding that the GM loss but not the
WM loss is dependent on the clinical group. Compared to the normal
group, MCI patients have a loss −1.56% in brain volume, and AD
patients a loss of −3.20%.

A major device- and protocol-related influence on compartment
volumes is the contrast ratio wgc. A change in the average contrast of
1.48 by 6% (corresponding to the standard deviation of wgc in the
sample) leads to a change in computed brain volume by 24ml (or 2%).
Other intensity parameters (e.g., GM or WM intensity) or contrast
parameters (e.g., SNR, CNR) may replace wgc here, albeit at a lower
significance level. Differences between scanner hardware were not
significant, except for Excite PA and HDx PA scanners. The GM/WM
ratio gwr is −19% lower in these systems, corresponding to a lower
gmv of −7.5%, a higher wmv of +11.5%, and a total increase in the
brain ratio brr by 2.7%.
Fig. 5. Axial (column 1) and coronal (column 2) sections of the same subject, examined on
corresponding probability images of the GM class. A better WM/GM contrast on the Achiev
The impact of scanner type on compartment volumes was
studied further by focusing on two systems, Excite PA and Achieva
PA, for which 426 examinations were available at 1.5T and 3.0T (see
Table 1). The WM/GM contrast ratio on both systems is similar at
1.5T, and almost independent of field strength on the Excite system
(+0.024/T), in contrast to the Achieva system (+0.161/T). This
field-dependent effect could not be explained by differences in TR
and TE settings alone. The average brain volume is similar at 1.5T
(Excite: 1194 ml, Achieva: 1170 ml, p=0.07), and only slightly
different at 3.0T (Excite: 1148 ml, Achieva: 1073 ml, p=0.02). The
GMV is (roughly) similar on all systems (Excite: 513 ml (1.5T),
547 ml (3.0T), Achieva: 566 ml (1.5T), 577 ml (3.0T), n.s.), but the
WMV differs strongly (Excite: 681 ml (1.5T), 601 ml (3.0T),
Achieva: 604 ml (1.5T), 496 ml (3.0T), p=0). The difference in
WMV largely explains the difference in the GM/WM ratio described
above.

Inspection reveals that the higher WM/GM contrast on Philips
systems at 3.0T leads to a better delineation of the grey/white matter
boundaries. An example is shown in Fig. 5: The same subject is
examined on an Achieva PA 3.0T (top) and an Excite PA 1.5T system
(below).
a Achieva PA 3.0T (top) and Excite PA 1.5T system (below). Columns 3 and 4 show the
a system leads to a better delineation of the GM cortical layer.



Table 5
Absolute within-subject variability (in %) of compartment volumes and ratios for
repeated scans on the same scanner. Quantiles of the distributions are tabulated.

Parameter Quantile Std. Dev.

10% 50% 90% (%)

Intracranial volume 0.037 0.286 1.27 0.49
Brain volume 0.031 0.296 1.09 0.47
GM volume 0.257 0.788 2.49 0.82
WM volume 0.181 0.088 1.40 0.69
Brain ratio 0.061 0.191 0.57 0.21
GM/WM ratio 0.374 1.288 3.51 1.33
WM/GM contrast 0.064 0.403 1.24 0.76
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Except for GE scanners, compartment volumes and ratios are
similar over all examinations, and thus, independent of the scanning
protocol. GE scanners yield larger compartment volumes and a much
lower GM/WM ratio. The well-described age-, gender- and group-
related influence on compartment volumes and ratios is replicated and
confirmed here. Including protocol-related factors when analyzing
compartment volumes and ratios yields regression models that
explain a much higher proportion of the variance, and leads to more
precise estimates of regression coefficients with tighter error bounds.
Now, we render these findings more precisely by analyzing results of
repeated examinations of the same subject on the same and on
different scanners.

Compartment volume intra-scanner variability

A group of subjects were scanned on the same device using the
same protocol within a short timeframe (on average 30 days). Of the
43 subjects in the database with repeated scans, two were excluded
for quality annotations. Scanner hardware, sites and demographic
data of the remaining 82 examinations in 41 subjects are compiled in
Table 4, columns ”Retest same scanner”.

Volumetric data and ratios of paired examinations were converted
into within-subject variability by dividing the absolute within-subject
difference by the within-subject mean for a given parameter d,
expressed in percent: dvar=200|d2−d1|/d1+d2, where d1 corre-
sponds to a measure obtained in examination 1, and d2 to the result of
the second examination. The within-subject variability of the
compartment volumes icv, brv, gmv, wmv and the ratios brr, gwr did
not depend on scanner hardware, protocol parameters and subject
variables, except for the contrast ratio wgc that had a weak influence
(p=0.014) on the variability of GM and WM volumes. Quantiles of
the parameter distributions were determined for all variability
measures and are compiled in Table 5. Although absolute differences
are not normally distributed, we included the standard deviation (in
%, relative to the mean) for informational purposes.

This examination-dependent variability of the volumetric and
ratio measures can be used as a lower error bound in longitudinal
studies. For example, the standard deviation of the intra-subject
difference in the brain ratio is 0.21%. Thus, a change in the brain ratio
of 0.42% in a longitudinal study of a single subject may be considered
as significant based on an error probability of 5%. Comparing this
figure with the overall age-related decrease in brr of −0.17%/year,
longitudinal changes become significantly detectable after 3 years.
Table 4
Retest examinations on the same scanner (columns 2–8) and on different scanners (colu
examinations (columns 3–5, 10–12), and clinical status (columns 6–8, 13–15).

Scanner hardware Retest same scanner

Sites ∑ ♀ ♂ Normal MCI

Excite HD 1.5T 2 6 0 6 2 0
Excite PA 1.5T 5 20 4 16 6 8
Excite PA 3.0T 0 0 0 0 0 0
Genesis HD 1.5T 1 4 0 4 0 4
Genesis HD 3.0T 0 0 0 0 0 0
HDx PA 1.5T 0 0 0 0 0 0
HDx PA 3.0T 0 0 0 0 0 0
Achieva HD 1.5T 0 2 0 2 0 3
Achieva PA 1.5T 4 10 6 4 4 6
Achieva PA 3.0T 0 0 0 0 0 0
Allegra HD 3.0T 0 0 0 0 0 0
Avanto PA 1.5T 1 4 0 4 2 2
Sonata HD 1.5T 0 0 0 0 0 0
Sonata PA 1.5T 1 2 2 0 0 2
Symphony HD 1.5T 0 0 0 0 0 0
Symphony PA 1.5T 2 4 4 0 0 2
Trio PA 3.0T 1 30 16 14 6 18
Totals 17 82 32 50 18 46

Note that each subject was scanned twice, i.e., each subject is counted twice in this table. S
The higher variability in GMV and WMV is explained by the influence
of the contrast on the segmentation: a greater contrast results in a
lower variability of GMV and WMV estimates.

Sorting the median of the parameters included in Table 5 by
clinical status, a typical ordering of NormalbMCIbAD was found, i.e.,
normal controls have a better retest reliability. However, differences
between groups are not significant (Wilcoxon rank sum test,
p=0.05). Likewise, the retest reliability is statistically not signifi-
cantly different across scanners. Note that the number of subjects per
system is small for most scanner types, so this result should be taken
with care.

Compartment volume inter-scanner variability

A group of subjects were scanned on different scanners within a
short timeframe (on average 30 days). Scanner hardware, sites and
demographic data of 344 examinations in 172 subjects are compiled
in Table 4, columns 9–15. Paired results were converted into within-
subject variability as described in the previous section are compiled as
quantiles in Table 6).

Comparing with Table 5, a striking difference is revealed: intra-
subject variances are an order of magnitude higher in cross-scan
conditions than in repeated scans under the same conditions. If
different scanners on the order of those seen here (a 1.5T to 3T
upgrade, for example) are used in a longitudinal study, a change in
brain ratio of 7.8% is necessary based on a significance level of 5%. This
amount corresponds to the expected loss of brain volume in a healthy
population over 30 years (Kruggel, 2006). Now, we re-examine the
scanner impact of compartment volumes initially described in section
“Impact of imaging protocol on compartment volume precision”.
mns 9–15), detailed per scanner type by number of sites (columns 2, 9), number of

Retest different scanner

AD Sites ∑ ♀ ♂ Normal MCI AD

4 1 2 0 2 0 1 1
6 10 82 42 40 27 36 19
0 4 17 10 7 8 6 3
0 3 14 7 7 3 7 4
0 1 6 3 3 2 2 2
0 1 3 2 1 2 0 1
0 1 3 0 3 2 1 0
0 1 5 3 2 3 1 1
0 4 18 4 14 6 9 3
0 8 44 19 25 15 19 10
0 3 29 16 13 10 14 5
0 2 3 1 2 2 1 0
0 2 8 6 2 2 1 5
0 1 5 3 2 1 4 0
0 2 25 14 11 6 15 4
2 2 7 4 3 2 5 0
6 13 73 38 35 17 38 18

18 59 344 172 172 108 160 76

ome subjects took part in both retests, so some of the examinations are counted twice.



Table 6
Absolute within-subject variability (in %) of compartment volumes and ratios for
repeated scans on different scanners. Quantiles of the distributions are tabulated.

Parameter Quantile Std. Dev.

10% 50% 90% (%)

Intracranial volume 0.47 1.66 3.92 1.57
Brain volume 0.65 4.76 12.34 4.64
GM volume 1.77 7.80 20.9 7.11
WM volume 4.80 15.2 32.9 11.9
Brain ratio 0.42 3.64 10.2 3.91
GM/WM ratio 10.43 22.7 50.5 16.4
WM/GM contrast 0.64 3.97 16.9 6.52

Fig. 6. Grey/white matter volume ratio vs. brain ratio for different scanner hardware.
Solid ellipses correspond to the 2σ variance for repeated scans on the same scanner,
dotted ellipses correspond to the 2σ variance on the same scanner hardware, pooled
across sites. Refer to Table 4 for the number of sites and examinations per scanner type.
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To allow a fair comparison, systems with less than 10 examina-
tions were excluded (refer to Table 4). To separate within- and
between-subject variability, linear mixed effect models (Baayen et al.,
2008) were computed, using age, gender and body weight as
covariates, and subject as random factor into account. Results are
compiled in Table 7.

Differences in brain compartment volumes of the same subject
scanned on different systems are best understood by remembering
that compartments have two large boundaries, the WM/GM and
GM/CSF interface. A minute shift of 0.1 mm in a cortex of 3 mm
thickness leads to a change in the cortical volume of about 3% (or
20 ml). The direction of the differences in compartment volumes
found for the Excite PA 1.5T system (see Table 7) can be explained by
a relative boundary shift outwards from the WM to the GM and the
GM to CSF, leading to a relative increase in wmv and brv at the
expense of the GM compartment. The opposite effect is seen on
Achieva PA 3.0T and Allegra HD 3.0T systems, with a relative
decrease in wmv and brv, without affecting gmv. A shift between the
GM/CSF boundary is found on Genesis HD 1.5T, resulting in a
decrease in brv and gmv. Finally, a shift of the GM/WM boundary
explains results obtained on Trio PA 3.0T systems, with an increase of
gmv at the expense of the WM compartment. These boundary shifts
also explain the differences found in the brain ratio (dbrr) and grey/
white matter volume ratio (dgwr).

The GM/WM volume ratio gwr vs. the brain ratio brr is plotted for
these scanner types in Fig. 6. Solid ellipses correspond to the within-
scanner variance for repeated scans of the same subject on the same
scanner; dotted ellipses correspond to the variance pooled across site
with the same scanner hardware, corrected for influences of age,
gender, clinical status, and body weight. Note that gwr is about 20%
lower on Excite PA 1.5T, and about 20% higher on Achieva PA 3.0T,
Allegra HD 3.0T, and Trio PA 3.0T. These scanner-related differences
explain the large intra-subject variances found for retests of the same
subject on different scanners.

A likely reason for these shifts between compartments are the
remarkable differences in the tissue contrast. Two 3.0T systems with
the highest tissue contrast (Achieva PA, Allegra HD) show similar
differences in compartment volumes, while the Excite PA 1.5T system
has a low tissue contrast and shows the opposite differences. The
much higher variance in compartment volumes across sites than
Table 7
Within-subject variability of compartment volumes and ratios for repeated scans on differe

Scanner hardware dicv (ml) dbrv (ml) dgmv (ml)

Excite PA 1.5T −73.4⁎ 31.2⁎ −51.8⁎⁎⁎
Excite PA 3.0T n.s. n.s. n.s.
Genesis HD 1.5T n.s. −54.5⁎⁎⁎ −44.0⁎⁎
Achieva PA 3.0T −46.0⁎⁎ −117.0⁎⁎⁎ n.s.
Allegra HD 3.0T n.s. −56.4⁎⁎⁎ n.s.
Symphony HD 1.5T n.s. n.s. n.s.
Trio PA 3.0T n.s. n.s. 48.0⁎⁎

Results correspond to differences in the respective variable, as determined by linear mixed
significant results for scanner hardware with more than 10 examinations are shown (pb0.
within the same system is best explained by differences in the
geometrical mapping of scanners.

Sorting themedian of the parameters included in Table 5 by clinical
status as described in the previous section does not lead to a typical
ordering, because scanner-dependent influences on compartment
volumes and ratios are much larger than disease-related changes.

Summarizing, the intra-subject variability of compartment
volumes and ratios for scans on different systems is roughly 10
times higher than repeated scans on the same system. Possible factors
explaining this higher variability are scanner-dependent geometrical
inaccuracies and protocol-related differences in tissue contrast,
resulting in differences in GM/WM volume ratios.

Discussion

This is the first report of a quantitative assessment of image and
segmentation precision in anatomical MR brain imaging based on a
large scale multicenter study. We analyzed data acquired by the
Alzheimer's Disease Neuroimaging Initiative (ADNI) for their longi-
tudinal study and focused on the baseline examination. Building on
the experience of previous multicenter studies in anatomical imaging
(e.g., (van Haren et al., 2003; Turner et al., 2006)), the ADNI group
took great care to define an optimized mandatory MPRAGE imaging
protocol across all sites (Jack et al., 2008).

Although factors influencing MR image quality are well known,
this study provides a quantitative analysis of multicenter data. The
questionsmotivating this study are: (1) Towhat extent do parameters
of the imaging protocol (e.g., scanner hardware, TR, TE, voxel size)
influence image quality (e.g., SNR, CNR, MI, tissue contrast)? (2) How
nt scanners.

dwmv (ml) dbrr (%) dgwr (%) dwgc (%)

87.2⁎⁎⁎ 2.65⁎⁎⁎ −19.7⁎⁎⁎ n.s.
n.s. n.s. n.s. n.s.
n.s. −2.72⁎⁎⁎ n.s. n.s.
−109.4⁎⁎⁎ −5.18⁎⁎⁎ 21.2⁎⁎⁎ 23.5⁎⁎⁎
−79.2⁎⁎⁎ −2.43⁎⁎⁎ 21.2⁎⁎⁎ 11.8⁎⁎⁎

n.s. n.s. n.s. 5.0⁎⁎
−47.3⁎⁎ n.s. 19.0⁎⁎⁎ 3.2⁎

effects models using age, gender, clinical status, and body weight as covariates. Only
05: ⁎, pb0.01: ⁎⁎, pb0.001: ⁎⁎⁎.



Fig. 7. A subject was scanned twice on a Excite PA 1.5T system, and once on a Allegra HD
3.0T system. Data were linearly registered to a common reference and subtracted to
yield the within-system difference (top), and the across-system difference (below).
Note the much larger difference due to a different WM/GM contrast and the intense
lines along compartment boundaries that indicate a system-related shift.
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much do imaging protocol and quality parameters affect segmenta-
tion results (e.g., compartment volumes and ratios)? (3) Is it possible
to trace longitudinal changes in single subjects, allowing an individual
risk assessment?

We summarize our results as follows:

• We categorize scanner hardware sh as the combination of device,
coil type and field strength. Due to the optimized imaging protocol
in this study, protocol parameters repetition time tr, echo time te
and voxel size vs are highly correlated with the scanner hardware
sh. This parameter typically explains 30–50% of the variance of any
independent variable studied here. Including sh as covariate
improved regression models enormously, and led to tighter error
bounds on (other) interesting dependent factors. In conclusion, it
is important to include sh in statistical models when analyzing
multicenter MRI data.

• Despite the standardized protocol, differences across scanners in
image quality parameters are considerable, and readily confirmed
by visual inspection. Array coils (PA) offer a remarkable advantage
over conventional coils (HD) in terms of absolute image noise, and
thus, result in a better SNR and CNR. High-field systems generally
offer a higher WM/GM contrast ratio, and HD coils have a slight
advantage over PA coils here. In summary, systems with PA coils
and 3.0T field strength typically rank highest in terms of imaging
quality.

• It is well known that absolute volumes of head compartments are
correlated with body size, and thus, with gender (Kruggel, 2006).
Although body height measures were not available here, body
weight was used as a presumably weaker correlate. It is well
understood that an imaging study can hardly be balanced for
gender and clinical group vs. scanner hardware. As a consequence,
body weight was an important confound on all absolute
compartment measures. Normalizing against the intracranial
volume largely removes the weight- and gender dependence.
Because the brain ratio has a maximum of 87.6% during the third
decade of life, its actual value may also serve to estimate the
overall brain atrophy. Normalizing against the brain volume is not
advised, because an atrophy in specific structures (e.g., the
temporal lobe) will result in a positive bias in unaffected
structures.

The well-described age-, gender- and group-related influences on
compartment volumes and ratios are replicated and confirmed here
(Ewers et al., 2005; Hua et al., 2008; Kruggel, 2006). Because atrophy
rates are small (−0.17%/year), including protocol-related factors is
important to find more precise estimates, typically with higher
significance. No significant differences in imaging quality across
clinical groups were found.

• Repeated scans of the same subject under the same protocol
allowed estimating the precision of compartment measures, e.g.,
for the intracranial volume of 0.49%, for the brain ratio of 0.21%
(see Table 5). Relating this figure to the age-related atrophy,
longitudinal changes become significantly detectable in individual
subjects after 3 years. A higher variability in GMV and WMV is
most likely due to an influence of the WM/GM contrast on the
segmentation: datasets with a higher contrast had a lower
variability. Besides the scanner device, other protocol variables
and quality parameters had little influence on compartment
measures (Shuter et al., 2008).

• Repeated scans of the same subject on different scanners revealed
that precision of compartment measures is roughly 10 timesworse
than on the same scanner over time (Ewers et al., 2005; van Haren
et al., 2003; Schnack et al., 2005). Reconsider Fig. 6, where the GM/
WM volume ratio gwr is plotted against the brain ratio brr for
different scanner hardware. The 2σ range of the same-scanner
variability is indicated by solid ellipses, and dotted ellipses denote
the within-scanner variability across different sites—the spread
across systems is remarkable. Possible explanations for this higher
variability are differences in the geometrical mapping of scanners
and protocol-related differences in theWM/GM contrast, resulting
in much different GM/WM volume ratios. Geometrical errors may
be corrected using phantom measurements. The standard ADNI
processing pipeline involves a phantom-based geometric correc-
tion (Jack et al., 2008) that was not applied in this study to provide
an unbiased view. Initial results of this correction (Clarkson et al.,
2009) applied to repeated scans of the same patient under the
same imaging conditions revealed a volumetric correction of much
less than 1%, in line with our findings. However, correcting for
differences in gwr due to the imaging protocol is difficult and
arguable. We selected a subject whowas scanned twice on a Excite
PA 1.5T system, and once on a Allegra HD 3.0T system, registered
the intensity-corrected images using linear registration (including
scaling) to a common reference, and subtracted image pairs (see
Fig. 7). While the within-system difference (top) is small, the
across-system difference (below) is not only due to a different
WM/GM contrast: note the white lines along the WM/GM
boundary that indicate a shift on this boundary across systems.

The considerable differences between systems renders pooling
absolute measures and ratios currently as arguable. Due to the much
lower within-system variability, repeating scans under the same
conditions is strongly advised for a longitudinal study. It is expected
that relative measures, e.g., atrophy rates, are comparable across
systems. This is in line with findings of a multicenter study using
legacy data (Fennema-Notestine et al., 2007). Some of the un-
explained differences in results of previous morphometric studies
may be understood as scanner- and protocol-related.

We are aware of several methodological issues in our study. Most
parameters studied here are given (e.g., subject- and protocol-related
variables) or result from simple calculation over large samples (e.g.,
SNR, CNR, MI, WM/GM contrast) and are considered as robust. In
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order to make an unbiased comparison possible, we used a fairly
simple and automated image segmentation chain. All images were
processed without possible optimization towards a specific imaging
protocol, and it may be possible to reduce some of the variability if a
scanner-optimized processing is used. The low variability of 0.2–0.7%
in the volumetric measures from repeated scans using the same
protocol is well in line with results of other studies (Han et al., 2006;
Kruggel, 2006). The much higher variance across protocols may be
considered as a lack in robustness of the segmentation procedure.
However, a major portion of this variance was explained in terms of
protocol-dependent parameters (e.g., device and field strength) or
robust measures such as the WM/GM contrast ratio. In addition,
image quality measures (SNR, CNR, MI) proved to have little influence
on compartment volume estimates, indicating a considerable stability
of the segmentation algorithm. For an intensity-based method as
employed here, the difficulty of a segmentation problem can be recast
in terms of a tissue separation measure: the white-to-grey matter
intensity difference divided by the sum of the intraclass variances. The
segmentation is easier in images as shown in Fig. 5 (top), and rather
difficult in images as shown below.

Noise levels are best estimated in regions of homogeneous media.
In MR images of the human head, unfortunately, no tissue compart-
ment can be considered as homogeneous: (1) the white matter and
the ventricles show texture that is related to structure at or below the
resolution level of MR imaging; (2) a typical finding in elderly subjects
are diffuse WM lesions; (3) in the background, image imperfections
(e.g., ghost images, pulsation artifacts) lead to local signal changes.
We have chosen to estimate noise in the whole domain of “raw”

images, and consider that our noise measure rather over-estimates
the true noise level.

Coil properties are not uniform in space. As a consequence, the
level of absolute noisemay not be uniform in space. Systems equipped
with phased-array coils apply scanner-internal correctionmechanism
that are largely opaque to the end user. Since we do not know exactly
how the scanner software reconstructed (combined) the images from
the phased array elements, it is hard to predict if our integral noise
measure is an under- or over-estimation of the true noise level (refer
to Roemer et al., 1990 for an in-depth discussion). Thus, we cannot
estimate how much scanner-internal corrections of coil properties
lead to the advantage of using PA coils as demonstrated here.

To keep this analysis straightforward, we did not compare other
segmentation schemes in this paper. We also have processed the data
using the segmentation chain for voxel-basedmorphometry as included
in SPM5 (Ashburner and Friston, 2000), but found unplausible results in
about 10% of the segmentation results. It isworthwhile and necessary to
study the advantage of protocol-specific corrections (e.g., a phantom-
based geometrical correction, parameter optimization) (Han and Fischl,
2006; Jovicich et al., 2006). However, the clinically more realistic
scenario is that a subject is repeatedly scanned on the same scanner by
the same protocol. Because the intra-protocol precision is much higher,
and relative measures (e.g., atrophy rates) are of predominant interest,
pooling results from multicenter studies still appears viable. However,
care is advised when comparing absolute measures.

To avoid a further confound with methodological issues, more
disease-relevant measures (e.g., the neocortical thickness, hippo-
campal volume, (see Han et al., 2006; Leow et al., 2009; Jovicich et al.,
2009)) were not studied here, becausewe expect that influences of the
segmentation method play a larger role here. However, to estimate
subject sample sizes in a power analysis (Fox et al., 2000), such
measures may be more sensitive than the overall brain atrophy rate.

Morphometric methods such as tensor-based morphometry use
nonlinear registration to compute a deformation field that describes
inter-subject differences. Scanner-dependent differences in geo-
metrical mapping are rather large-scale and will increase the overall
variance of the mapping. Thus, this error can and should be corrected
(e.g., based on phantom scans). Protocol-dependent shifts in the
definition of compartment boundaries and differences in theWM/GM
contrast are harder to correct, and lead to differences in the estimation
of compartment volumes, especially of smaller structures such as the
basal ganglia (e.g., the white line on the border of the caudate nucleus
in Fig. 7, below). If possible, the scanner type (the device-coil-field
strength combination used here) should be included as a covariate.

Another possible confound on the GM/WM ratio was not studied
systematically here. Besides the well-described age- and disease-
related cortical atrophy, degenerative effects acting on the white
matter lead to an increase in extracellular volume, and thus, to a
diffuse decrease in signal intensity, and to a higher prevalence of
diffuse white matter lesions. Such diffuse lesions may be incorrectly
classified as ”grey matter” here. This effect may explain the higher
atrophy rate in WM than in GM found here (see Table 3). More
elaborate segmentation schemes (Kruggel et al., 2007) estimate the
lesion load that can be used to compute more correct atrophy rates.

It is highly desirable that imaging results are similar across scanner
systems. However, a number of issues (e.g., technological advance,
patenting) may render this request as unrealistic or even undesirable.
Technological advances, e.g., provided by high-field systems equipped
with array coils, result in a much better image quality, making the
segmentation task easier, and thus, reducing segmentation errors.
Results presented here may stimulate the discussion about a better
standardization in medical imaging.
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