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Abstract—Gaussian graphical models (GGM) are often used to describe the conditional correlations between the components of a random

vector. In this article, we compare two families of GGM inferencemethods: the nodewise approach and the penalised likelihoodmaximisation.

We demonstrate on synthetic data that, when the sample size is small, the twomethods produce graphswith either too few or toomany edges

when compared to the real one. As a result, we propose a composite procedure that explores a family of graphswith a nodewise numerical

scheme and selects a candidate among themwith an overall likelihood criterion.We demonstrate that, when the number of observations is

small, this selectionmethod yields graphs closer to the truth and corresponding to distributions with better KL divergencewith regards to the

real distribution than the other two. Finally, we show the interest of our algorithm on two concrete cases: first on brain imaging data, then on

biological nephrology data. In both cases our results aremore in line with current knowledge in each field.

Index Terms—Gaussian graphical models, model selection, high dimension low sample size, sparse matrices, maximum likelihood estimation

Ç

1 INTRODUCTION

DEPENDENCY networks are a prominent tool for the repre-
sentation and interpretation of many data types as, for

example, gene co-expression [2], interactions between dif-
ferent regions of the cortex [5] or population dynamics. In
those examples, the number of observations n is often small
when compared to the number of vertices p in the network.

Conditional correlation networks are graphs where there
exists an edge between two vertices if and only if the random
variables on these nodes are correlated conditionally to all
others. This structure can be more interesting than a regular
correlation graph. Indeed, in real life, two phenomena, like
the atrophy in two separate areas of the brain or two loca-
tions of birdmigration, are very likely to be correlated. There
almost always exists a “chain” of correlated events that
“link”, ever so slightly, any two occurrences. As a result, reg-
ular correlation networks tend to be fully connected and

mostly uninformative. On the other hand, when intermedi-
ary variables explain the totality of the co-variations of two
vertices, then these two are conditionally uncorrelated,
removing their edge from the conditional correlation graph.
The conditional correlation structure captures only the
direct, explicit interactions between vertices. In our analyses,
these interactions are the ones of most interest.

A Gaussian Graphical Model (GGM) is a network whose
values on the p vertices follow a Centred Multivariate Nor-
mal distribution in Rp: X � N 0p;S

� �
. This assumption is

almost systematic when studying conditional correlation
networks for three main reasons. First, it ensures that each
conditional correlation corrðXi;XjjðXkÞk6¼i;jÞ is a constant
and not a function of the p� 2 dimensional variable
ðXkÞk 6¼i;j; a crucial property allowing us to talk about a sin-
gle graph and not a function graph. Second, it equates the
notions of independence and un-correlation, in particular:
corrðXi;XjjðXkÞk 6¼i;jÞ ¼ 0,Xi??XjjðXkÞk6¼i;j. This makes
interpretation much clearer. Finally, under the GGM
assumption, we have the explicit formula: corrðXi;Xjj
ðXkÞk 6¼i;jÞ ¼ � Kijffiffiffiffiffiffiffiffiffiffiffi

KiiKjj

p , where K :¼ S�1 is the inverse of the

unknown covariance matrix. This means that the condi-
tional correlations graph between the components of X is
entirely described by a single matrix parameter, K. More-
over the graph and K have the exact same sparsity struc-
ture. With this property in mind, the author of [6]
introduced the idea of Covariance Selection which consists
of inferring - under a Gaussian assumption - a sparse esti-
mation bK of K and interpreting its sparsity structure as a
conditional dependency network.

Subsequently, many authors have proposed their own
estimators bK. In [1], a local edge selection approach that
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solves a LASSO problem on each node is introduced. It was
noticeably followed by [2], [7], who developed the GGMse-
lect algorithm, a practical implementation of this approach
coupled with a model selection procedure. We call these
methods “local”, since they focus on solving problems inde-
pendently at each node, and evaluating performances with
an aggregation of nodewise metrics. Other works within the
local paradigm have proposed Dantzing selectors [8], con-
strained l1 minimisation [9], scaled LASSO [10], or merging
all linear regression into a single problem [11]. On a differ-
ent note, the authors of [3] and [4] considered a more global
paradigm where the estimator is solution of a single
l1-penalised log-likelihood optimisation problem, that has
the form of Eq. (1).

bK :¼ argmaxeK�0

L eK� �
� r

X
i < j

eKij

��� ��� : (1)

We call this point of view “global” since the likelihood esti-
mates at once the goodness of fit of the whole proposed
matrix. The introduction of problem (1) generated tremen-
dous interest in the GGM community, and in its wake,
many authors developed their own numerical methods to
compute its solution efficiently. A few notable examples are
block coordinate descent for the Graphical Lasso algorithm
(GLASSO) of [12], Nesterov’s Smooth gradient methods
[13], Interior Point Methods (IPM) [14], Alternating Direc-
tion Methods of Multipliers (ADMM) [15], [16], Newton-CG
primal proximal point [17], Newton’s method with sparse
approximation [18], Projected Subgradient Methods (PSM)
[19], and multiple QP problems for the DP-GLASSO algo-
rithm of [20]. The theoretical properties of the solutions to
Eq. (1) are studied in [21], [22] and in [23]. Other methods
within the global paradigm include [24], with penalties
other than l1 in (1), and [25], with a RKHS estimator.

More recent works have proposed more involved estima-
tors, defined as modifications of already existing solutions
and possessing improved statistical properties, such as
asymptotic normality or better element-wise convergence.
The authors of [26] and [27] adapted solutions of local reg-
ression problems including [1], whereas [28] modified the
solutions of (1). In [29], the two approaches are unified
with a de-biasing method applied to both local and global
estimators.

In our applications - where the number of observations
n is a fixed small number, usually smaller than the number
of vertices p - we did not find satisfaction with the state of
the art methods from either the local or the global
approach. On one hand, GGMselect yields surprisingly too
sparse graph, missing many of the important already
known edges. On the other hand, the only solutions from
the penalised likelihood problem (1) that are a decent fit
for real distribution have so many edges that the informa-
tion is hidden. To interpret a graph, one would prefer an
intermediary number of edges. Additionally, the low sam-
ple size setting requires a method with non-asymptotic
theoretical properties.

In this paper, we design a composite method, combining
the respective strengths of the local and global approaches,
with the aim of recovering graphs with a more reasonable
amount of edges, that also achieves a better quantitative fit

with the data. We also prove non-asymptotic oracle bounds
in expectation and probability on the solution.

To measure the goodness of fit, many applications are
interested in recovering the true graph structure and focus
on the “sparsistency”. In our case, the presence or absence
of an edge is not sufficient information. The correlation
amplitude is of equal interest. Additionally, we need the
resulting structure to make sense as a whole, that is to say:
describe a co-variation dynamic as close as possible to the
real one despite being a sparse approximation. This means
that edgewise coefficient recovery - as assessed by the l2

error K � bK��� ���2
F
¼Pi;jðKi;j � bKi;jÞ2 for instance - which

does not take into account the geometric structure of the
graph as a whole is not satisfactory either. We want the dis-
tribution function described by the proposed matrix to be
similar to the original distribution. The natural metric to
describe proximity between distribution functions is Cross
Entropy (CE) or, equivalently, the Kullback-Leibler diver-
gence (KL). In the end, the CE between the original distribu-

tion and the proposed one - N 0; bK�1
� �

- is our metric of

choice. Other works, such as [30] and [31], have focused on
the KL in the context of GGM as well.

In the following, we quantify the shortcomings of the lit-
erature’s local and global methods when the data is not
abundant. The GGMselect graphs are very sparse, but con-
sistently and substantially outperform the solutions of
Eq. (1) in terms of KL, regardless of the penalisation inten-
sity r. In the KL/sparsity space, the solutions of GGMselect
occupy a spot of high performing, very sparse solutions that
the problem (1) simply does not reach. Additionally, the
better performing solutions of (1) are so dense that they are
excessively difficult to read. Subsequently, we demonstrate
that despite its apparent success, the GGMselect algorithm
is held back by its model selection criterion which is far too
conservative and interrupts the graph exploration process
too early. This results in graphs that are not only difficult to
interpret but also perform sub-optimally in terms of KL.

With those observations in mind, we design a simple
nodewise exploration numerical scheme which, when ini-
tialised at the GGMselect solution, is able to extract a family
of larger, better performing graphs. We couple this explora-
tion process with a KL-based model selection criterion to
identify the best candidates among this family. This algo-
rithm is composite insofar as it combines a careful local
graph construction process with a perceptive global evalua-
tion of the encountered graphs.

We prove non-asymptotic guarantees on the solution of
the model selection procedure. We demonstrate with
experiments on synthetic data that this selection procedure
satisfies our stated goals. Indeed, the selected graphs are
both substantially better in terms of distribution reconstruc-
tion (KL divergence), and much closer to the original graph
than any other we obtain with the state of the art methods.
Then, we put our method to the test with two experiments
on real medical data. First on a neurological dataset with
multiple modalities of brain imaging data, where n < p.
Then on biological measures taken from healthy nephrology
test subjects, with p < n. In both cases, the results of our
method correspond more to the common understanding of
the phenomena in their respective fields.

LARTIGUE ET AL.: GAUSSIAN GRAPHICAL MODEL EXPLORATION AND SELECTION IN HIGH DIMENSION LOW SAMPLE SIZE SETTING 3197

Authorized licensed use limited to: University of Southern California. Downloaded on October 04,2021 at 20:41:09 UTC from IEEE Xplore.  Restrictions apply. 



2 COVARIANCE SELECTION WITHIN GGM

2.1 Introduction to Gaussian Graphical Models

Let Sþ
p and Sþþ

p be respectively the spaces of positive semi-
definite and positive definite matrices in Rp�p. We model a
phenomenon as a centred multivariate normal distribution
in Rp: X � N 0p;S

� �
. To estimate the unknown covariance

matrix S 2 Sþþ
p , we have at our disposal an iid sample

Xð1Þ; . . . ; XðnÞ� �
assumed to be drawn from this distribution.

We want our estimation to bring interpretation on the con-
ditional correlations network between the components of
X. No real network is truly sparse, yet it is natural to pro-
pose a sparse approximation. Indeed, this means recovering
in priority the strongest direct connections and privileging a
simpler explanation of the phenomenon, one we can hope
to infer even with a small amount of data. Sparsity in the
conditional correlations structure is equivalent to sparsity
in the inverse covariance matrix K :¼ S

�1. Namely

Kij ¼ 0 , Corr Xi;XjjðXkÞk6¼i;j

� �
¼ 0. As a consequence, our

goal is to estimate from the dataset a covariance matrixbS 2 Sþþ
p with both a good fit and a sparse inverse bK. We say

that bS :¼ bK�1 is “inverse-sparse”.

In the following, we use the Cross Entropy to quantify
the performances of a proposed matrix bK. The CE,
Hðp; qÞ ¼ �Ep log qðXÞ½ � ¼ Rx �pðxÞlnðqðxÞÞmðdxÞ, is an
asymmetric measure of the deviation of distribution q with
regards to distribution p. The CE differs from the KL-diver-
gence only by the term H p; pð Þ, which is constant when the
reference distribution p is fixed. In GGM, the score
HðfS; fbSÞ represents how well the normal distribution with
our proposed covariance bS is able to reproduce the true dis-
tribution N 0;Sð Þ. We call this score the True CE of bS. This
metric represents a global paradigm where we explicitly
care about the behaviour of the matrix as a whole. This is in
contrast to a coefficient-wise recovery, for instance, which is
a summation of local, nodewise, metrics. After removal of
the additive constants, we get the simple formula (2) for the
CE between two centred multivariate normal distributions
N 0;S1ð Þ andN 0;S2ð Þ.

H S1;S2ð Þ :¼ H fS1
; fS2

� � � 1

2

�
tr S1K2ð Þ � lnð K2j jÞ� :

(2)

In the general case, the CE between a proposed distribution
fu and an empirical distribution f̂n ¼ 1

n

Pn
i¼1 11x¼XðiÞ defined

from data is the opposite of the log-likelihood: Hðf̂n; fuÞ ¼
� 1

n log puðXð1Þ; . . . ; XðnÞÞ. In the GGM case, we denote the

observed data X :¼ Xð1Þ; . . . ; XðnÞ� �T2 Rn�p, and set S :¼
1
nX

T X 2 Sþ
p , the empirical covariance matrix. The opposite

log-likelihood of any centred GaussianN 0;S2ð Þ satisfies

H S;S2ð Þ :¼ H f̂n; fS2

� �
� 1

2

�
tr SK2ð Þ � lnð K2j jÞ� ; (3)

similar to Eq. (2). As a result, we adopt an unified notation.
Details on calculations to obtain these formulas can be
found in Section 7.1.

We use the following notations for matrix algebra, let A
be a square real matrix, then: Aj j denotes the determinant,

Ak k	:¼ tr ATA
� �1

2

� �
the nuclear norm, Ak kF :¼ tr ATA

� �� �1
2¼

P
i;j A

2
ij

� �1
2
the Frobenius norm and Ak k2:¼ sup

x

Axk k2
xk k2

¼
�maxðAÞ the spectral norm (operator norm 2) which is also
the highest eigenvalue. We recall that when A is symmetri-

cal positive, then Ak k	¼ trðAÞ and Ak kF¼ trðA2Þ12. We also
consider the scalar product A;Bh i :¼ tr BTA

� �
on Rp�p.

2.2 Description of the State-of-the-Art

After its introduction, problem (1) became the most popular
method to infer graphs from data with a GGM assumption.
Reducing the whole inference process to a single loss optimi-
sation is convenient. What is more, the optimised loss is a
penalised version of the likelihood - which is an estimator of
the True CE - hence the method explicitly takes into account
the global performances of the solution. However, even
though the l1 penalty mechanically induces sparsity in the
solution, it does not necessarily recover the edges that best
reproduce the original distribution, especially when the data
is limited. Indeed, the known ”sparsitency” dynamics of the
solutions of (1), see [22], always involve a large number of
observations tending towards infinity. We demonstrate in
this paper that, when the sample size is small, other methods
recover consequently more efficient sparse structures, inac-
cessible to the l1 penalised problem (1).

On the other hand, the local approach of [1] carefully
assesses each new edge, focusing on making the most effi-
cient choice at each step. We confirm that the latter
approach yields better performance by comparing the solu-
tions of problem (1) and GGMselect [2] on both synthetic
and real data (Sections 4 and 5). However, the loss opti-
mised in GGMselect, CritðGÞ, see (4), is an amalgam of local
nodewise regression score, with no explicit regard for the
overall behaviour of the matrix

CritðGÞ :¼
Xp
a¼1

Xa �X buGh i
a

��� ���2
2

1þ penðdaðGÞÞ
n� daðGÞ

	 
� �
;

(4)

where pen is a specific penalty function, daðGÞ is the degree
of the node a in the graph G, Xa are all the observed values
at node a, such that X ¼ ðX1; . . . ; XpÞ 2 Rn�p is the full data,
and

ûG :¼ argmin
u2LG

XðIp � uÞ�� ��2
F

¼ argmin
u2LG

Xp
a¼1

Xa �X u½ �a
�� ��2

2

¼ argmin
ua2La

G
Xa �Xuak k22

( )p

a¼1

;

(5)

where LG is the set of p� p matrices u such that ui;j is non
zero if and only if the edge ði; jÞ is in G, and La

G is the set of
vectors ua 2 Rp such that ðuaÞi is non zero if and only if the
edge ði; aÞ is in G . Note that by convention, auto-edges ði; iÞ
are never in the graph G, and, in our work, G is always undi-
rected. The full expression of pen can be found in Eq. (3) of
[2]. It depends on a dimensionless hyper-parameter called
K which the authors recommend to set equal to 2.5. We first
tried other values without observing significant change,
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and decided to use the recommended value in every later
experiment.

The expression (5) illustrates that each nodewise coeffi-
cients ûG


 �
a
in the GGMselect loss are obtained from inde-

pendent optimisation problems which each involve only
the local sparsity of the graph in the vicinity of the node a,
as seen in the definition of La

G. In each parallel optimisation

problem argmin
ua2La

G
Xa �Xuak k22, the rest of the graph is not

constrained, hence is implicitly fully connected. In particu-
lar, the solutions of such problems involve an estimation of
the covariance matrix between the rest of the vertices that is
not inverse-sparse. This can bias the procedure towards the
sparser graphs since it actually implicitly measures the per-
formances of more connected graphs. Finally, the GGMse-
lect model selection criterion (GGMSC) explicitly penalises
the degree of each node in the graph making it so that
string-like structures are preferred over hubs. Empirically,
we observe that with low amounts of data, graphs with
hubs are consistently dismissed by the GGMSC. Overall, we
expect the selected solutions to be excessively sparse, which
experiments on both synthetic and real data in Sections 4
and 5 confirm.

2.3 Graph Constrained MLE

Even though a covariance matrix S uniquely defines a
graph with its inverse K, the reciprocal is not true. To a
given graph G :¼ ðV;EÞ, with vertex set V and edge set E,
corresponds a whole subset QG of Sþþ

p

QG :¼ eS 2 Sþþ
p

���8i 6¼ j; ði; jÞ =2 E ) eS�1
� �

ij
¼ 0

� �
:

When data is available, the natural matrix representing G is
the constrained MLE

bSG :¼ argmaxeS2QG

peSðXð1Þ; . . . ; XðnÞÞ ¼ argmineS2QG

H S; eS� �
:

(6)

The existence of the MLE is not always guaranteed (see [6],
[32]). When n < p, no MLE exists for the more connected
graphs. However, in this paper, we design a procedure that
can propose a MLE for any n and any graph without com-
putation errors. To tackle the issue of existence, we add a
very small regularisation term to the empirical covariance
matrix S. This leads to solving

bSG;� :¼ argmineS2QG

H S þ �Ip; eS� �
: (7)

� is not a true hyper parameter of the model. Its value is set
once and for all, and as small as possible as long as the
machine still recognises S þ �Ip as invertible. Typical values
range between 10�7 and 10�4. This trick changes little for the
already existing solutions. Indeed, if bSG solution of Eq. (6)
exists, we observe empirically that for small values of �:bSG ’ bSG;�. On the other hand, if no solution bSG to Eq. (6)
exists, then we now are able to propose a penalised MLEbSG;�, thus avoiding degenerated computations. From now
on, the MLE we use are always solutions of (7). We will

omit the index � and keep the notation bSG for the sake of
simplicity.

2.4 Our Composite Algorithm

The exploration steps of our method are a variation of the
local paradigm of [1]. First, we use the GGMselect solution
as initialisation. Then we add edges one by one: at each
step, for each vertex independently, we run a sparse linear
regression using as predictors the vertices that are not
among its neighbours yet, and as target the residual of the
linear regression between the value on the vertex and its
neighbours. With these regressions, each vertex proposes to
add to the current graph an edge between them and their
new best predictor. Here however, we deviate from the local
paradigm by using a global criterion - the out of sample
likelihood of the whole resulting new matrix - to evaluate
each proposition and select one edge among these candi-
dates. We end this exploration procedure after a fixed num-
ber of steps, the result is a family of gradually more
connected graphs. The final selection step is done with a
global metric: we pick, among the so constructed family, the
graph minimising the Cross Validated (with fresh data)
Cross Entropy. See Fig. 1 for the details.

In the spirit of [26], [27], [28], [29], this method is designed
to complete an already existing efficient, but sparse, solution.
As a result, it is sensitive to the initial graph.

3 ORACLE BOUNDS ON THE MODEL SELECTION

PROCEDURE

In this Section, we give non-asymptotic guarantees on the
model selection step of our algorithm. We prove these
results in Section 7. Using the statistical properties of our
model selection criterion, in particular the absence of bias
and convergence towards the oracle criterion, we describe
the difference between the performance of the selected
model and the oracle best performance (“regret”). This
regret is dependent on the convergence of a Wishart ran-
dom variable towards its expectation. As a result, we are
able to prove non-asymptotic upper bounds in expectation
and probability for the regret.

3.1 Framework

In this Section we define or recall the relevant concepts and
notations. We recall and rephrase the definition, given in
Eq. (7), of the constrained Maximum Likelihood Estimator
we build from a given graph G

bSGðSÞ ¼ argmineS2QG

H S þ �Ip; eS� �
¼ argmineS2QG

H S; eS� �
þ �

2
eK��� ���

	
:

We use the Cross Validated Cross Entropy (CVCE)

H Sval; bSGðSexplÞ
� �

as a criterion to pick a graph bGCV among

the ones encountered. This Cross Validated criterion uses
the partition of the training set into a validation set - used to

build the estimation Sval of the true matrix S - and an explo-
ration set - used for the graph exploration process and to
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build the constrained MLE bSGðSexplÞ for each encountered

graph G. We compare the graph bGCV selected with CVCE

with bG	 selected with the True Cross Entropy H S; bSG
�

ðSexplÞÞ of the matrix bSGðSexplÞ. We define formally those
graphs: in Eqs. (8) and (9)

bG	 2 argmin
G2M

H S; bSGðSexplÞ
� �h i

; (8)

bGCV 2 argmin
G2M

H Sval; bSGðSexplÞ
� �h i

; (9)

where we call M the family of graphs uncovered by the
Composite algorithm.

Remark. With the data available, the ideal model selection

would be made with True Cross EntropyH S; bSGðStrainÞ
� �

of thematrix bSGðStrainÞ built from thewhole train set. Com-

paring ourselves to this criterion would allow to quantify

the importance of having a balanced split between valida-
tion and exploration set. This is outside the scope of this

Section. We just compare our H Sval; bSGðSexplÞ
� �

to

H S; bSGðSexplÞ
� �

. In this case, the convergence of Sval

towardsS is the only dynamic that matters.

3.2 Basic Control

In this Section, we show a general upper bound on the
regret, using only the properties of the model selection cri-
terion, and not yet the properties of the estimators. From
this point on, we generally do not highlight the depen-
dency of bSG in Sexpl to simplify notation. First of all, note
that by definition we always have the lower bound on the
difference of CE

0 
 H S; bSbGCV
	 


�H S; bSbG	� �
:

The rest of the guarantees focus on the upper bounds for
this difference.

From the observation that H S; bS� �
¼ H S; bS� �

þ 1
2

S� S; bKD E
, we get the control (10) on the regret

H S; bSbGCV
	 


�H S; bSbG	� �
H S; bSbGCV
	 


�H S; bSbG	� �

 1

2
S� Sval; bKbGCV � bKbG	
� �

;

(10)

where all the MLE bSG depend only on G and Sexpl. The ran-
dom variable bG	 is a function of Sexpl only, whereas bGCV

depends on both Sval and Sexpl. Since Sval and Sexpl are inde-
pendent, then

E Sval; bKbG	ðSexplÞ
D E���Sexpl

h i
¼ S; bKbG	ðSexplÞ
D E

:

In the end, with e :¼ E H S; bSbGCV
	 


�H S; bSbG	� �� �
the

expected regret, we have

0 
 e 
 1

2
E S� Sval; bKbGCV
� �� �

: (11)

Fig. 1. Composite GGM estimation. We respectively identify with green
or orange bullets the steps adhering to a local or global paradigm.
Comments are in italics.
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3.3 Control in Expectation

In this Section, we use the sparsity properties of the estimatorbKbGCV aswell as the statistical properties ofS� Sval to obtain a

more explicit control on the expected regret. In addition, we
use a known concentration result to obtain an alternative
control in expectation. The result (11) is completely agnostic
of the way the matrices bKG 2 Sþþ

p are defined as long as they
depend on Sexpl only. To get an order of this control, how-
ever, we use the assumption that bSG is the graph constrained
MLE defined in (7). Let us first notice that we can ensurebKG
��� ���

	

 p

� thanks to our penalised definition of (7). Let

S1 :¼ max
i;j

Sij

�� ��. We call Emax the union of the maximal edge

sets in M, and dmax ¼ Emaxj j 
 pðp�1Þ
2 its cardinal. We under-

line here that, by convention, conditional correlation graphs
do not contain self loops, hence the edge setsE never include
any of the pairs ði; iÞf gi¼1;...;p. We then get the control (12) by
using Cauchy-Schwartz’s inequality in (11).

Proposition. With the previously introduced notations, if the set
Emax is independent of the exploration empirical matrix Sexpl,
we have

0 
 e 
 S1
�
ffiffiffi
2

p pþ 2dmaxð Þ12pffiffiffiffiffiffiffiffi
nval

p : (12)

In the case of our Composite procedure, by construction Emax

is a random variable depending on the exploration set. How-
ever (12) still holds by replacing dmax with E dmax½ �

0 
 e 
 S1
�
ffiffiffi
2

p pþ 2E dmax½ �ð Þ12pffiffiffiffiffiffiffiffi
nval

p : (13)

We can get an alternative order of the control by using
known concentrations inequalities.

Proposition. By using the Theorem 4 of [34], we get

0 
 e 
 c
�maxðSÞ

�
p

ffiffiffiffiffiffiffiffi
p

nval

r
_ p

nval

	 

: (14)

Where c is a constant independent of the problem.

In the end, with (13) and (14), we have two different
upper bounds on e and can use the minimum one depend-
ing on the situation.

3.4 Control in Probability

In this Section, we use the sparsity properties of the estima-
tor bKbGCV as well as the concentration properties of S� Sval

around 0 to obtain a control in probability (concentration
inequality) on the regret. In addition to the controls in
expectation we got in (11) and (12), there is in the CVCE a
concentration dynamic based on the convergence rate of a
Wishart random matrix towards its average. We call Pmax

the orthogonal projection on the set of edges Emax[
ði; iÞf gpi¼1. That is to say, for any matrix M 2 Rp�p; Pmax

ðMÞi;j ¼ Mi;j11ði;jÞ2Emax[ ði;iÞf gp
i¼1

. Let W :¼ K
1
2SvalK

1
2. Then

nval W � Wp nval; Ip
� �

is a standard Wishart random variable
depending only on the validation data, hence independent

of every matrix bKG. Let P :¼ P H S; bSĜCV

� �
�

���� H S; bSĜ	
� �

j 


dÞ be the probability that the regret is small. We get two dif-
ferent lower bounds (15) and (16) on P .

Proposition. With the previously introduced notations, the two
following inequalities hold:

P � P W � Ip
�� ��

F

 d

max
G

S
1
2 bKGS

1
2

��� ���
F

0B@
1CA ; (15)

P � P Pmax Sval � Sð Þk kF

d

max
G

bKG
��� ���

F

0B@
1CA : (16)

Moreover, the results (15) and (16) hold when every probabil-
ity is taken conditionally to the exploration data or, equiva-
lently here, conditionally to Sexpl.

If we work conditionally to the exploration data, then

max
G

S
1
2 bKGS

1
2

��� ���
F
, max

G
bKG

��� ���
F

and Emax are constants of the

problem. In that case, the lower bound in (15) only depends
on the dynamic of a standard Wishart Wp nval; Ip

� �
. Simi-

larly, the lower bound in (16) only depends on the conver-
gence dynamic of some coefficients of Sval towards the
corresponding ones in S.

The bound in (16) has a less general formulation than
(15), since the Sval 7! S is a more specific dynamic than
W 7! Ip. On the other hand, only the diagonal coefficients
and those in Emax need to be close, which can make a huge
difference if p is very large and M contains only sparse
graphs and make the bound (16) tighter.

4 EXPERIMENTS ON SYNTHETIC DATA

We show in this Section the shortcomings of the global
problem (1) of [3] and [4] and of the local approach of [1]
and [2] on synthetic data. We demonstrate that - when the
data is not abundant - the solutions of GGMselect consis-
tently reproduce the true distribution much better than any
solution of the global problem (1). In addition to being out-
performed in KL divergence, the best solutions of (1) are
also very connected, consequently more than the real graph.
However, we also illustrate that the solutions of GGMselect
are always very sparse, regardless of the real graph. In the
end, we demonstrate that our selection criterion improves
both the distribution reproduction and the graph recovery
of the previous two methods.

4.1 The Solutions Missed by the Global Paradigm: A
Comparison of GLASSO and GGMselect

We start by comparing the two state of the art global and
local paradigms, and show that the global paradigm misses
crucial solutions when the number of observations is small.
We use the scikit learn, see [35], implementation of the
GLASSO of [12] to solve problem (1) for any penalisation
level r and the R implementation of GGMselect, see [2], to
represent the [1] approach.

We use an inverse-sparse covariance matrix S fixed once
and for all to generate a matrix of observations X. The same
observations are provided to the two methods. On Fig. 2,
we compare the True CE HðS; bSÞ of each estimated matrix
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as a function of the number of non-zero, off diagonal coeffi-
cients in their inverse bK (complexity of the model). The
green dot is the MLE - computed as in (7) - under the con-
straints of the GGMselect graph. In the case of GLASSO, dif-
ferent solutions are obtained by changing the level of
penalisation r in Eq. (1). We call those solutions bSr, indexed
by their penalisation intensity r. They are represented by
the blue curve on Fig. 2. All of them are inverse-sparse and
define a graph we call GðrÞ. The orange curve is the path of

the MLEs bSGðrÞ - computed as in (7) - refitted from those
same graphs without the l1 penalty of problem (1). They
have the same inverse-sparsity as their raw solution coun-
terparts, but do not have the extra-penalisation on the non-
zero coefficients that every LASSO solution bears.

The three columns correspond to graphs with different
connectivity - illustrated by a random example on top of
each column - and the two rows have different graph sizes,
p ¼ 30 and p ¼ 50 respectively. For each simulation, the two
methods were given the same n ¼ 30 observations to work
with, and each figure represents the average and standard
deviation of 100 simulations.

We notice that the GGMselect solution is always very
sparse. When the true graph is sparse, GGMselect outper-
forms the penalised likelihood problem (1) regardless of the
penalty intensity. For large connected graphs, the most con-
nected solutions of (1) can perform better than the GGMse-
lect solution. However GGMselect is consistently better than
the equally sparse problem (1) solution. The failure of
GLASSO to reach the spot of GGMselect in the performan-
ces/complexity with any penalisation intensity - even when
the MLE is refitted from the GLASSO graph without penalty
- indicates that when n is small, the l1 penalised likelihood

problem (1) has difficulties selecting the most efficient edges.
Additionally, the better performing solutions of GLASSO
have many edges - usually much more than the real graph -
which draws the focus away from the relevant ones and
makes it difficult to get a qualitative reading of the graph.

When the number of observations is small, it seems that
GGMselect’s numerical scheme allows it to find high per-
forming sparse graphs that problem (1) never can. This is
the type of solution we want, and the main reason why we
choose to initialise our composite method from this point.

4.2 Conservativeness of the GGMselect Criterion:
An Example With a Hub

We identified that GGMselect produced high quality, very
sparse solutions. We argue here that they might be too
sparse for their own good.

As discussed in Section 2.2, the numerical scheme of the
GGMselect algorithm is based on a nodewise approach, and
so is its model selection criterion. It penalises independently
the degree of every node in the proposed graph. This makes
it very unlikely to select graphs with a hub, i.e., a central
node connected to many others. However recovering hubs is
very important in conditional correlation networks. Genetic
regulation networks for instance often feature hubs. With
synthetic data, n ¼ 30; p ¼ 30, we encounter a “soft cap”
effect, where it becomes very hard for GGMselect to propose
a graph including a node of degree higher than 3. The pen-
alty for such a node being too large to be compensated by the
improved goodness of fit. On the other hand, we see on Fig. 3
that the Cross Validated Cross Entropy selects a graphwhich
features the entire hub, and is in addition closer to the real
graph regarding the remaining edges. Indeed, in the

Fig. 2. Average performances as a function of the complexity for: the MLE from the GGMselect graph (green), the GLASSO solutions (blue) and the
MLEs from the GLASSO graphs (orange). The average is taken over 100 simulations. In each simulation, n ¼ 30 data points are simulated from a
given true graph, different for each subfigure. The two rows of subfigures correspond to two different graph sizes, p ¼ 30 and p ¼ 50 vertices, respec-
tively. The three columns correspond to true graphs with different connectivity. At the top of each column, a graph illustrates the typical connectivity of
the true graphs in said column.
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example of Fig. 3, other edges than the ones forming the hub
are also ignored by GGMselect. With such a behaviour of the
model selection criterion when the number of observations n
is small, the GGMselect graphs are hard to interpret, with
many key connections potentiallymissing.

Such observations motivated us to replace the GGMselect
criterion with the Cross Validated Cross Entropy for graph
selection. The next subsection proposes a quantitative com-
parison of the graphs selected by these two metrics.

4.3 The Short-Sightedness of the Local Model
Selection: A Comparison of the GGMselect
Criterion and the CVCE

In this Section, we compare solely the model section metrics
- and not the graph exploration schemes - on a fixed, shared,
family of graphs. We demonstrate that our global approach
to model selection yields graphs much closer to the original
one and that reproduces the true distribution much better
than the GGMselect criterion, which rejects the better, more
connected graphs.

We compare the graphs selected by our Cross Validated
CE and the GGMSC when shown the same family of candi-
date graphs. We consider a given true graph (p ¼ 30). We
compute once and for all one GGMselect solution with
n ¼ 30 observations drawn from this graph. With these key
graphs in hand, we build manually (without the exploration
scheme of Fig. 1) a deterministic sequence of graphs. Start-
ing from the Fully Sparse with no edges, we add one by
one, and in an arbitrary order, the edges needed to reach
the GGMselect graph. From there, in the same manner, we
add the missing edges and remove the excess edges to reach
the true graph. Finally, we add - still one by one, still in an
arbitrary order - the remaining edges until the Fully Con-
nected graph, with all possible edges. All the encountered
graphs in this sequence constitute the fixed family of candi-
dates to be assessed by the model selection criteria. For each
simulation, we generate n observations and use them to
compute the GGMSC and CVCE along the path. We make
1,000 of those simulations. The GGMSC uses the full data
freely, while the CVCE must split the n points into the explo-
ration covariance Sexpl, to compute the graph constrained
MLE bSGðSexplÞ, and a validation covariance Sval to evaluate
them. This leads to different results depending on the split
size. Let Strain be the empirical covariance matrix built with
the full data. We assess the performances of each graph G
with the True CE (TCE) of the MLE built from Strain under
the constraints of G: HðS; bSGðStrainÞÞ. Since there is a known

true S we actually compute the True KL KLðS; bSGðStrainÞÞ.
This metric differs from the TCE only by a constant, hence
is equivalent when ranking methods, but offers a sense of
scale since the proximity to 0 in KL is meaningful. Fig. 4
illustrates the behaviour on one simulation. The most
noticeable trend is that the GGMSC (in green) advocates a
much earlier stop than the CVCE (in red), which stops
almost on the same graph as the TCE (in blue). Addition-
ally, on that run, the graph selected by the CVCE is actually
the true graph (in grey). Fig. 5 represents the results over all
simulations. We compare the average and standard devia-
tion of the performances (true KL, on the y axis) and com-
plexity (number of edges, x axis) of the models selected by
the CVCE with different exploration/validation splits (in
shades of red), GGMSC (in green) and with the TCE (in
blue). The three columns represent different number of
available observations (n ¼ 25; 40; 100) and the second row
is a zoomed in view of the first. This quantitative analysis
confirms that the GGMSC selects graphs that are way too
sparse even when shown more complex graphs with better
performances. With the performances measured in KL, rela-
tive improvement is meaningful, and we see the CVCE
improving the GGMSC choice by a factor from 2 to 5, and
being much closer to the oracle solution in terms of KL.
Additionally, the graphs selected by CVCE are also much
closer to the original one. This is especially true when a
large fraction of the data (35 or 40 percent of the training
data) is kept in the validation set. The same results are
observed with two other oracle metrics: the l2 recovery of

the True S, S� bSGðStrainÞ
��� ���

F
, and the oracle nodewise

regression l2 recovery S
1
2ðIp �QGðXtrainÞÞ

��� ���
F

(the oracle

metric of the GGMselect authors [2]). Those metrics also
reveal that when the validation set is small (20 percent), the
variance of the performances of CVCE increases and it can
become less reliable depending on the metric. The Figures
and details on these two metrics can be found in supple-
mentary materials, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2020.2980542.

This experiment illustrated how the model selection cri-
terion of GGMselect can actually be very conservative, and
even though the numerical scheme of the method explores
interesting graph families, the model selection criterion

Fig. 3. Graph selection in the presence of a hub. The first figure is the
true graph. The second and third are the graphs respectively selected
by the GGMSC and CVCE on the same fixed graph path going from the
fully sparse to the fully connected, via the GGMselect graph and the true
graph.

Fig. 4. On a single simulation: evolution of and model selected by
GGMSC (green), CVCE (red) and TCE (blue) along the fixed determin-
istic path. The true graph’s position on that path is represented by a verti-
cal grey line. GGMSC stops early whereas CVCE selects the true graph
(the vertical grey line and the dashed red one are the same). Moreover,
the CVCE graph is very close to the best graph in terms of True Cross
Entropy.
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might dismiss the more complex, better performing ones on
them. This leads us to believe we can make substantial
improvements by using the CVCE on a path built using the
GGMselect solution as initialisation.

4.4 Execution Time Comparison

In this Section, we compare the runtimes of GLASSO,
GGMselect and the Composite method for several values of
p. For each p, 20 simulation are made, with n ¼ p=2 observa-
tions each. This number of observations is an arbitrary heu-
ristic to have both n < p and n increasing with p. Table 1
synthesises the results. The runtime and complexity of the
Composite method depend linearly on the number of steps
chosen by the user. As seen in Fig. 1, this number of steps is
the number of graphs that are constructed and evaluated.
Ideally, this sequence of graphs should be just long enough
to see the Oracle (or Out of Sample) performance improve
as much as they can, and stop when they start deteriorating,
when the point of overfitting is reached. In this experiment,
the number of steps is chosen according to an heuristic
depending on the number of edges in the initialisation

graph with regards to p. The average number of steps over
the simulations is also recorded in Table 1.

The Composite method and GGMselect both include a
model selection step, however GLASSO just returns one
solution of Eq. (1) for one given value of the penalty param-
eter r. As a result, all three methods are not strictly compa-
rable. This was corrected in this experiment: for every
simulation, the GLASSO is run on a grid of r with as many
values as the number of estimated graphs by the Composite
method. We call this the “grid GLASSO”.

Table 1 shows that GGMselect is faster than the other two
methods by 1 and 2 orders of magnitude in average. The
Composite method is faster than the grid of GLASSOs when
the dimension is small, but suffers when the dimension goes
above p ¼ 100. The Composite algorithm has indeed a high
complexity in p, it runs p� nsteps ordinary linear regression
with p� 2 features and computes then evaluates
ðpþ 1Þ � nsteps graph constrainedMLE of size p� p each.

The algorithmic of GGMselect and GLASSO were very
well optimised by their respective authors. This shows in
the very fast GGMselect computations, making it a very effi-
cient initialisation for our Composite method. However, the
implementation of the Composite, see Fig. 1, is naive and
sequential. By running the linear regressions and LARS in
parallel, and not re-calculating the MLE for the same graph
several times, the performance would be greatly improved
and closer to GLASSO.

5 EXPERIMENTS ON REAL DATA WITH THE

COMPOSITE GGM ESTIMATION ALGORITHM

In this Section, we present two experiments with our com-
posite method on real data. First, we demonstrate on brain
imaging data from a cohort of Alzheimer’s Disease patients
that it recovers the known structures better than the

Fig. 5. Average KL divergence (y axis) and complexity (x axis) of the models selected with GGMSC (green), CVCE (shades of red) and TCE (blue) on
synthetic data. The sparsity level of the true graph is represented by a black dashed vertical line. The second row offers a zoomed in view of the
boxed areas to focus on the CVCE and TCE models. The graphs selected by the CVCE are much closer to the best in True Cross Entropy in terms
of performance and edge structure than the GGMSC one. Moreover, they are also very close to the true graph used in the simulation, even when the
sample size is small.

TABLE 1
Average and (Standard Deviation) of the Execution

Times of Different GGM Methods

p GGMsel (fast) grid GLASSO Composite nb steps

30 0.19 (0.07) 14.9 (8.60) 3.09 (1.80) 8.4
50 0.39 (0.03) 62.1 (32.9) 16.6 (8.20) 14.9
100 1.66 (0.66) 247 (135) 226 (138) 26.3
300 25.8 (1.04) 1,470 (775) 6,847 (1453) 40

The grid GLASSO computes solutions for as many values of the penalty
parameter r as there are estimated graphs (steps) in the Composite method.
The last column presents the average of this number of steps/number of
estimated graphs. The number of observations is n ¼ p=2.
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classical local and global methods, while also having a bet-
ter Out of Sample goodness of fit with the data. Then, we
showcase how it is able to describe known dynamics
between factors involved in Adrenal steroid synthesis on a
database of Nephrology test subjects.

5.1 Experiment on Alzheimer’s Disease Patients

We first confirm our previous observations and demon-
strate the performances of the complete numerical scheme
of our composite procedure on real medical data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base. We have p ¼ 343 features, n ¼ 92 different patients.
The first 240 features are measures of atrophy (MRI) and
glucose consumption (PET) in the 120 areas of the cortex
defined by the AAL2 map. The next 98 are two descriptors
of the diffusion, fractional anisotropy and mean diffusivity,
followed in the 49 regions of the JHU ICBM-DTI-81 white
matter atlas. The rest of the features are basic descriptions
of the patient.

5.1.1 Experiment

First we need a new evaluation metric. Indeed, with real
data, we do not know the real covariance matrix. So we can-
not anymore compute the True Cross Entropy to evaluate
the inferred matrices. To replace the TCE, we keep n ¼ 18
patients aside as a test set to define a test empirical covari-
ance matrix Stest, whereas the n ¼ 74 patients left constitute
the train set, used to define Strain. We evaluate an inverse-

sparse covariance matrix built from Strain with the negative
Out of Sample Likelihood (OSL): HðStest; bSGðStrainÞÞ. The
OSL is less absolute than the True CE, but still quantifies
with no bias the goodness of fit for real data. Additionally,
we cannot use a KL divergence for scale reference anymore,
see Section 7.1 for more details.

The experiment run on the ADNI database is very sim-
ple: we compute the GGMselect solution and build our
Composite GGM estimation procedure from it. To be fair,
we also evaluate every graph our procedure encounters
with the GGMSC, giving GGMselect a chance to change its
mind if one of the new graphs were to fit its criterion better.
In addition, we used the GLASSO algorithm of [12] to get
the solutions of (1) for different penalty intensity.

5.1.2 Comparison of GLASSO and GGMselect

We confirm the observations and conclusions of Section 4.1.
Fig. 6 shows that, even with varying penalty intensity,
GLASSO does not encounter any solution with an OSL as
good as GGMselect. This indicates that the optimisation
problem (1) cannot find high-performing sparse graphs in
this concrete setting either. The path of GLASSO is inter-
rupted before its completion as we have computational
error with the scikit learn package at low penalty levels. We
encounter such errors eventually no matter how we regula-
rise and precondition the empirical covariance S. This
means we do not get to see the more connected solutions of
the GLASSO. This is not a problem since we already go far
enough in the GLASSO path to reach unacceptably complex
graphs: 6 percent of the � 59000 possible edges, i.e., 3,500
edges for a graph with 343 nodes. By stopping early, we
only consider the reasonable solutions of the GLASSO. In
that case, GGMselect has a clear advantage, proposing a
solution with a better Out of Sample fit with the data and
only 281 edges.

5.1.3 Comparison of GGMselect and the Composite

GGM Estimation Algorithm

We represent the selected graphs on left panel of Fig. 7, with
the same conventions as Fig. 5. Once again the GGMSC
(green) selects a sparse model, with 281 edges over the �
60k possible. All the reasonable validation fractions (from 10
to 30 percent) of the CVCE (shades of red) select one out of
two graphs, with both better OSL than the GGMSC one and
closer to the OSL-optimum on the path (blue). Those two

Fig. 6. Out of sample performances as a function of the complexity for:
the MLE from the GGMselect graph (green), the GLASSO solutions
(blue) and the MLEs refitted from the GLASSO graphs (orange).

Fig. 7. Out of Sample Likelihood (y axis) and complexity (x axis) of models selected by GGMSC (green), CVCE (shades of red) and OSL (blue) on
real data. The right picture offers a zoomed out view to include the model selected by OSL on the GLASSO path (purple). The left figure corresponds
to the boxed area of the right figure.
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graphs have 589 or 813 edges respectively. This indicates
that many conditional correlations were potentially missed
by GGMSC, and that the CVCE graphs may propose a more
complete interpretation.

For a full comparison of the thee methods, the right panel
of Fig. 7 is a zoomed out view that also includes the bestmodel
obtainablewith problem (1) in terms ofOSL (purple point). As
we have seen, it is a very complex model with many edges.
We visualise the successive improvements in Out of Sample
Likelihood made first by GGMselect, with a sparser solution,
then with our Composite GGM estimation procedure, with a
more complete model. This experiment demonstrates the
quantitative benefits of running the Composite algorithm in a
HighDimension Low Sample Size setting.

In addition to those quantitative improvements, our
method allows for a better qualitative interpretation of the
disease. Fig. 8 represents, using the Colin 27 brain image of
[36] and the MRView software of [37], the graphs selected
by GGMSC and CVCE (589 edges version), as well as the
best GLASSO graph in OSL (� 3500 edges). We recall that
each of the methods estimates a large graph with p ¼ 343
vertices, a mix of different modalities measured in differ-
ent areas of the cortex. The full graph cannot be displayed
on an image of the cortex. For the sake of clarity, we only
represent sub-parts of this one graph. On Fig. 8, only edges
in-between the 120 MRI measures are represented. Addi-
tional views of the cortex can be found in supplementary
materials, available online. The GGMselect network is
mostly composed of inter-hemispheric connections between
symmetrical areas (hidden by the perspective in Fig. 8, see
the supplementary materials for different views), available
online. These mainly reflect the symmetry of the atrophy
pattern and are less informative for understanding disease
process. The intra-hemispheric connections have a better
interpretation potential to explain the pathology. Our algo-
rithm reveals many more of these correlations - for instance
in parietal areas, which are thought to be key hubs in the
disease process - promising a more interesting description
of the pathology. The GLASSO solution on the other hand,
proposes many edges, making even this simple sub-graph
unreadable. Similar observations can be made for connec-
tions in-between PET measures (see supplementary materi-
als), available online.

Additionally, Fig. 9 shows that the GGMselect graph fea-
tures absolutely no edge between MRI and PET measures,
effectively proposing a model in which there is no correla-
tion whatsoever between anatomical and functional varia-
bles, a very unlikely and unsatisfactory description. Our
method on the contrary recovers a reasonable amount of
edges between those two modalities. GLASSO recovers a
similar number of edges in this sub-part of the graph. How-
ever, Fig. 8 shows that it does so while having an extremely
large number of edges in other regions of the graphs.
Sparser GLASSO solution on the other hand, behave simi-
larly to GGMselect and recover no edge linking MRI and
PET measures, see supplementary materials, available
online. Of all these solutions, the Composite method pro-
poses the most balanced.

These results suggest that our approach could be an
interesting tool to study inter-regional and inter-modality
dependencies in Alzheimer’s Disease. This would need to

be confirmed with larger populations of patients and more
extensive experiments, which is out of the scope of the pres-
ent paper and is left for future work.

5.2 Experiments on Neprhology Patients

In this Section, we compare qualitatively the methods in an
environment with p < n. Although the Composite

Fig. 8. Selected edges by GGMselect (up), our Composite method (mid)
and the best Out of Sample GLASSO (down) in-between MRI measures.
The perspective of the sagittal view hides the many edges between sym-
metrical regions. GLASSO proposes too many to allow for interpretation.
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procedure was developed specifically for the case n < p,
we demonstrate here that it still holds up to the state of the
art outside of its intended application framework. We use a
dataset of variables relevant to the adrenal steroidogenesis
on a cohort of healthy test subjects.

Adrenal steroid synthesis in childhood is a complex
process involving an enzymatic cascade that transforms

cholesterol into mineralocorticoids, glucocorticoids or andro-
gens, depending on the enzymatic equipment of each zona of
the adrenal gland. Even thoughmost important ways of adre-
nal steroidogenesis are known, we now assess new related
metabolite that may ask new questions regarding adrenal ste-
roidogenesis. Thus, we analysed a pediatric cohort of n ¼ 172
healthy volunteers aged from 3 months to 16 years old with
blood count and LC-MS/MS adrenal steroid profile analysis
(p ¼ 35).

Fig. 10 represents the matrices of pairwise conditional
correlations corresponding to the GGMselect solution (left),
the Composite solution (middle) and a sparse GLASSO
solution (right). The rest of the path of GLASSO solution
can be found in the supplementary materials, available
online. The other solutions contain many more edges than
any of the three matrices here.

Themodels proposed by the threematrices have been com-
pared to literature data for hematological parameters and ste-
roidogenesis analysis. Regarding hematological analysis, both
the Composite and GGMselect models confirm well known
relations such as strong direct positive links between hemo-
globin concentration (Hb) and red cells count (RBC); between
hemoglobin concentration and mean corpuscular volume
(WCV); between white cells (WBC) and platelet counts (PC);
and a strong negative link between red cells count and mean
corpuscular volume; between white cells count and age. The
GLASSO solution did not show any of them.

Regarding steroid metabolism, 11-b 1 hydroxylase (11
Ohase B1) and 21 hydroxylase (21 Ohase) activities, the Com-
posite method and GGMselect reach the same conclusion:
there is a strong positive direct link between enzymatic activ-
ities and the concentration of their corresponding alternate
product. This is in accordance with common description of
adrenal steroidogenesis process: decreased activity leads to
an accumulation product of the alternative pathway. The
GLASSO solution failed to show these relations. In the same
way, GGMselect and the Composite method exhibit a nega-
tive link between the lack of 11-b HSD type 2 (11b HSD2)
activity (that catabolizes cortisol into cortisone) and the con-
centration of its product, cortisone (e). The sparse GLASSO
fails to underline this link. All these data tend to show a bet-
ter interpretation of steroids profile with the GGMselect and
Composite solutions. Interestingly, these models also under-
line a new link: a strong positive link between 18-hydroxy-
corticosterone (18ohb) and 18-hydroxycortisol (18ohf)
concentrations, two steroids that are supposed to be inde-
pendently produced in two different zonas of the adrenal
gland. This result could imply an alternative pathway in
adrenal steroidogenesis that needs to be explored.

The GGMselect and Composite graphs are mostly identi-
cal, although some of the conditional correlations are
weaker in the Composite matrix. Among the subtle differen-
ces, two edges that are coherent with the state of the art, and
are present in the GGMselect graph, were alleviated in the
Composite matrix (resulting in invisible connections in
Fig. 10): the link between the 18-oxocortisol (18oxof) and
cortisol (f) concentrations, and the very strong negative link
between the ratio cortisol/18-oxocortisol (F/18oxof) and 18-
oxocortisol. The other very few additions and removals in
the Composite model are hard to validate or disprove with
the current state of the art.

Fig. 9. Selected edges by GGMselect (up), our Composite method (mid)
and the best Out of Sample GLASSO (down) between PET (yellow) and
MRI (red) measures. GGMselect finds no connection in this sub-part of
the graph, although one may expect some.
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From a medical analysis point of view, all these results
are preliminary and will have to be confirmed by more in
depth studies. From a purely machine learning point of
view, this example illustrates that the Composite method
behaves appropriately when p < n. In this example, the
GGMselect solution seems already acceptable, and the
Composite procedure does not deviate too much from it.

To summarise these experimental studies, Section 5.1
showed the quantitative and qualitative improvements
made by the Composite method on real data, in the High
Dimension Low Sample size setting (n < p) the method
was designed for. In this Section, with enough data avail-
able (p < n), hence outside the intended area of application,
the qualitative analysis suggests that, running the Compos-
ite procedure does not provide additional benefits, but does
not cause any loss either.

6 CONCLUSION

When it came to inferring conditional covariance graphs from
a small number of observations, we were dissatisfied with the
state of the art GGMmethods. In this paper, we quantified the
shortcomings in terms of goodness of fit, distribution recon-
struction and interpretability of the local approach of [1] and
the global optimisation problem of [3], [4]. We proposed a
method composed of a structure learning algorithm coupled with
model selection criterion. In the latter, the structure learning
steps are a variation of the parallel nodewise linear regres-
sions of [1] and the model selection steps guided by out of
sample versions of the likelihood optimised in [3] and [4]. The
validity of our method was demonstrated on synthetic and
real data when n < p. Quantitatively, it consistently reached
consequently lower KL divergences and better sparsistency
than the aforementioned state of the art paradigms. A qualita-
tive analysis on a neurological data set of real data, revealed
that it better recovered the known dynamics of the field. An
additional real data experiment, with p < n, suggested that
the method did not cause any loss when used outside the
intended scope of application. In the future, optimising the
numerical scheme will allow us to make further quantitative
improvements. Such as lower execution times and better per-
formanceswith less reliance on the initialisation.

7 PROOFS OF THE MAIN RESULTS

7.1 Basic Cross Entropy Calculus for Gaussian
Vectors

In this Section, we offer details and commentary on the
Cross Entropy manipulation with normal distributions and
prove (2) and (3).

The formula of the Cross EntropyH p; qð Þ is given by

Hðp; qÞ :¼ �Ep log qðXÞ½ � ¼
Z
x

�pðxÞlnðqðxÞÞmðdxÞ :

The likelihood pu of a parametric distribution fu with iid
observations ðXð1Þ; . . . ; XðnÞÞ is given by

puðXð1ÞÞ; . . . ; XðnÞÞ ¼
Yn
i¼1

fuðXðiÞÞÞ :

Let f̂n ¼ 1
n

Pn
i¼1 11x¼XðiÞ be the empirical distribution of the

sample ðXð1Þ; . . . ; XðnÞÞ, we see the connection between CE

and likelihood

H f̂n; fu

� �
¼ � 1

n

Xn
i¼1

log ðfuðXiÞÞ ¼ � 1

n
log puðx1; . . . ; xnÞ :

Proof of (2) and (3). In the case of Centered Multivariate
Gaussians, let H S1;S2ð Þ :¼ H fS1

; fS2
� �

and let us omit
the constant p2 lnð2pÞ from the calculations

H S1;S2ð Þ �
Z
X

fS1ðxÞ � 1

2
lnð K2j jÞ þ 1

2
XTK2X

	 

dX

¼ � 1

2
lnð K2j jÞ þ 1

2

Z
X

fS1
ðxÞ XXT ;K2

� �
dX

¼ � 1

2
lnð K2j jÞ þ 1

2

Z
X

fS1
ðxÞXXTdX;K2

� �
¼ � 1

2
lnð K2j jÞ þ 1

2
S1; K2h i :

In the end, we get (2)

H S1;S2ð Þ � 1

2
S1; K2h i � lnð K2j jÞð Þ :

Fig. 10. Conditional covariance matrix between the 35 variables measured on the cohort. The positive correlations are in red and the negative in blue.
The diagonal coefficients are ignored in this study. GGMselect (left) and Composite (middle) share the same colour scale. The rightmost figure
corresponds to one of the sparsest GLASSO solution.
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With the observed data X :¼ X1; . . . ; Xnð ÞT2 Rn�p, let
S :¼ 1

nXXT 2 Sþ
p , the empirical covariance matrix. The

log likelihood of any centred Gaussian distribution fS2
is

given by

H f̂n; fS2

� �
� 1

2n

Xn
i¼1

�lnð K2j jÞ þXT
i K2Xi

� �
¼ � 1

2
lnð K2j jÞ þ

Xn
i¼1

XiX
T
i

2n
;K2

* +

¼ � 1

2
lnð K2j jÞ þ 1

2
S;K2h i ;

where, as in (2), we omit the constant term p
2 lnð2pÞ from

the calculations. In the end, we get (3)

H f̂n; fS2

� �
� 1

2
S;K2h i � lnð K2j jÞð Þ :

tu
The likelihood H f̂n; fS2

� �
follows a similar formula as

the Cross Entropy between two normal distributions (2).
When S defines a non degenerate normal distribution, what

we actually have is H f̂n; fS2

� �
¼ H fS; fS2

� �
. However,

when n < p, S is singular and the density fS is not defined.
The formula (3) still holds though, and we write

H S;S2ð Þ :¼ H f̂n; fS2

� �
since the formula is the same as (2)

forH S1;S2ð Þ.
Remark. When the density fS does exists, we have equality

in the CE H f̂n; fS2

� �
¼ H fS; fS2

� �
, but not in the Entro-

pies H f̂n; f̂n

� �
6¼ H fS; fSð Þ, as a consequence the KL

divergences are different as well: KL f̂n; fS2

� �
6¼

KL fS; fS2

� �
. In practice KL fS; fS2

� �
< < KL f̂n; fS2

� �
and KL f̂n; fS2

� �
will never reach 0, since a normal distri-

bution will tend to be closer to another normal distribu-

tion than to an empirical one, this is particularly true with

n small and S2 close to S. As a result,KL f̂n; fS2

� �
offers a

poor sense of scale, since the value 0 cannot be used as a
reference. For this reason, when we represent
H fStest ; fS2

� �
as we do in Fig. 7, we do not use it under the

form of a KL with 0 as its minimum for scale reference -
as we do on synthetic data in Fig. 5 - since the only KL we
can compute is the mostly irrelevantKL f̂n; fS2

� �
.

7.2 Preliminary Results for the Model Selection
Guarantees

To prove the controls we stated in Sections 3.2, 3.3 and 3.4,
we need the two following lemmas.

Lemma 1. Let Sð�Þ :¼ S þ �Ip. With bKG :¼ bS�1
G , where bSG is

defined as in (7), we have

8G 2 M; Sð�Þ; bKG
D E

¼ p : (17)

Proof. Let PG be the orthogonal projection on the edge
set EG [ ði; iÞf gpi¼1. That is to say, for any matrix

M 2 Rp�p; PGðMÞi;j ¼ Mi;j11ði;jÞ2EG[ ði;iÞf gp
i¼1

. A property

of theMLE is thatPGðbSGÞ ¼ PGðSð�ÞÞ, i.e., thematrices have

the same values on the diagonal and the edge set, see [6].
Additionally, note that, because of the sparsity of bKG, for
anymatrixM, we have M; bKG

D E
¼ PGðMÞ; bKG
D E

. Then

Sð�Þ; bKG
D E

¼ PGðSð�ÞÞ; bKG
D E

Sð�Þ; bKG
D E

¼ PGðbSGÞ; bKG
D E

Sð�Þ; bKG
D E

¼ bSG; bKG
D E

Sð�Þ; bKG
D E

¼ p :
tu

Lemma 2.With bKG :¼ bS�1
G , where bSG is defined as (7), we have

bKG
��� ���

	

 p

�
:

Proof. We have

S þ �Ip; bKG
D E

¼ p

S; bKG
D E

þ �trð bKGÞ ¼ p

tr bK1
2
GS bK1

2
G

	 

þ �trð bKGÞ ¼ p :

Since bK1
2
GS bK1

2
G 2 Sþ

p , we have tr bK1
2
GS bK1

2
G

	 

� 0 and

�trð bKGÞ 
 p, i.e.,

bKG
��� ���

	

 p

�
: tu

7.3 Bounds in Expectation for the CVCE Solutions

We prove the results of Sections 3.2 and 3.3.

Proof of (11), (12), (13), and (14). We want to control the

expected regret e :¼ E H S; bSbGCV
	 


�H S; bSbG	� �� �
. First,

note that by definition of bG	, we have

0 
 H S; bSbGCV
	 


�H S; bSbG	� �
:

So the lower bound

0 
 e ;

is guaranteed.
From the definition of bGCV (9), we get

H Sval; bSbGCV
	 



 H Sval; bSbG	� �
:

We have for any eS 2 Sþþ
p , with eK :¼ eS�1

H Sval; eS� �
¼ H S; eS� �

þ 1

2
Sval � S; eKD E

:

Hence

H S; bSbGCV
	 



 H S; bSbG	� �
þ 1

2
Sval � S; bKbG	D E

� 1

2
Sval � S; bKbGCV
� �

:

(18)
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Since KbG	 is defined from Sexpl uniquely, and indepen-
dently of Sval, we get

E Sval � S; bKbG	D E���Sexpl

h i
¼ E Sval � SjSexpl


 �
; bKbG	D E

¼ 0 :

(19)

From (18) and (19) we get

E H S; bSbGCV
	 
� �


 E H S; bSbG	� �h i
þ 1

2
E S� Sval; bKbGCV
� �� �

:

Which is exactly the result of Eq. (11)

e 
 1

2
E S� Sval; bKbGCV
� �� �

:

As we discussed in Section 3.3, to obtain Eq. (11), we only

used the definitions of bGCV for the upper bound and bG	

for the lower bound. Since we assume nothing on the

model family M, those bounds are somewhat optimal in

terms of the available information. Additionally, (11) is

actually independent of how the symmmetric positive

matrices fbSGgG2M are defined as long as they are function

only of Sexpl. They do not need to be associated with a dif-
ferent graph each, or with any graph for that matter.
They do not need to be solutions of the MLE problem (7)
and could be for example all the solutions on the path of
solution of the l1� penalised likelihood optimisation
problem (1).

To get a more explicit control on the CVCE however,
we need the assumption that bSG is the constrained MLE
defined in (7).

Let S1 :¼ max
i;j

Sij

�� ��. We callEmax the union of the max-

imal edge sets in M, dmax ¼ Emaxj j 
 pðp�1Þ
2 its cardinal

and Pmax the orthogonal projection on Emax [ ði; iÞf gpi¼1.
We have

e 
 1

2
E S� Sval; bKbGCV
� �� �

¼ 1

2
E PbGCV S� Svalð Þ; bKbGCV
� �� �


 1

2
E PbGCV S� Svalð Þ
���� ����2

F

" #1
2

E bKbGCV
���� ����2

F

" #1
2


 1

2
E Pmax S� Svalð Þk k2F
h i1

2
E bKbGCV
���� ����2

	

" #1
2


 1

2

 Xp
i¼1

E Sii � Sii
val

� �2� �

þ
X

ði;jÞ2Emax

E S
ij � Sij

val

� �2� �!1
2
p

�


 1

2

2S2
1

nval
pþ 2dmaxð Þ

 !1
2
p

�
:

From which we finally get the result of (12)

e 
 S1
�
ffiffiffi
2

p pþ 2dmaxð Þ12pffiffiffiffiffiffiffiffi
nval

p :

If Emax is dependent on the exploration data - because the
graph family M was built from Sexpl for instance - we
have

E Pmax S� Svalð Þk k2F
h i1

2

¼
 Xp

i¼1

E Sii � Sii
val

� �2� �

þ E
X

i;j2Emax

E S
ij � Sij

val

� �2���Sexpl

� �" #!1
2


 2S2
1

nval
pþ 2E dmax½ �ð Þ

 !1
2

:

We get the control (13), the same as (12) but with an addi-
tional expectation term

e 
 S1
�
ffiffiffi
2

p pþ 2E dmax½ �ð Þ12pffiffiffiffiffiffiffiffi
nval

p :

In order to prove (14), we start by showing how the
regret is bounded by operator norm S� Svalk k2. By tra-
cial matrix Holder inequality

Sval � S; bKbGCV
� �


 S� Svalk k2 bKbGCV
���� ����

	

¼ S� Svalk k2tr bKbGCV
	 



 S� Svalk k2
�

p :

Then, using (11), we get

e 
 E S� Svalk k2

 � p

2�
: (20)

To prove (14), we first recall Theorem 4 of [34]: tu
Theorem 4 of [34]. Let X1; X2; . . . ; Xn be i.i.d. weakly square

integrable centered random vectors in a separable Banach space
with norm :k k and S be their covariance operator. If X is
Gaussian, then there exist an absolute constant c, independent
of the problem, such that

E bS� S
��� ���h i


 c Sk kmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Xk k½ �2
n Sk k

s
;
E Xk k½ �2
n Sk k

0@ 1A;

(21)

where :k k for operators denotes the operator norm associated
with the vector norm :k k, that is to say

Sk k ¼ sup
uk k¼1

Suk k :

In our case, X � N 0p;S
� �

is a Gaussian vector in the Banach
space Rp, with the euclidean norm Xk k2, that verifies the
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integrability properties of the Theorem andwhose covariance oper-
ator is the covariance matrix S. Hence the theorem can be applied.
The operator norm for a symmetric positive matrix S associated
with the euclidean norm is also called the spectral norm, since it
corresponds to the highest eigenvalue: Sk k2¼ �maxðSÞ.
For a Gaussian vector: Z � N 0p; Ip

� �
, we have

E Zk k2

 � 
 ffiffiffi

p
p

:

SinceK
1
2X � N 0p; Ip

� �
, and

Xk k2 ¼ S
1
2K

1
2X

��� ���
2


 S
1
2

��� ���
2
K

1
2X

��� ���
2
;

we have

E Xk k2

 � 
 S

1
2

��� ���
2

ffiffiffi
p

p
:

Since Sk k2¼ �maxðSÞ, we have by definition, S
1
2

��� ���
2
¼ Sk k

1
2
2.

In the end, when we apply (21) to our case, we get

E Sval � Sk k2

 � 
 c�maxðSÞmax

ffiffiffiffiffiffiffiffi
p

nval

r
;
p

nval

	 

: (22)

We apply this concentration result on (20) to obtain (14)

e 
 c
�maxðSÞ

�
p

ffiffiffiffiffiffiffiffi
p

nval

r
_ p

nval

	 

:

7.4 Bounds in Probability for the CVCE Solutions

We prove the results of Section 3.4.

Proof of (15) and (16). We want to lower bound the proba-

bility that the regret is small: P :¼ P H S; bSbGCV
	 


�
����	

H S; bSbG	� �
j 
 dÞ. The concentration dynamic driving the

results comes from the convergence of random Wishart
matrix Sval towrds its average S, which is made stronger by
the number of observations nval in the validation set. Since

H S; bSbGCV
	 


�H S; bSbG	� ����� ����

 H S; bSbGCV

	 

�H Sval; bSbGCV

	 
���� ����
þ H Sval; bSbG	� �

�H S; bSbG	� ���� ���;
then

8G 2 M; H Sval; bSG
� �

�H S; bSG
� ���� ��� 
 d

2

) H S; bSbGCV
	 


�H S; bSbG	� ����� ���� 
 d :

Since

H Sval; bSG
� �

�H S; bSG
� �

¼ 1

2
Sval � S; bKG
D E

;

then

8G 2 M; Sval � S; bKG
D E��� ��� 
 d

) H S; bSbGCV
	 


�H S; bSbG	� ����� ���� 
 d :
(23)

From the logical implication (23), we can take two
path to derive two different bounds: one with a more
general expression, and a more precise one taking into
consideration the sparsity of the models. For the first

one, note that Sval ¼ S
1
2WS

1
2 where nvalW � Wp Ip; nval

� �
p

is a standard Wishart matrix. Then we have

8G; Sval � S; bKG
D E

¼ W � Ip;S
�1
2 bKGS

�1
2

D E

 W � Ip
�� ��

F
S
�1
2 bKGS

�1
2

��� ���
F


 W � Ip
�� ��

F
max
G2M

S
�1
2 bKGS

�1
2

��� ���
F
:

We plug this result into (23) to obtain

W � Ip
�� ��

F
max
G2M

S
�1
2 bKGS

�1
2

��� ���
F

 d

)8G 2 M; Sval � S; bKG
D E


 d

) H S; bSbGCV
	 


�H S; bSbG	� ����� ���� 
 d :

We end up with the control (15) by taking the probability
in the previous expression

P � P W � Ip
�� ��

F

 d

max
G2M

S
�1
2 bKGS

�1
2

��� ���
F

0B@
1CA :

For the second result, let PG and Pmax be the orthogonal
projections on the edge sets EG [ ði; iÞf gpi¼1 and
Emax [ ði; iÞf gpi¼1 respectively. We have

8G; Sval � S; bKG
D E

¼ PGðSval � SÞ; bKG
D E


 PGðSval � SÞk kF bKG
��� ���

F


 PmaxðSval � SÞk kFmax
G2M

bKG
��� ���

F
:

Hence we get, from (23), the logical implication

PmaxðSval � SÞk kFmax
G2M

bKG
��� ���

F

 d

)8G; Sval � S; bKG
D E


 d

) H S; bSbGCV
	 


�H S; bSbG	� ����� ���� 
 d :

From which we get the control (16) by taking the proba-
bility of the events

P � P PmaxðSval � SÞk kF

d

max
G2M

bKG
��� ���

F

0B@
1CA :

We underline that we obtain the two controls (15) and
(16) directly from logical implications. Hence, they
remain true when every probability is taken condition-
ally to any random variable, for instance the exploration
data set, or the sufficient statistic built from it: Sexpl. tu
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Remark. Since 8G 2 M; bKG
��� ���

	

 p

�, both max
G2M

S
�1
2 bKGS

�1
2

��� ���
F

and max
G2M

bKG
��� ���

F
are bounded random variables. They

depend only on the exploration empirical covariance Sexpl

and can be seen as constants of the problem if working

conditionally to the exploration set. Likewise, Pmax is a

deterministic function conditionally to Sexpl.
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