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a b s t r a c t 

In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to cap- 

ture brain structural information for disease diagnosis, i.e. , 1) manually partitioning each MR image into 

a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from each ROI for diag- 

nosis with a certain classifier. However, these pre-defined features often limit the performance of the 

diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective disease-related features. 

In this paper, we propose a landmark-based deep multi-instance learning (LDMIL) framework for brain 

disease diagnosis. Specifically, we first adopt a data-driven learning approach to discover disease-related 

anatomical landmarks in the brain MR images, along with their nearby image patches. Then, our LDMIL 

framework learns an end-to-end MR image classifier for capturing both the local structural information 

conveyed by image patches located by landmarks and the global structural information derived from 

all detected landmarks. We have evaluated our proposed framework on 1526 subjects from three public 

datasets ( i.e. , ADNI-1, ADNI-2, and MIRIAD), and the experimental results show that our framework can 

achieve superior performance over state-of-the-art approaches. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Brain morphometric pattern analysis using structural magnetic

esonance imaging (MRI) data are proven to be effective in iden-

ifying anatomical differences between populations of Alzheimer’s

isease (AD) patients and normal controls (NC), and in helping

valuate the progression of mild cognitive impairment (MCI), a

rodromal stage of AD. In the literature, extensive MRI-based ap-

roaches have been developed to assist clinicians in interpreting

nd assessing structural changes of the brain ( Jack et al., 1999;

shburner and Friston, 20 0 0; Cuingnet et al., 2011; Chu et al.,

012 ). While some of those methods are proposed for funda-

ental MR image analysis ( e.g. , anatomical landmark detection

 Zhang et al., 2017b )), many approaches focus on the implemen-

ation of computer-aided-diagnosis (CAD) systems. 

To support brain disease diagnosis, many types of local or

lobal feature representations have been derived from structural

RI, such as gray matter tissue density maps ( Ashburner and Fris-

on, 20 0 0 ), volume and shape measurements ( Jack et al., 1999;

tiya et al., 2003; Dubois et al., 2015 ), and cortical thickness
∗ Corresponding author. 
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 Cuingnet et al., 2011; Lötjönen et al., 2011; Montagne et al., 2015 ).

hese feature representations can be roughly categorized into three

lasses, including 1) voxel-level, 2) region-of-interest (ROI) level,

nd 3) whole-image-level representations. In particular, voxel-level

eatures attempt to identify brain tissue changes in a voxel-wise

anner, and ROI-level features aim to model structural changes

ithin pre-defined ROIs. As an alternative solution, whole-image-

evel features evaluate changes in the brain by regarding an MR

mage as a whole ( Wolz et al., 2012 ), without considering local

tructures within the MR images. It is noteworthy that the appear-

nce of brain MR images is often globally similar and locally dif-

erent . For instance, it is reported that the early stage of AD only

nduces structural changes in small local regions rather than in the

solated voxels or the whole brain. Hence, feature representations

efined at voxel-level, ROI-level or whole-image-level may not be

ffective in characterizing the early AD-related structural changes

f the brain. 

Recently, several patch-level (an intermediate scale between

oxel-level and ROI-level) features have been proposed to repre-

ent structural MR images for distinguishing AD patients from NCs

 Tong et al., 2014; Coupé et al., 2012; Zhang et al., 2017a ). In these

ethods, all patches from MR images of patients are generally re-

arded as positive samples, while those from MR images of NCs

re regarded as negative samples. In other words, the conventional

https://doi.org/10.1016/j.media.2017.10.005
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Fig. 1. Illustration of the proposed landmark-based deep multi-instance learning (LDMIL) framework using MR imaging data. There are four main components, including 1) 

MR image processing, 2) discriminative landmark discovery, 3) landmark-based instance extraction, and 4) multi-instance convolutional neural network (CNN) classification. 
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patch-based methods usually assign the same class label ( e.g. , AD

patient or NC) to all image patches from the same brain image.

Since not all image patches are necessarily affected by dementia,

class labels for patches could be ambiguous. Accordingly, a previ-

ous study ( Tong et al., 2014 ) adopted multi-instance learning (MIL)

for classification of dementia in brain MRI. As a weakly supervised

approach MIL ( Maron and Lozano-Pérez, 1998 ) constructs classi-

fiers using weakly labeled training patches, i.e. , image-level labels

are used instead of patch-level labels. However, how to select dis-

criminative patches from tens of thousands of patches in each MR

image still remains a challenging problem. Moreover, most of the

existing patch representations ( e.g. , intensity values, and/or mor-

phological features) are based on engineered and empirically pre-

defined features, which are often independent of subsequent clas-

sifier learning procedure. Due to the possible heterogeneous na-

ture of features and classifiers, the pre-defined features may lead

to sub-optimal learning performance for brain disease diagnosis. In

addition, global information of the whole MR image could not be

captured by using only these local patches. In summary, there are

at least three key challenges in patch-based approaches: 1) how

to select informative image patches in an efficient way, 2) how to

capture both local patch-level and global image-level features, and

3) how to integrate feature learning and classifier training jointly. 

We address these three challenges by proposing a landmark-

based deep multi-instance learning (LDMIL) framework. In LDMIL,

we first select discriminative patches from MR images based on

anatomical landmarks, then jointly learn feature representations of

input patches and the subsequent classifier in an end-to-end man-

ner, through which both local and global features of brain MR im-

ages are incorporated. Fig. 1 presents a schematic diagram of our

proposed LDMIL framework. Specifically, after processing MR im-

ages of both training and testing subjects, we discover discrimina-

tive landmarks via a group comparison between AD and NC sub-

jects in the training set. We then extract image patches centered

at selected landmark locations. These patches from the instances in

the MIL terminology, which construct one bag to represent each

specific subject. Note that the whole-image-level (subject-level)

class label is assigned to a bag, rather than all image patches in the

bag. Finally, using the training bags of patches, we design a multi-

instance CNN model for end-to-end classifier learning. For a new

testing subject, we first identify landmarks via the landmark de-

tection algorithm. Then, a bag of patches is extracted from the MR

image of the testing subject and fed to the learned CNN model for

classification. We have evaluated the effectiveness of our proposed

LDMIL framework using baseline MR images in ADNI-1, ADNI-2

( Jack et al., 2008 ), and MIRIAD ( Malone et al., 2013 ) datasets. Ex-

w  
erimental results show that LDMIL outperforms the state-of-the-

rt methods in both AD classification and MCI conversion predic-

ion tasks. 

The rest of the paper is organized as follows. We first briefly in-

roduce relevant studies in Section 2 . In Section 3 , we describe data

sed in this study and illustrate the proposed method. In Section 4 ,

e present experimental settings and show the results of both AD

lassification and MCI conversion prediction tasks. In Section 5 ,

e compare our method with several baseline and state-of-the-art

pproaches, investigate the influences of parameters, and present

imitations of the proposed method. In Section 6 , we conclude this

ork and discuss future research directions. 

. Related work 

In this section, we first review relevant studies on MRI-based

rain disease diagnosis. Then, we review multi-instance learning

pproaches and their applications in the medical imaging analysis

omain. 

.1. MRI-based brain disease diagnosis 

A typical MRI-based CAD system usually contains two essential

omponents, including 1) feature/biomarker extraction from MR

mages, and 2) classifier construction. Most of the existing feature

xtraction methods adopt voxel-level, ROI-level, or whole-image-

evel representations for MR images. Specifically, voxel-wise repre-

entations are independent of any hypothesis on brain structures

 Ashburner and Friston, 20 0 0; Maguire et al., 20 0 0; Baron et al.,

0 01; Klöppel et al., 20 08 ). For instance, voxel-based morphome-

ry measures local tissue ( e.g. , white matter, gray matter, and cere-

rospinal fluid) density of a brain in a voxel-wise manner. The ma-

or challenge of voxel-level representations is that they usually lead

o the over-fitting problem, since there are only limited ( e.g. , tens

r hundreds) subjects with very high ( e.g. , millions) dimensional

eatures ( Friedman et al., 2001 ). In contrast, ROI-level representa-

ions are defined on specific ROIs, based on a specific hypothesis

n abnormal regions of a brain from a structural/functional per-

pective. For instance, a large number of MRI-based studies have

dopted gray matter volume ( Yamasue et al., 2003; Maguire et al.,

0 0 0; Liu et al., 2017; 2015 )), hippocampal volume ( Jack et al.,

992; 1999; Atiya et al., 2003; Dubois et al., 2015 ), and cortical

hickness ( Fischl and Dale, 20 0 0; Cuingnet et al., 2011; Lötjönen

t al., 2011; Montagne et al., 2015 ), to measure regionally anatom-

cal volume in the brain. However, the definition of ROIs generally

equires expert knowledge in practice ( Small et al., 20 0 0 ). Also,

hole-image-level representations are derived by treating an MR
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mage as a whole ( Wolz et al., 2012 ). Due to the globally similar

roperty of brain MR images, this kind of methods could not iden-

ify subtle changes in brain structures. In contrast, patch-level fea-

ures provide an intermediate scale between voxel-level and ROI-

evel for representative MR images. Actually, patch-level biomark-

rs can be regarded as special ROI-based features, where such ROIs

re defined at the scale of local image patches. However, it re-

ains a challenging problem to select informative patches from

R images and to derive discriminative feature representations for

atches. 

On the other hand, there are a large number of studies focus-

ng on designing advanced classifiers for AD-related disease di-

gnosis using MRI data. Among various approaches, support vec-

or machine (SVM), logistic regressors ( e.g. , Lasso, and Elastic Net

 Friedman et al., 2001 )), sparse representation based classification

SRC) ( Wright et al., 2009 ), random forest classifier ( Xiang et al.,

014; Moradi et al., 2015 ) are widely used. To facilitate the classi-

er learning procedure, a number of pre-defined features are usu-

lly first extracted from MR images. However, training a classi-

er independent from the feature extraction process may lead to

ub-optimal learning performance, due to the possible heteroge-

eous nature of classifier and features. In recent years, convolu-

ional neural networks (CNNs) have become very popular for au-

omatically learning representations from large collections of static

mages. However, it is unclear how one may extend these success-

ul CNNs to MRI data for brain disease diagnosis, especially when

he intended task requires capturing discriminative changes of the

rain ( e.g. , local and global structure information). 

.2. Multi-instance learning 

As a weakly supervised learning method, multi-instance learn-

ng (MIL) ( Maron and Lozano-Pérez, 1998; Dietterich et al.,

997 ) attempts to learn a concept from a training set of la-

eled bags , where each bag contains multiple unlabeled instances

 Amores, 2013 ). This means that we do not know the labels of in-

ividual instances extracted from the bag. Also, it is possible that

ot all instances are necessarily relevant to the class label of the

ag. Specifically, in MIL framework, positive bags can contain both

ositive and negative instances, and it is generally guaranteed that

t least one instance is positive. On the other hand, we know that

ll instances in the negative bags are negative in MIL. For example,

nside one bag, there might be instances that do not convey any

nformation about the category of the bag, or that are more re-

ated to other classes, providing confusing information. Compared

ith fully supervised learning methods, MIL has advantages in au-

omatically modeling the fine-grained information and reducing ef-

orts of human annotations. Many MIL approaches have been pro-

osed in the machine learning domain, such as Diverse Density

DD) ( Maron and Lozano-Pérez, 1998 ), EM-DD ( Zhang and Gold-

an, 2001 ), MI-Kernels ( Gärtner et al., 2002 ), SVM-based methods

 Andrews et al., 2002 ), and MIL-Boost ( Zhang et al., 2005; Cheply-

ina et al., 2016 ). 

Recently, MIL has been adopted in the medical imaging anal-

sis domain ( Bi and Liang, 2007; Liu et al., 2010; Lu et al., 2011;

u et al., 2012; Tong et al., 2014; Xu et al., 2014; Yan et al.,

016 ). In Lu et al. (2011) and Xu et al. (2012) , MIL-like methods

ere developed to perform medical image segmentation. In Bi and

iang (2007) , a MIL-based method was proposed to screen pul-

onary embolisms among candidates. Liu et al. (2010) developed a

IL-SVM method to predict cardiac events. Tong et al. (2014) pro-

osed a MIL-like model for dementia classification with brain MRI

ata, by first extracting multiple image patches and then con-

tructing graph kernels for SVM-based classification. This method

dopted intensity values within a patch for feature representation

hat was independent of the subsequent SVM classifier. More re-
ently, a multi-instance deep learning method ( Yan et al., 2016 )

as developed to discover discriminative local anatomies for body-

art recognition. This method consisted of a two-stage CNN model,

here the first-stage CNN was trained in a multi-instance learn-

ng fashion to locate discriminative image patches, and the second-

tage CNN was boosted using those selected patches. 

Inspired by the latest advances in MIL research, we propose a

andmark-based deep multi-instance learning (LDMIL) framework 

or brain disease diagnosis. Different from the previous MIL stud-

es ( Tong et al., 2014; Yan et al., 2016 ), our method can locate dis-

riminative image patches via anatomical landmarks identified by

 data-driven landmark discovery algorithm and does not require

ny pre-defined engineered features for image patches. This is par-

icularly meaningful for medical imaging applications, where anno-

ating discriminative regions in the brain and extracting meaning-

ul features from MRI often require clinical expertise and high cost.

lso, LDMIL is capable of capturing both the local information of

mage patches and the global information of multiple landmarks,

y learning local-to-global representations for MR images layer by

ayer. To the best of our knowledge, it is the first deep multi-

nstance model to integrate landmark-based patch extraction with

ocal-to-global representation learning for MRI-based brain disease

iagnosis. 

. Material and methods 

Here, we first introduce datasets and MR image processing

ipeline used in this study ( Section 3.1 ), and then present the

roposed landmark-based deep multi-instance learning (LDMIL)

ethod including discriminative landmark discovery ( Section 3.2 ),

andmark-based instance extraction ( Section 3.3 ), and a multi-

nstance CNN model ( Section 3.4 ). 

.1. Subjects and image processing 

Three public datasets were used in this study, including 1)

he Alzheimer’s Disease Neuroimaging Initiative-1 (ADNI-1) dataset

 Jack et al., 2008 ), 2) the ADNI-2 dataset ( Jack et al., 2008 ), and

) the MIRIAD (Minimal Interval Resonance Imaging in Alzheimer’s

isease) dataset ( Malone et al., 2013 ). Those three datasets contain

aseline brain MR imaging from Alzheimer’s disease patients and

ormal control subjects. We report the demographic information

f studied subjects in Table 1 . 

1) ADNI-1 ( Jack et al., 2008 ): Subjects in the baseline ADNI-

 dataset have 1.5T T1-weighted structural MRI data. According

o some criteria (see http://adni.loni.usc.edu ), such as Mini-Mental

tate Examination (MMSE) scores and Clinical Dementia Rating

CDR), subjects in ADNI-1 are be divided into three categories:

C, MCI, and AD. In addition, some MCI subjects had converted

o AD within 36 months after the baseline time, while the other

CI subjects were stable over time. According to whether MCI

ubjects would convert to AD within 36 months after the base-

ine, MCI subjects are further categorized as two classes: (1) sta-

le MCI (sMCI), if the diagnosis was MCI at all available time

oints ( 0 − 96 months); (2) progressive MCI (pMCI), if the diagno-

is was MCI at baseline but these subjects converted to AD within

6 months after baseline. There is a total of 821 subjects in this

ataset, including 199 AD, 229 NC, 167 pMCI, and 226 sMCI sub-

ects in the baseline ADNI-1 dataset. 

2) ADNI-2 ( Jack et al., 2008 ): Similar to ADNI-1, the baseline

DNI-2 dataset contains 159 AD, 200 NC, 38 pMCI, and 239 sMCI

ubjects. The definitions of pMCI and sMCI in ADNI-2 are the same

s those in ADNI-1, based on whether MCI subjects would con-

ert to AD within 36 months after baseline. It is worth noting

hat many subjects included in ADNI-1 also participated in ADNI-2.

or independent testing, subjects that appear in both ADNI-1 and

http://adni.loni.usc.edu
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Table 1 

Demographic and clinical information of subjects in three datasets. Values are reported as Mean ± Standard Deviation (Std); Edu: 

Education years; MMSE: mini-mental state examination; CDR-SB: Sum-of-Boxes of Clinical Dementia Rating. 

Datasets Category Male/Female Age (Mean ± Std) Edu (Mean ± Std) MMSE (Mean ± Std) CDR-SB (Mean ± Std) 

ADNI-1 AD 106/93 69.98 ± 22.35 13.09 ± 6.83 23.27 ± 2.02 0.74 ± 0.25 

pMCI 102/65 74.79 ± 6.79 15.69 ± 2.85 26.58 ± 1.70 0.50 ± 0.00 

sMCI 151/75 74.89 ± 7.63 15.56 ± 3.17 27.28 ± 1.77 0.49 ± 0.03 

NC 127/102 74.72 ± 10.98 15.71 ± 4.12 29.11 ± 1.01 0.00 ± 0.00 

ADNI-2 AD 91/68 69.06 ± 22.04 14.19 ± 6.79 21.66 ± 6.07 4.16 ± 2.01 

pMCI 24/14 71.26 ± 15.09 16.28 ± 5.07 27.39 ± 5.26 1.32 ± 2.21 

sMCI 134/105 72.10 ± 11.57 15.58 ± 3.95 26.83 ± 5.30 1.88 ± 2.87 

NC 113/87 73.82 ± 8.41 15.66 ± 3.46 27.12 ± 7.31 0.05 ± 0.22 

MIRIAD AD 19/27 69.95 ± 7.07 – 19.19 ± 4.01 –

NC 12/11 70.36 ± 7.28 – 29.39 ± 0.84 –
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ADNI-2 are removed from ADNI-2. Different from those in ADNI-1,

the studied subjects from this dataset have 3T T1-weighted struc-

tural MR imaging data. 

3) MIRIAD ( Malone et al., 2013 ): This dataset includes 69

brain MR images from healthy (23) and pathological (46) sub-

jects. Subjects were previously analyzed with a MMSE, and

the score obtained was used to classify them as normal con-

trols (NC) or Alzheimer’s disease patients (AD). As described in

Malone et al. (2013) , images were acquired on a 1.5T Signa MRI

scanner (GE Medical systems, Milwaukee, WI, USA), using a T1-

weighted IR-FSPGR (Inversion Recovery Prepared Fast Spoiled Gra-

dient Recalled) sequence. Different from ADNI-1 and ADNI-2, the

prodromal stages the disease are not categorized and the subjects

are spread in two categories ( i.e. , AD, and NC). 

For MR images of studied subjects, we process them using a

standard procedure. Specifically, we first adopt the MIPAV software

package 2 to perform anterior commissure (AC)-posterior commis-

sure (PC) correction for each MR image. Then, we resample each

image to have the same size of 256 × 256 × 256 and the same spa-

tial resolution of 1 × 1 × 1 mm 

3 , and correct intensity inhomogene-

ity of images using the N3 algorithm ( Sled et al., 1998 ). We then

perform skull stripping ( Wang et al., 2011 ) and manual editing

to ensure that both skull and dura are cleanly removed. Finally,

we remove the cerebellum by warping a labeled template to each

skull-stripped image. 

3.2. Discriminative landmark discovery 

3.2.1. Landmark discovery from training images 

There are a large number of image patches in each MR image,

while most of them may be not informative enough for brain dis-

ease diagnosis, since the structural changes caused by AD could

be subtle in the brain. To extract the most informative image

patches ( i.e. , instances) for subsequent feature learning and classi-

fier training, we adopt a data-driven landmark discovery algorithm

( Zhang et al., 2016 ) to locate the most informative image patches

in MRI. The goal is to identify the landmarks with statistically sig-

nificant group differences between AD patients and NC subjects in

local structures of MRI. Specifically, in the training stage, a voxel-

wise group comparison between AD and NC groups is performed

on the ADNI-1 dataset. Using the Colin27 template ( Holmes et al.,

1998 ), we use a linear registration to remove global translation,

scale and rotation differences of MR images, and to resample all

the images with an identical spatial resolution ( i.e. , 1 × 1 × 1 mm 

3 ).

In this study, we do not consider the other confounding factors

( e.g. , age and gender) of subjects. For the linearly-aligned images,

a non-linear registration is further performed to build the corre-

spondence relationship among voxels in different images. Hence,

based on the deformation field in the non-linear registration, the
2 http://mipav.cit.nih.gov/index.php . 

l  

e  

t  
orrespondence between voxels in the template and those in the

inearly-aligned images can be established. Then, morphological

eatures can be extracted from those corresponding voxels in the

raining AD and NC subjects, respectively. A multivariate statistical

est ( i.e. , Hotelling’s T2) ( Mardia, 1975 ) is performed on AD and NC

roups, through which a p -value can be calculated for each voxel

n the template. As a result, a p -value map in the template space is

btained, whose local minima are defined as locations of discrim-

native landmarks in the template space. Finally, these landmarks

re directly projected to the linearly-aligned training images using

heir respective deformation fields. 

In this study, we have a total of 1741 landmarks identified from

D and NC groups in the ADNI-1 dataset, shown in Fig. 2 (a). Those

andmarks are ranked in ascending order, according to their dis-

riminative capability ( i.e., p -values in group comparison) in dis-

inguishing AD patients from NCs. That is, a small p -value denotes

trong discriminative power, while a large one represents weak

iscriminative capability. As shown in Fig. 2 , many landmarks are

lose to each other, and thus image patches centered at these land-

arks would overlap with each other. To this end, besides consid-

ring p -values for landmarks, we further define a spatial Euclidean

istance threshold ( i.e. , 18) to control the distance between land-

arks, to reduce the overlaps among image patches. In Fig. 2 (b),

e plot the selected top 50 landmarks from all 1741 identified

andmarks. From this figure, we can observe that many landmarks

ocated in the areas of bilateral hippocampal, bilateral parahip-

ocampal, and bilateral fusiform, and these areas are reported to

e related to AD in the previous studies ( Atiya et al., 2003; De Jong

t al., 2008 ). Besides, the landmarks used in this work is only

efined according to their discriminative power in identifying AD

rom NCs, without using any prior knowledge of previously discov-

red disease-related brain areas. In our future work, we will fur-

her refine the landmark pool by using such prior knowledge. 

.2.2. Landmark detection for testing images 

For a new testing image, we can detect landmarks for a new

esting MR image via a similar registration approach as we did

or the training MR images. However, such method requires a non-

inear registration process which may generate inaccurate registra-

ion results ( Miao et al., 2016; Yang et al., 2016; Cao et al., 2017 ).

or MRI with AD/MCI, the pair of images under registration of-

en has a large shape and anatomical variation, which makes the

on-linear registration more difficult to get a very accurate re-

ult. Hence, in our previous study ( Zhang et al., 2016 ), we learn

 regression forest as landmark detector based on training data

nd our discovered landmarks, to estimate the 3D displacement

rom each voxel in a testing image to potential landmark positions.

pecifically, in the training stage, a regression forest is trained to

earn a non-linear mapping between the image patch centered at

ach voxel and its 3D displacement to a target landmark. We ex-

ract morphological features ( Zhang et al., 2013 ) as low-level fea-

http://mipav.cit.nih.gov/index.php
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Fig. 2. Illustration of (a) all 1741 landmarks discovered by group comparison between AD and NC subjects in the ADNI-1 dataset, and (b) selected top 50 AD-related 

landmarks shown in the sagittal view, the axial view, and the coronal view, respectively. Different colors in (b) denote p -values in group comparison between AD and NC, 

i.e. , a small p -value indicates a strong discriminative power and vice versa. 
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L

ures for representing local image patches. In the testing stage, the

earned regression forest can be used to estimate a 3D displace-

ent from every voxel in the testing image to the potential land-

ark position, based on the local morphological features extracted

rom the patch center at this voxel. Hence, each voxel can cast a

ote to the landmark position via the estimated 3D displacements.

e then obtain a voting map for each testing MR image, by aggre-

ating all votes from all voxels. Finally, we can identify the land-

ark position as the location with the maximum vote in the voting

ap. 

Note that this regression forest based landmark detector is

earned based on the training data. Given a new testing MR im-

ge, we can directly apply the learned regression forest to detect

andmarks, without using any non-linear registration process. It is

orth noting that MCI (including pMCI and sMCI) subjects share

he same landmark pool as identified from AD and NC groups. Our

ssumption here is that, since MCI is the prodromal stage of AD,

andmarks with group differences between AD and NC subjects are

he potential atrophy locations in brain MR images of MCI subjects.

.3. Landmark-based instance extraction 

Based on the identified landmarks shown in Fig. 2 (b), we ex-

ract multiple patches ( i.e. , instances) from a specific MR image

 i.e. , each bag) for representing each subject (see Fig. 1 ). Here, we

xtract patches with the size of 24 × 24 × 24 centered at each spe-

ific landmark location. The analysis on why this patch size is se-

ected will be given in Section 4.8 . Given L landmarks, we can ob-

ain L patches from an MR image to construct a bag for represent-

ng the subject. To suppress the influence of any registration er-

or, for each landmark, we randomly sample different patches on

he same landmark location with displacements in a 5 × 5 × 5 cu-

ic (with the step size of 1). Given L landmarks, we can extract up

o 125 L bags from each MRI. 

.4. Multi-instance convolutional neural network 

In this study, we attempt to capture both local and global fea-

ures for MRI of the brain. Also, since not necessarily all image

atches extracted from one MR image are significantly affected by

ementia, the class labels for those image patches could be am-

iguous, if we replicate the subject label on each of them. There-

ore, a weakly supervised approach, rather than a supervised one,

s appropriate for this situation. To this end, we propose a multi-

nstance CNN (MICNN) model for AD-related brain disease diag-

osis, with a schematic diagram shown in Fig. 3 . Given a subject

 i.e. , a bag in our MIL terminology), the input data of MICNN are

 patches ( i.e. , instances in our MIL framework) extracted from L

andmark locations. 
To learn representations of individual image patches in the bag,

e first run multiple sub-CNN architectures within our deep learn-

ng architecture. Such architecture uses a bag of L instances as the

nput, corresponding to L landmark locations of the brain. It pro-

uces patch-level representations for each MR image. More specif-

cally, we embed L parallel sub-CNN architectures with a series of 6

onvolutional layers ( i.e. , Conv1, Conv2, Conv3, Conv4, Conv5, and

onv6), and 2 fully-connected (FC) layers ( i.e. , FC7, and FC8). The

ectified linear unit (ReLU) activation function is used in convolu-

ional layers, while Conv2, Conv4, and Conv6 are followed by max-

ooling procedures to conduct the down-sampling operation for

heir outputs, respectively. The size of the 3D kernels in Conv1 and

onv2 is 3 × 3 × 3, while for the other four convolutional layers it

s 2 × 2 × 2. Note that these L sub-CNNs share the same network

rchitectures but have different network parameters, to learn spe-

ific path-level features from L local patches. 

Since the structural changes caused by dementia can be sub-

le and distribute across multiple brain regions, only one or a few

atch(es) cannot provide enough information to represent global

tructural changes of the brain. This is different from the conven-

ional multi-instance learning ( Yan et al., 2016 ), in which the im-

ge class can be derived by the estimated label of the most dis-

riminative patch. In this study, besides patch-level representations

earned from L sub-CNN architectures, we further learn bag-level

epresentations for each MR image using several fully-connected

ayers ( de Brebisson and Montana, 2015 ). Specifically, we first con-

atenate patch-level representations ( i.e. , output feature maps of

 FC7 layers) at the FC8 layer, and then add three fully-connected

ayers ( i.e. , FC9, FC10, and FC11) to our deep model. Such additional

ayers are expected to be capable of capturing the complex rela-

ionship among image patches located by multiple landmarks, and

hus, can form a global representation of the brain at the whole-

mage-level. Finally, the output of FC11 is fed into a soft-max out-

ut layer for predicting the probability of an input brain MR image

elonging to a particular category. 

Let’s denote the training set as X = { X n } N n =1 
, which contains

 bags with the corresponding labels y = { y n } N n =1 . The bag of the

 th training image X n consists of L instances, defined as X n =
x n, 1 , x n, 2 , · · · , x n,L 

]
. As shown in Fig. 1 , bags corresponding to all

raining images become the basic training samples for our pro-

osed MICNN model, and the labels of those bags are consistent

ith the bag-level ( i.e. , subject-level) labels. Here, the subject-level

abel information ( i.e. , y ) is used in a back-propagation procedure

or learning the most relevant features in the fully-connected lay-

rs and also updating network weights in the convolutional layers.

he learning algorithm aims to find a function � : X → y , by min-

mizing the following loss function: 

oss (W ) = 

∑ 

X n ∈X 
−log ( P (y n | X n ; W ) ) (1) 
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Fig. 3. Illustration of the proposed landmark-based multi-instance convolutional neural network (MICNN), including L sub-CNN architectures corresponding to L landmarks. 

Given an input MR image, the input data of the deep model are L local image patches extracted from L landmark locations. 
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where P ( y n | X n ; W ) indicates the probability of the bag X n being

correctly classified as the class y n using the network coefficients

W . 

In summary, the proposed MICNN architecture is an end-to-

end classification model, where local-to-global feature represen-

tations can be learned for each MR image. Particularly, we first

learn patch-level representations via multiple sub-CNN architec-

tures corresponding to multiple landmarks, to capture the local

structure information of the brain. We further model the global

information conveyed by multiple landmarks via additional fully-

connected layers, to represent the brain structure at a whole-

image-level. In this way, both local and global features of brain

MR images can be incorporated into the classifier learning pro-

cess. We optimize the proposed MICNN using the stochastic gra-

dient descent (SGD) algorithm ( Boyd and Vandenberghe, 2004 ),

with a momentum coefficient of 0.9 and a learning rate of 10 −2 .

In addition, our proposed network is implemented based on a

computer with a single GPU ( i.e. , NVIDIA GTX TITAN 12GB) and

the platform of Tensorflow ( Abadi et al., 2016 ). Given the patch

size of 24 × 24 × 24 and L = 40 , the training time for MICNN is

about 27 hours, while the testing time for a new MRI is less than

1 s. 
b  
. Experiments 

In this section, we first introduce the competing methods,

resent the experimental settings. We further show the experi-

ental results of both tasks of AD classification and MCI conver-

ion prediction, and analyze the influence of parameters. 

.1. Methods for comparison 

We first compare the proposed LDMIL method with three state-

f-the-art methods, including 1) ROI-based method (ROI), 2) voxel-

ased morphometry (VBM), and 3) conventional landmark-based

orphometry (CLM) ( Zhang et al., 2016 ). We also compare LD-

IL with a landmark-based deep single-instance learning (LDSIL)

ethod that is a variant of LDMIL. Four competing methods are

riefly summarized below. 

1) ROI-based method (ROI): Similar to several previous works,

e extract ROI-specific features from the processed MR images.

pecifically, we first segment the brain into three different tis-

ue types, i.e. , gray matter (GM), white matter (WM), and cere-

rospinal fluid (CSF), using FAST ( Zhang et al., 2001 ) in the FSL
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oftware package. 3 We then align the anatomical automatic label-

ng (AAL) atlas ( Tzourio-Mazoyer et al., 2002 ), with 90 pre-defined

OIs in the cerebrum, to the native space of each subject using

 deformable registration algorithm ( i.e. , HAMMER ( Shen and Da-

atzikos, 2002 )). Finally, we extract volumes of GM tissue inside

hose 90 ROIs as feature representation for each MR image. Here,

he volumes of GM tissue are normalized by the total intracranial

olume, which is estimated by the summation of GM, WM, and

SF volumes from all ROIs. Using these 90-dimensional ROI fea-

ures, we train a linear support vector machine (SVM) with the

arameter C = 1 for classification. 

2) Voxel-based morphometry (VBM) method ( Ashburner and

riston, 20 0 0 ): We first spatially normalize all MR images to the

ame template image using a non-linear image registration tech-

ique, and then extract the gray matter from the normalized im-

ges. We directly measure the local tissue ( i.e. , GM) density of the

rain in a voxel-wise manner, and perform a group comparison us-

ng t -test to reduce the dimensionality of the high dimensional fea-

ures. Similar to the ROI-based method, we feed those voxel-based

eatures to a linear SVM for classification. 

3) Conventional landmark-based morphometry (CLM) 

ethod ( Zhang et al., 2016 ) with engineered feature repre-

entations: As a landmark-based method, CLM shares the same

andmark pool as our proposed LDMIL method. Different from

DMIL, CLM adopts engineered features for representing patches

round each landmark. Specifically, CLM first extracts morpholog-

cal features ( i.e. , local energy pattern ( Zhang et al., 2013 )) from

 local patch centered at each landmark, and then concatenates

hose features from multiple landmarks together, followed by

 z -score normalization ( Jain et al., 2005 ) process. Finally, the

ormalized features are fed into a linear SVM classifier. 

4) Landmark-based deep single-instance learning (LDSIL): As

 variant of our proposed LDMIL method, the architecture of LDSIL

s similar to a sub-CNN in LDMIL (see Fig. 3 ), containing 6 convolu-

ional layers ( i.e. , Conv1, Conv2, Conv3, Conv4, Conv5, and Conv6)

nd 3 fully-connected layers ( i.e. , FC7, FC8, and FC11). Specifically,

DSIL learns a CNN model corresponding to a specific landmark,

ith patches extracted from this landmark as the input and the

ubject-level class label as the output. Hence, the class label for a

ubject is assigned to all patches extracted from the MR image of

hat subject. Given L landmarks, we can learn L CNN models via

DSIL and then obtain L probability scores for a test subject. For

aking a final classification result, we simply fuse the estimated

robability scores for patches using a majority voting strategy. It

s worth noting that, different from LDMIL, LDSIL can learn only

atch-level representations for brain MR images. 

.2. Experimental settings 

We validate our proposed LDMIL method on both AD classifica-

ion (AD vs. NC) and MCI conversion prediction (pMCI vs. sMCI)

asks. To evaluate the robustness and generalization ability of a

pecific classification model, in the first group of experiments, we

se subjects from ADNI-1 as the training set , while subjects from

DNI-2 and MIRIAD as independent testing sets . The experimen-

al results are reported in the following sections. Besides, we per-

orm two additional groups of experiments in both inter-imaging-

enter and intra-imaging-center scenarios. Specifically, in the sec-

nd group of experiments, we train models on the ADNI-2 dataset

nd test them on both ADNI-1 and MIRIAD, with results reported

n Table S1 in the Supplementary Materials . In the third group of ex-

eriments, we adopt the cross-validation strategy ( Liu et al., 2016 )

n both ADNI-1 and ADNI-2 datasets, with results reported in Ta-
3 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki . 

b  

d  

F  
le S2 in the Supplementary Materials . Also, we further report the

esults of different methods in the task of multi-class classification,

.e. , AD vs. pMCI vs. sMCI vs. NC classification, with results given in

ig. S1 in the Supplementary Materials. 

We adopt seven metrics for performance evaluation, including

eceiver operating characteristic (ROC) curve, the area under ROC

AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), F-Score,

nd Matthews correlation coefficient (MCC) ( Matthews, 1975 ) that

s a balanced measure for binary classes. We denote TP, TN, FP, FN,

nd PPV as true positive, true negative, false positive, false negative

nd positive predictive value, respectively. These evaluation metrics

re defined as: 

ACC = 

(TP+TN) 

(TP+TN+FP+FN) 
, 

SEN = 

TP 

(TP+FN) 
, SPE = 

TN 

(TN+FP) 
, 

PPV = 

TP 

(TP+FP) 
, F-Score = 

(2 × SEN × PPV ) 

( SEN+PPV ) 
, 

MCC = 

TP × TN − FP × FN √ 

( TP + FP ) × ( TP + FN ) × ( TN + FN ) 
. 

For a fair comparison, in our proposed LDMIL method and its

ariant ( i.e. , LDSIL), the size of image patch is empirically set to

4 × 24 × 24, while the number of landmarks we used is 40. We

urther illustrate the influence of those two parameters ( i.e. , the

umber of landmarks and the size of image patch) on LDMIL in

ections 4.7 and 4.8 , respectively. Besides, we study the influences

f these two parameters on LDSIL in Section 5 of the Supplemen-

ary Materials , and find these two parameters used in the main ex-

eriments for LDSIL fall in the optimal parameter ranges as shown

n Fig. S3. Similar to LDMIL, we optimize the LDSIL network us-

ng SGD algorithm ( Boyd and Vandenberghe, 2004 ), with a mo-

entum coefficient of 0.9 and a learning rate of 10 −2 . Also, three

andmark-based methods ( i.e. , CLM, LDSIL, and LDMIL) share the

ame landmark pool, while LDSIL and LDMIL use the same size of

mage patches. 

.3. Results of AD classification 

In the first group of experiments, we perform AD vs. NC classi-

cation using the model trained on the ADNI-1 dataset. In Table 2

nd Fig. 4 (a) and (b), we report the experimental results on the

DNI-2 and the MIRIAD datasets, respectively. From Table 2 , we

an observe that our proposed LDMIL method generally outper-

orms those competing methods in AD vs. NC classification on both

DNI-2 and MIRIAD datasets. On ADNI-2, the AUC values achieved

y LDMIL is 0.959, which is much better than those yielded by ROI,

BM, and CLM methods. It is worth noting that MR images from

DNI-2 are scanned using 3T scanners, while images from ADNI-1

re scanned using 1.5T scanners. Although MR images in the train-

ng set ( i.e. , ADNI-1) and the testing set ( i.e. , ADNI-2) have differ-

nt signal-to-noise ratios, the classification model learned by LD-

IL can still reliably distinguish AD patients from NCs. This im-

lies that our method has strong robustness and generalization

bility, which is particularly important in handling multi-center

R images in practical applications. On the other hand, as shown

n Fig. 4 (a) and (b), three landmark-based methods ( i.e. , CLM, LD-

IL, and LDMIL) consistently outperform both ROI-based and voxel-

ased approaches ( i.e. , ROI, and VBM) in AD classification. The

ikely reason is that the landmarks identified in this study have

 stronger discriminative ability to capture differences of structural

rain changes between AD and NC subjects compared to the pre-

efined ROIs and the isolated voxels. Also, it can be seen from

ig. 4 (a) and (b) that LDSIL (a variant of our proposed LDMIL

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Table 2 

Results of AD vs. NC classification on both ADNI-2 and MIRIAD datasets, with models trained on the ADNI-1 dataset. 

ADNI-2 MIRIAD 

ROI VBM CLM LDSIL LDMIL(Ours) ROI VBM CLM LDSIL LDMIL(Ours) 

AUC 0.8673 0.8762 0.8811 0.9574 0.9586 0.9178 0.9206 0.9537 0.9584 0.9716 

ACC 0.7917 0.8050 0.8222 0.9056 0.9109 0.8696 0.8841 0.8986 0.9130 0.9275 

SEN 0.7862 0.7735 0.7736 0.8742 0.8805 0.9130 0.9130 0.9783 0.9565 0.9348 

SPE 0.7960 0.8300 0.8607 0.9303 0.9350 0.7826 0.8261 0.7391 0.8261 0.9130 

F-Score 0.7692 0.7784 0.7935 0.8910 0.8974 0.9032 0.9130 0.9278 0.9362 0.9451 

MCC 0.5800 0.6044 0.6383 0.8082 0.8191 0.7037 0.7391 0.7702 0.8018 0.8391 

Fig. 4. ROC achieved by different methods in (a) AD vs. NC classification on the ADNI-2 dataset, (b) AD vs. NC classification on the MIRIAD dataset, and (c) pMCI vs. sMCI 

classification on the ADNI-2 dataset, and (d) pMCI vs. sMCI classification on the ADNI-2 dataset with the guidance of AD and NC subjects. Here, classification models are 

trained on the ADNI-1 dataset. 

Table 3 

Results of pMCI vs. sMCI classification on the ADNI-2 dataset, with 

models trained on the ADNI-1 dataset. 

Method ROI VBM CLM LDSIL LDMIL(Ours) 

AUC 0.6377 0.5929 0.6363 0.6448 0.7764 

ACC 0.6606 0.6426 0.6859 0.7004 0.7690 

SEN 0.4737 0.3684 0.3947 0.3684 0.4211 

SPE 0.6904 0.6862 0.7322 0.7531 0.8243 

F-Score 0.2769 0.2205 0.2564 0.2523 0.3333 

MCC 0.1198 0.0402 0.0967 0.0949 0.2074 
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method) achieves AUC values comparable to LDMIL in AD vs. NC

classification. 

4.4. Results of MCI conversion prediction 

We then report the experimental results of MCI conversion pre-

diction ( i.e. , pMCI vs. sMCI) in Table 3 and Fig. 4 (c), with classi-

fiers trained and tested on the ADNI-1 and the ADNI-2 datasets,

respectively. It can be observed from Table 2 that, in most cases,

our proposed LDMIL method achieves better results than the other

four methods in MCI conversion prediction. In addition, as shown
n Fig. 4 , the superiority of LDMIL over LDSIL is particularly obvi-

us in pMCI vs. sMCI classification, even though such superiority

s not that distinct in AD vs. NC classification. The reason could

e that LDMIL models both local patch-level and global bag-level

tructure information of the brain, while LDSIL can only capture

ocal patch-level information. Since the structural changes of AD

rains are obvious compared to NCs, only a few landmarks can be

iscriminative enough to distinguish AD from NC subjects. In con-

rast, while structural changes of MCI brains may be very subtle

nd distribute across multiple regions of the brain, it is difficult

o determine whether an MCI subject would convert to AD using

ne or a few landmark(s). In such a case, the global information

onveyed by multiple landmarks could be crucial for classification.

oreover, because each landmark defines only a potential (rather

han a certain) atrophy location (especially for MCI subjects), it

s unreasonable to assign the same subject-level class label to all

atches extracted from a specific landmark location in LDSIL. Dif-

erent from LDSIL, LDMIL can model both the local information of

mage patches and the global information of multiple landmarks,

y assigning the class labels at the subject-level rather than the

atch-level. This explains why LDMIL performs better than LDSIL

n pMCI vs. sMCI classification, although both methods yield simi-

ar results in AD vs. NC classification. 
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Fig. 5. Results of MCI conversion prediction (pMCI vs. sMCI) on the ADNI-2 dataset with and without transferred knowledge from AD and NC subjects. Given “A” denoting a 

method using only MCI subjects in ADNI-1 for model training, its variant “A-G” represents the method using AD and NC as the guidance information for model training. For 

instance, LDMIL-G denotes the method with a classifier trained using pMCI and AD as positive samples, and sMCI and NC subjects as negative ones in ADNI-1. 
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Fig. 6. Influence of different representation learning strategies for MR images, in- 

cluding 1) LDMIL-Max using instance-level max representation, 2) LDMIL-Average 

using instance-level averaged representation, and 3) LDMIL using local-to-global 

representation. Here, classification models are trained on the ADNI-1 dataset. 
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.5. Influence of transferred knowledge 

In the above-mentioned MCI conversion prediction (pMCI vs.

MCI) experiment, we only use 187 pMCI and 226 sMCI subjects in

he ADNI-1 dataset for classifier training. Recent studies( Filipovych

t al., 2011; Coupé et al., 2012 ) have shown that the knowledge

earned from AD and NC subjects can be adopted to guide the pre-

iction of MCI conversion since MCI is a prodromal stage of AD

here the structural changes of the brain are between those of AD

atients and NC subjects. Accordingly, we propose to employ AD

nd NC subjects to guide the task of MCI conversion prediction.

pecifically, we first train a classification model using both pMCI

nd AD subjects in ADNI-1 as positive samples, while sMCI and

C subjects are treated as negative samples. Then, we adopt the

rained model for pMCI vs. sMCI classification on ADNI-2. Using

D and NC subjects as the guidance information for MCI conver-

ion prediction, we denote the corresponding models of different

ethods ( i.e. , ROI, VBM, CLM, LDSIL, and LDMIL) as ROI-G, VBM-G,

LM-G, LDSIL-G, and LDMIL-G, respectively. The experimental re-

ults are reported in Figs. 4 (d) and 5 . 

It can be observed from Figs. 4 (d) and 5 , methods using the

uidance from AD and NC yield consistently better results than

heir corresponding counterparts. For instance, MCC and F-Score

alues achieved by LDMIL-G are 0.2590 and 0.3750, respectively,

hich are much better than those of LDMIL ( i.e. , MCC = 0.2074 and

-Score = 0.3333). Similar trends can be found for the other four

ompeting methods. That is, using AD and NC subjects as the guid-

nce information for classifier training further improves the learn-

ng performance of MCI conversion prediction. The underlying rea-

on could be that more training samples are used for learning the

CI prediction model, and also the task of AD vs. NC classification

s related to the task of pMCI vs. sMCI classification ( Cheng et al.,

015 ). 

.6. Influence of local-to-global representation 

We also investigate the influence of our proposed local-to-

lobal representation for MR images in LDMIL. Specifically, as

hown in Fig. 3 , we concatenate the local patch-level representa-

ion (in FC8) learned from L sub-CNNs, followed by three fully-

onnected layers to learn the global bag-level representations for

he input MR image. Besides the concatenation strategy used in

his study, there are also two widely used strategies for aggregat-

ng the instance-level representations ( Wu et al., 2015 ) in multi-

nstance learning, i.e. , 1) the max operation that focuses on only

he representation of the most discriminative patch, and 2) the

verage operation that focuses on the averaged representation

ultiple patch-level features. Here, we compare LDMIL with its

wo variants, i.e. , LDMIL-Max and LDMIL-Average that adopt the

lement-wise max operation and the element-wise average oper-

tion for aggregating the outputs of patches, respectively. Similar
o the multi-instance CNN model in Wu et al. (2015) , followed by

 soft-max layer (called FC9-new), FC8 in 3 is transformed into

 probability distribution for subjects of two categories ( e.g. , AD,

nd NC) in both LDMIL-Max and LDMIL-Average. Also, we add an-

ther soft-max layer to transform FC9-new into a two-dimensional

robability score vector for binary classification. The AUC values

chieved by LDMIL, LDMIL-Max, and LDMIL-Average on three tasks

re reported in Fig. 6 . 

From Fig. 6 , we notice that in almost all cases, our proposed

DMIL that learns local-to-global representations for MR images

btains the best performance, especially in the task of MCI con-

ersion prediction ( i.e. , pMCI vs. sMCI classification). These empir-

cal results confirm our observation that exploiting both the local

nd the global structural information of MR images can assist AD-

elated brain disease diagnosis. Also, LDMIL-Max generally yields

he worse performance, compared with LDMIL and LDMIL-Average.

his implies that methods focusing on only one single instance (as

e do in LDMIL-Max) cannot generate good features for represent-

ng the structural changes of the brain, while the atrophy locations

ay distribute globally in the brain. 

.7. Influence of the number of landmarks 

We further investigate the influence of the number of land-

arks on the classification performance, by varying it in the set

1, 5, 10, 15, ���, 60}. We report the AUC values achieved by the

roposed LDMIL method in both AD classification and MCI conver-

ion prediction tasks in Fig. 7 . Note that the term “pMCI vs. sMCI

n ADNI-2 with the guidance of AD and NC” denotes the method

hat adopts AD and NC subjects from the ADNI-1 dataset as the

uidance information for classifier training (see Section 4.5 ). 

From this figure, we can observe that the overall performance

ncreases with the increase in the number of landmarks. Using 1

nd 50 landmarks in AD vs. NC classification on ADNI-2, LDMIL

chieves the AUC values of 0.9164 and 0.9597, respectively. In par-

icular, in pMCI vs. sMCI classification, LDMIL using less than 15

andmarks cannot yield satisfactory results. This implies that the
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Fig. 7. Influence of the number of landmarks on the performance of the proposed 

LDMIL method in tasks of AD vs. NC classification and pMCI vs. sMCI classification. 

Here, classification models are trained on the ADNI-1 dataset. 

Fig. 8. Influence of the size of image patches on the performance of LDMIL in AD 

vs. NC classification on the ADNI-2 dataset, with models trained on the ADNI-1 

dataset. 
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global information conveyed by multiple landmarks can help boost

the learning performance, especially for MCI subjects with no obvi-

ous disease-induced structural changes. On the other hand, when

the number of landmarks is larger than 30, the growth trend of

AUC values slows down, and the results are basically stable. Hence,

it is reasonable to choose the number of landmarks in the range of

[30, 50], while using more landmarks ( e.g. , > 55) cannot signifi-

cantly boost the classification performance and will increase the

number of network parameters. 

4.8. Influence of the size of image patches 

In the above-mentioned experiments, we adopt a fixed patch

size ( i.e. , 24 × 24 × 24) for our proposed LDMIL method. We now

investigate the influence of the patch size on the performance of

LDMIL, by varying the patch size and testing all the values in the

set {8 × 8 × 8, 12 × 12 × 12, 24 × 24 × 24, 36 × 36 × 36, 48 × 48 × 48,

60 × 60 × 60}. In Fig. 8 , we report the AUC values of AD vs. NC

classification on the ADNI-2 dataset. From this figure, we can see

that the best results are obtained by LDMIL using the patch size

of 48 × 48 × 48. Also, LDMIL is not very sensitive to the size of the

image patch within the range of [24 × 24 × 24, 48 × 48 × 48]. When

we use patches with the size of 8 × 8 × 8, the AUC value (0.8139)

is not satisfactory. This implies that very small local patches are

not capable of capturing enough structural information from the

brain. Similarly, the results are not good using very large patches

( e.g. , 60 × 60 × 60), since subtle structural changes within the large

patch could be dominated by uninformative normal regions. In ad-

dition, using large patches will bring huge computational burden,

and thus affect the utility of our method in practical applications.

Besides, we investigate the influences of the number of landmarks

and size of image patches on LDSIL, with results given in Fig. S2 in

the Supplementary Materials . 
. Discussion 

.1. Comparison with previous studies 

Different from conventional voxel-level and whole-image-level

eature representations for MRI, the proposed LDMIL method is ca-

able of capturing both local and global information of MR images.

pecifically, we first learn patch-level representations via multiple

ub-CNNs to model the local information, and further learn bag-

evel representations to capture the global information of brain MR

mages. In this way, a local-to-global representation can be auto-

atically extracted from MR images. Different from conventional

OI-based approaches, our LDMIL method does not require any

re-defined ROIs, which is particularly useful in practice. 

Compared with conventional patch-based approaches ( Tong

t al., 2014; Liu et al., 2012 ), our method can locate discriminative

mage patches based on anatomical landmarks, and the landmarks

re identified by a data-driven landmark discovery algorithm. More

pecifically, we first identify discriminative anatomical landmarks

ia group comparison between AD and NC subjects in the train-

ng set and then extract image patches centered at multiple land-

ark locations. Also, while previous patch-based studies usually

efine engineered features for image patches ( Tong et al., 2014; Liu

t al., 2012 ), our LDMIL method can automatically learn represen-

ations for patches using an end-to-end learning model. Hence, the

earned feature representations in LDMIL are consistent with the

ubsequent classifier, leading to optimal learning performance. Fur-

hermore, our method only requires weak supervision at a global

hole-image-level, where the subject-level class label is assigned

o a bag rather than instances in the bag. This can reduce the

onfusion induced by patches that do not convey any information

bout the category of the bag. 

Besides, the proposed LDMIL method is similar to, but differ-

nt from, the conventional multi-instance learning (MIL) meth-

ds. Since not necessarily all image patches extracted from an MR

mage are significantly affected by dementia, the class labels for

hose image patches could be ambiguous, if we simply assign the

ubject-level label to each of them. In LDMIL, we assign the class

abel of a subject to a bag other than to each instance (i.e., im-

ge patch), and hence we only require bag-level (i.e., subject-level)

ther than instance-level (i.e., patch-level) class label information

or subjects, which is similar to the conventional MIL methods ( Yan

t al., 2016; Wu et al., 2015 ). However, different from the con-

entional MIL methods that focus on only the representation of

he most discriminative instance ( i.e. , image patch) or the aver-

ged representation of multiple instance-level features, our LDMIL

ethod does not assume that at least one instance can determine

hether a bag belongs to the positive category. Since the struc-

ural changes induced by AD could be subtle and distribute in dif-

erent areas of the brain, we attempt to learn local-to-global fea-

ure representations for brain MRI images. Experimental results in

able 3 and Fig. 6 suggest that the local-to-global representation

lays an important role in boosting the learning performance. 

.2. Limitations 

Although our proposed LDMIL method achieves promising re-

ults in both AD classification and MCI conversion prediction,

here are several technical issues to be considered in the future.

irst , even though we can extract hundreds of thousands of image

atches from multiple landmark locations for classifier training,

he number of training subjects is limited ( i.e. , hundreds). Luck-

ly, there are a large number of longitudinal MR images in three

atasets ( i.e. , ADNI-1, ADNI-2, and MIRIAD), which can be utilized

o further improve the robustness of the proposed deep learn-

ng model. Second , in the current work, we treat landmark detec-
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ion and landmark-based classification as two stand-alone tasks,

hich may lead to sub-optimal learning performance. In the fu-

ure work, we will study to integrate the process of landmark

etection and the training of classification models into a unified

ramework. Specifically, we will design a two-stage deep neural

etwork, where the first-stage network aims to learn features for

mage patches, and the second-stage network focuses on identi-

ying discriminative landmarks by using the learned features for

atches. We could first train these two-stage networks separately,

nd then jointly optimize them as a whole network. In addition ,

ur LDMIL method is a single-task model, where only the class la-

el is estimated for a given MR image. Actually, there are many

linical scores for each subject, and those scores are related to

lass labels. Since predicting clinical scores is a regression prob-

em, it is reasonable to develop a multi-task learning model based

n LDMIL, where both classification and regression tasks can be

earned jointly. Considering the underlying correlation among clini-

al scores and class labels, the joint learning could further promote

he learning performance. Besides , we don’t consider several con-

ounding factors ( e.g. , age, gender, and education years) of studied

ubjects. In future work, we will address these confounding factors

y incorporating them into the proposed deep learning framework.

urthermore , in this work, we consider only the problem of brain

isease diagnosis via the proposed landmark-based deep learning

ramework, based on the baseline MRI data in ADNI-1, ADNI-2, and

IRIAD. It is interesting to develop a deep learning framework for

redicting the progression of brain diseases based on the baseline

ata, which will also be our future work. 

. Conclusion 

We have presented a landmark-based deep multi-instance

earning (LDMIL) framework for AD-related brain disease diagno-

is using MR imaging data. To model both local and global infor-

ation of the brain, we first proposed to localize image patches

through the detection of anatomical landmarks) for the subjects,

nd then adopted a multi-instance CNN model to perform end-to-

nd classification. Experiments on a large cohort of subjects from

hree datasets show that our method achieves better performance

ompared to the state-of-the-art approaches, especially in the task

f MCI conversion prediction. 
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