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Purpose: Segmentation of brain magnetic resonance (MR) images into white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) is crucial for brain structural measurement and disease
diagnosis. Learning-based segmentation methods depend largely on the availability of good training
ground truth. However, the commonly used 3T MR images are of insufficient image quality and often
exhibit poor intensity contrast between WM, GM, and CSF. Therefore, they are not ideal for providing
good ground truth label data for training learning-based methods. Recent advances in ultrahigh field
7T imaging make it possible to acquire images with excellent intensity contrast and signal-to-noise
ratio.
Methods: In this paper, the authors propose an algorithm based on random forest for segmenting
3T MR images by training a series of classifiers based on reliable labels obtained semiautomatically
from 7T MR images. The proposed algorithm iteratively refines the probability maps of WM, GM,
and CSF via a cascade of random forest classifiers for improved tissue segmentation.
Results: The proposed method was validated on two datasets, i.e., 10 subjects collected at their
institution and 797 3T MR images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset. Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved
94.52%±0.9%, 89.49%±1.83%, and 79.97%±4.32% for WM, GM, and CSF, respectively, which
are significantly better than the state-of-the-art methods (p-values < 0.021). For the ADNI dataset,
the group difference comparisons indicate that the proposed algorithm outperforms state-of-the-art
segmentation methods.
Conclusions: The authors have developed and validated a novel fully automated method for
3T brain MR image segmentation. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4967487]
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful tool for in
vivo diagnosis of brain disorders. Accurate measurement of
brain structures in MRI is important for studying both brain
development associated with growth and brain alterations
associated with disorders. These studies generally require
one to first segment structural T1-weighted MR images
into white matter (WM), gray matter (GM), and cerebro-
spinal fluid (CSF).1 Automated segmentations have been
used for computing volumetric measures or shape statistics

for specific brain regions in the studies of Alzheimer’s
disease,2–5 epilepsy,6 autism,7 drug-related degeneration in
methamphetamine users,8 and the effects of lithium treatment
in bipolar illness.9 Brain image segmentation is also useful
in clinical diagnosis of neurodegenerative and psychiatric
disorders, treatment evaluation, and surgical planning.10 De-
spite the existence of many segmentation algorithms, accurate
automated tissue segmentation remains a difficult task.11

Many learning-based techniques have been applied for
tissue segmentation, including support vector machines
(SVMs),12,13 artificial neural networks (ANNs),14 principal
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component analysis (PCA),15 deep convolutional neural
networks (CNNs),16 and random decision forests.17–21 The
performance of learning-based segmentation methods is
largely dependent on the quality of the training dataset. In
the past, training datasets were most commonly generated
by the manual labeling of 3T MR images, which typically
exhibit insufficient signal-to-noise ratio (SNR) and intensity
contrast. The inaccuracy and unreliability of these manual
delineations affect image segmentation and subsequent
statistical analysis.

By the end of 2010, more than 20 ultrahigh field MR
scanners, mainly 7T, have been in operation in the world
for human medical imaging.22 7T scanners give images with
a significantly higher intensity contrast, a greater SNR,23–25

and more anatomical details.26 The utilization of higher field
strengths allows the visualization of brain atrophy that is not
evident at a lower field strength, promoting better understand-
ing of neurological disorders, cerebrovascular accidents, or
epileptic syndromes.27

In this paper, we present an automatic learning-based
algorithm for the segmentation of 3T brain MR images by
learning segmentation information obtained from their corre-
sponding 7T MR images. Specifically, to integrate information
from the multiple sources, we harness the learning-based
multisource integration framework (LINKS),21 which is based
on random forest (RF) and has been applied to accurate
tissue segmentation of infant brain images. In particular,
image segmentation is achieved by automatically learning the
contribution of each source through random forest with an
autocontext strategy.28,29 By iteratively training random forest
classifiers based on the image appearance features and also the
context features of progressively updated tissue probability
maps, a sequence of classifiers are trained.21 Specifically,
the first random forest classifier provides the initial tissue
probability maps for each training subject. These tissue
probability maps are then further used as additional input
images to train the next random forest classifier, by combining
the high-level multiclass context features from the probability
maps with the appearance features from the T1-weighted
MR images. Repeating this process, a sequence of random
forest classifiers can be obtained. In the application stage,
given an unseen image, the learned classifiers are sequentially
applied to progressively refine the tissue probability maps for
achieving final tissue segmentation.21

2. MATERIALS AND METHODS
2.A. Data acquisition and image processing

This study was approved by the Institutional Review
Board (IRB) of the University of North Carolina at Chapel
Hill and written informed consent forms were obtained
from all subjects. A total of 10 volunteers (4 males and
6 females) with age of 30± 8 yr were recruited for this
study. Among these 10 volunteers, 5 persons are healthy
and 5 persons are patients with epilepsy. All the participants
were scanned at both 3T Siemens Trio scanner and 7T
Siemens ultra-high field MRI scanner with a circular polar-
ized head coil. The 3T T1-weighted images were obtained
with 144 sagittal slices using two sets of parameters: (1)
300 slices, voxel size 0.8594× 0.8594× 0.999 mm and (2)
320 slices, voxel size 0.8594×0.999×0.8594 mm. The 7T
T1-weighted MR images were acquired with 192 sagittal
slices using two sets of parameters: (1) 300 slices, voxel
size 0.80× 0.80× 0.80 mm and (2) 320 slices, voxel size
0.6 × 0.6 × 0.6 mm. The 7T MR images were linearly
registered to the spaces of their corresponding 3T MR
images.

Standard image preprocessing steps were performed
before tissue segmentation, including skull stripping,30

intensity inhomogeneity correction,31 histogram matching,32

and removal of both cerebellum and brain stem by using
in-house tools. The preprocessing pipeline for 7T MR images
is summarized in Fig. 1. Specifically, the segmentations of 7T
MR images were obtained by first using the publicly available
software, ,33 to generate a relatively accurate segmentation
and then performing necessary manual corrections by an
experienced rater via ITK-SNAP (Ref. 34) (www.itksnap.
org). The brain mask and tissue segmentation of each 7T MR
image were both propagated to the space of the corresponding
3T MR image.

2.B. Proposed algorithm

Brain tissue segmentation is carried out using a cascade
of random forest classifiers, which will be trained using
the appearance features obtained from the 3T MR images
and the ground truth segmentation labels obtained by
the semiautomatic delineation of the corresponding 7T
MR images. The main motivation for using segmentation

F. 1. Overview of the preprocessing pipeline for 7T MR image. The tissue segmentation will be used as ground-truth to train the classifiers for 3T MR image
segmentation.
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F. 2. Comparison between 3 and 7T T1-weighted MR images.

information from the 7T MR images is their greater contrast
and details compared with that from the 3T MR images, as
illustrated in Fig. 2. An overview of our algorithm is shown
in Fig. 3.

2.C. Random forest

Random forest is a machine learning technique that is
based on bagging and random decision forests. Due to its
simplicity and generalizable performance, RF has been used
in a wide range of applications.35–37 A RF is a collection of
tree-structured classifiers,38 denoted as

{h(X,ψ (t));t = 1,. . .,T} , (1)

where X is an input vector and {ψ (t)} are the independent
identically distributed random vectors which represents the
trees in the forest and each tree casts a unit vote for the most
popular class for X . Based on the decisions given by all the
trees, the class of X is determined using majority voting. The
random forest is able to capture the complex data structures
and is resistant to both overfitting (when trees are deep) and
underfitting (when trees are shallow).39

Each tree classifier h(X,ψ(t)) is constructed using the
feature vectors of a random subset of training voxels. Each

F. 3. The flowchart of the proposed framework. The appearance features from the T1-weighted MR images and the context features from the WM, GM, and
CSF probability maps are used for training a sequence of random forest classifiers.

Medical Physics, Vol. 43, No. 12, December 2016
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element of the feature vector corresponds to a feature type. At
each node of the tree, splitting is based on a small randomly
selected group of feature elements. The random vector ψ (t)
determines both the voxel subset and the nodal feature subsets
associated with the tree. Its randomness promotes diversity
among the tree classifiers.40 Important parameters of the
random forest classifier are the number of trees, the maximum
tree depth, the number of random thresholds for each feature,
the total number of random input features, and the minimum
sample size for each leaf node. These parameters are typically
set heuristically or by trial and error.

The trained random forest classifiers can be used to
classify an unseen input image based on the tree predictions.
Specifically, each voxel of the unseen input image will go
through the splitting nodes of every tree, until reaching a leaf
node, which will vote for a certain class. Based on all votes
across trees, the voxel under consideration can be assigned to
the class with the majority of the votes.

2.D. Appearance and context features

In this paper, we use 3D Haar-like features to compute
both appearance and context features due to its computational
efficiency. Specifically, for each voxel x, its Haar-like features
are computed as the local mean intensity of any randomly
displaced cubical region (R1) or the mean intensity difference
over any two randomly displaced, asymmetric cubical regions
(R1 and R2),21

f (x,I)= 1
R1


u∈R1

I (u)−b
1
R2


v∈R2

I (v),R1 ∈ R,R2 ∈ R, (2)

where R is the region centered at voxel x, I is the image under
consideration, and parameter b ∈ {0,1} indicates whether one

or two cubical region(s) are used. Within R, the intensities are
normalized to have unit L2 norm.41,42 For each voxel, a large
number of features can be extracted. As mentioned, we employ
3D Haar-like features for computation of both appearance and
context features.

A series of random forests are trained with both T1-
weighted MR images and tissue probability maps of WM,
GM, and CSF as input. Specifically, the first random forest
is trained with only the appearance features from the T1-
weighted MR images. When training the subsequent random
forests, the context features of WM, GM, and CSF probability
maps, generated in the previous iteration, are used as
additional input for training. Note that the context features
capture information of voxel neighborhood and thus improve
classification robustness. This training process is repeated
and finally a series of random forests are constructed with
progressively refined probability maps. In the testing stage,
each voxel of an unseen T1-weighted MR image goes through
each trained random forest sequentially. Each random forest
classifier will produce a set of GM, WM, and CSF tissue
probability maps, which together with the T1-weighted MR
image are used as input to the next trained random forest
classifier for producing the improved GM, WM, and CSF
tissue probability maps.

In this study, we train a sequence of random forest
classifiers, each consisting of 20 forests with a maximal depth
of 100. A number of 30 000 voxel samples, randomly selected
from the brain region of each training subject, are used to
train the decision trees in each random forest, with the voxel
neighborhood size of 9×9×9, minimum eight samples for
each leaf node, and 100 000 random Haar-like features for
each tree. Example results, shown in Fig. 4, indicate that the
tissue probability maps are progressively improved and are

F. 4. The first column shows the original image, the segmentation results given by the proposed method, and the ground truth. Subsequent columns show the
tissue probability maps of GM, WM, and CSF given by the sequential random forest classifiers. The last column shows the ground-truth tissue probability maps.
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F. 5. Segmentation performance with respect to different patch sizes.

increasingly consistent with the ground truth by using the
sequential random forest classifiers.

3. EXPERIMENTAL RESULTS
3.A. Parameters of random forest classifiers

The parameters of the random forest classifiers were
determined via leave-one-out cross-validation on all training
subjects. When optimizing a certain parameter, the other
parameters were fixed. Figure 5 shows the performance
with different patch sizes. We can observe that a patch
size that is too small or too large will affect segmentation
negatively. We therefore set the patch size as 9×9×9 in our
experiments. Figure 6 shows the impact of the number of trees
on segmentation accuracy. It can be observed that increasing
the number of trees beyond 20 will not significantly improve
segmentation performance. We therefore use 20 trees in each
random forest in our experiments. Figure 7 shows the change
in performance with increasing number of classifiers. In this
experiment, we iteratively train the model up to 10 times to
show the converge of the segmentation results. It can be seen
that the Dice ratios become stable after a few iterations. In
the second iteration, the Dice ratios are improved greatly due
to the integration of tissue probability maps estimated in the
previous iteration to guide tissue segmentation. These results
also demonstrate the importance of using multiclass context
features for segmentation. Note that based on Fig. 7 Dice ratios
converge after 3 or 4 iterations; therefore, 3 or 4 iterations will
be adequate in real applications.

F. 6. Segmentation performance with respect to different tree numbers.

F. 7. Changes of GM, WM, and CSF Dice ratios with respect to the number
of random forest classifiers.

3.B. Comparison with other methods

We compared our method with other segmentation methods
provided in the following software packages: (1) ,33

(2) Medical Image Processing, Analysis, and Visualization
(),43 and (3) Statistical Parametric Mapping ().44 The
leave-one-out cross-validation based Dice ratios for the 10
training subjects are reported in Table I. The results indicate
that the proposed method outperforms other methods for all
three tissue types in most cases. Specifically, for the average
Dice ratio of all 10 subjects, our method performs much better
than any other comparison methods. For example, compared
to the best method, our method improves about 0.07 for GM,
>0.03 for WM, and >0.12 for CSF.

Qualitative results for visual inspection are also shown in
Figs. 8–10. From Fig. 8, we can observe that our method,
compared with , , and , produces results that
are significantly closer to the ground-truth segmentations.
Figure 9 shows the differences of the label maps with
respect to the ground-truth segmentations, indicating that the
proposed method produces better segmentation with lesser
false positives and false negatives.

3.C. Comparisons using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset

We have also applied our proposed method on 797 ADNI
subjects, including 198 AD patients, 405 MCI patients, and
194 normal controls.45 Demographic information of these sub-
jects is shown in Table II. Recalling that  achieves compa-
rable performance with  while better performance than
that of  in Sec. 3.B, we will mainly focus in the following
on comparing the proposed method with . Typical segmen-
tation results for the ADNI dataset are shown in Fig. 10. From
the zoomed views, we can see that the  method overseg-
ments the WM. The renderings of GM/CSF and GM/WM sur-
faces generated based on the segmentation results are shown
in Fig. 11. Since there is no ground truth for segmentation
evaluation, we demonstrate the advantage of the proposed
method in terms of sensitivity in detecting group differences
between AD and NC as well as between MCI and NC. Images
segmented by  and the proposed method were nonlinearly
registered to the segmented image of Montreal Neurological
Institute (MNI) template using HAMMER registration.46

Medical Physics, Vol. 43, No. 12, December 2016
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T I. Comparison of tissue segmentation performance in terms of Dice ratios.

Dice ratio (%) Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9 Sub. 10 Mean ± standard variances (p value)

GM

Proposed 87.54 88.81 88.78 87.94 86.33 92.62 90.72 90.31 91.38 90.45 89.49 ± 1.83
 83.39 81.85 81.32 83.09 81.03 81.07 78.75 83.07 82.13 77.57 81.33 ± 1.80 (<0.001)a

 84.31 81.74 81.66 80.56 81.92 83.89 79.70 84.47 83.43 83.85 82.55 ± 1.58 (<0.001)a

 77.39 77.58 79.71 77.75 79.53 78.81 79.60 78.01 84.63 70.21 78.32 ± 3.36 (<0.001)a

WM

Proposed 93.80 94.18 94.26 93.25 93.45 95.90 95.27 94.07 95.62 95.36 94.52 ± 0.90
 94.15 87.96 88.60 89.98 85.17 95.29 90.13 95.00 92.76 95.87 91.49 ± 3.46 (0.021)b

 92.82 87.49 88.69 86.85 86.76 92.32 90.33 94.37 92.02 94.90 90.66 ± 2.91 (0.001)b

 82.08 79.78 81.41 81.25 80.26 83.21 87.30 83.46 84.82 84.22 82.78 ± 2.18 (<0.001)b

CSF

Proposed 79.85 78.18 76.34 77.09 73.29 88.11 86.15 80.50 77.58 82.62 79.97 ± 4.32
 64.79 60.46 60.75 63.12 49.70 77.48 69.73 64.94 66.29 70.72 64.80 ± 6.99 (<0.001)c

 64.69 59.65 59.89 61.51 48.34 75.14 69.67 70.75 63.80 69.59 64.30 ± 7.21 (<0.001)c

 67.77 63.32 51.76 69.70 51.90 78.32 73.43 77.83 75.15 61.91 67.11 ± 9.28 (0.001)c

Note: “a,” “b,” and “c” indicate, respectively, that the improvement in GM, WM, and CSF segmentations given by our method is statistically significant over the comparison
method according to the paired t-test.

Regional analysis of volumes examined in normalized space
(Ravens) maps were then computed from the resulting
deformation field by preserving the GM/WM volume changes.
Before statistical analysis, segmented images were smoothed
using a Gaussian kernel with isotropic 8 mm full width at half
maximum (FWHM). We then compared ravens maps of AD
vs NC and MCI vs NC for their GM/WM differences.

Figures 12 and 13 show the GM/WM volume differences
of AD vs NC and MCI vs NC, respectively. For the case of AD
vs NC (Fig. 12), in the upper row, our method and  show

significant cortical atrophy for GM, but  seems to detect
too much GM atrophy. In the lower row,  shows larger
WM volumes even in the AD patients than NC for many WM
regions, which does not agree with the pathology of the brain
disorder.47 In contrast, our method identified reasonable WM
atrophies in many parts of brain. In Fig. 13, we observe similar
results for the group comparison between MCI and NC. One
possible reason may be that  undersegmented GM and thus
oversegmented WM (as confirmed in Fig. 10), especially in
AD/MCI subjects with less GM.

F. 8. Comparison of segmentation results given by different methods.

Medical Physics, Vol. 43, No. 12, December 2016
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F. 9. The first row shows the segmentation results given by different methods. The next three rows show the differences of GM, WM, and CSF label maps
with the ground-truth segmentation. Black and white denote false negatives and false positives, respectively.

To further evaluate the sensitivity of the methods, we
performed another experiment on a typical AD-related brain
region, namely, the hippocampus. Specifically, we first delin-
eated the ROI for the left and right hippocampi and then
extracted the mean ravens value in the ROI for each subject
from the proposed method and the comparison  method.
Through a two-sample t-test, we compared the mean ravens
value in the hippocampi between AD and NC. The values

given by the proposed method show significant differences
between groups (t = −4.64 and p = 4.83× 10−6). Here the
negative t value indicates that AD patients have relatively
lower ravens value than NC, reflecting smaller hippocampal
volume. However, when using the ravens values from the
 method, no significant difference is found (t =−0.83 and
p= 0.403). These results suggest that our proposed method is
more sensitive in identifying hippocampal atrophy.

T II. Demographic information of participants involved in ADNI study.

AD MCI Normal control

No. of subjects 198 405 194
No. of males 103 266 119
Age (yr, mean ± SD) 75.6 ± 7.7 74.8 ± 7.5 75.9 ± 5.0
MMSE score (yr, mean ± SD) 23.3 ± 2.05 27.0 ± 1.79 29.1 ± 0.99

Medical Physics, Vol. 43, No. 12, December 2016
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F. 10. Comparison of segmentation results on the ADNI dataset with different methods. The first column shows the original T1-weighted MR image slices and
the second and third columns show the segmentation results given by the proposed method and , respectively. The second to fourth rows show the close-up
views of the areas marked in the first row.

F. 11. Comparison of renderings of GM/CSF (first and third) and GM/WM (second and fourth) surfaces generated from the segmentation results on one
ADNI image given by the proposed method (first two columns) and the  method (last two columns) in the first row. The corresponding close-up views are
also shown in the second row.

F. 12. Group differences between AD and NC. Upper row: GM volume differences given by the proposed method (left) and the  method (right). Lower
row: WM volume differences given by the proposed method (left) and  method (right). Red/blue color denotes expansion/atrophy, respectively (p < 0.05
FDR corrected, cluster size >50). (See color online version.)

Medical Physics, Vol. 43, No. 12, December 2016
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F. 13. Group differences between MCI and NC. Upper row: GM volume differences given by the proposed method (left) and  method (right). Lower row:
WM volume differences given by the proposed method (left) and  method (right). Red/blue color denotes expansion/atrophy, respectively (p < 0.05 FDR
corrected, cluster size >50). (See color online version.)

3.D. Computational time

The experiments were carried out on a computing cluster
with 2.93 GHz Intel processors, 12 M L3 cache, and 48 GB
memory. All trees in the RF are trained in parallel with an
average training time of about 1.5 h per tree. It took about
5 min to segment a typical 3T brain MR image.

4. DISCUSSIONS AND CONCLUSION

In this paper, we presented a method for robust and accurate
segmentation of 3T T1-weighted MR images by learning
segmentation information from their corresponding 7T MR
images. The proposed algorithm combines information from
T1-weighted MR images and tentatively estimated tissue
probability maps. First, we trained the random forest classifier
with 3T brain MR images and their ground-truth tissue
segmentations obtained from their corresponding 7T MR
images. Then, in the next iterations, the proposed automatic
segmentation algorithm integrates both the T1-weighted MR
image and the probability maps of GM, WM, and CSF
estimated in the last iteration to train the next random forest
classifier that progressively refines the tissue probability maps.
Results using various datasets confirm that the proposed
method can consistently improve segmentation performance.

Recently, deep learning has demonstrated state-of-the-art
performances in various applications, such as classification,48

voice recognition,49 and segmentation.16 In contrast to the
handcrafted features (Haar-like features) used in our method,
deep learning algorithms automatically learn relevant features
from the images. The convolutional neural network (CNN), for
example, has been employed for segmentation.50 Deep learning
algorithms can also benefit from accurate segmentation infor-
mation provided by 7T MRI for improving feature learning.51

Although our method produces better segmentation results,
it has some limitations. (1) The number of training subjects
(with both 3 and 7T MR images) is small in our experiments.
With more training subjects, the segmentation accuracy can
be improved. (2) Age-specific information is not considered
in our work. For example, the 10 training subjects are 30±8 yr
of age, which are different from the ADNI subjects who
are mostly over 60 yr old. The results can be improved if
the age ranges match. (3) The training subjects consist of
healthy persons and epilepsy patients, while the most ADNI

subjects are the patients with Alzheimer’s disease (AD) or
Mild Cognitive Impairment (MCI). (4) We used Haar-like
features. Other types of features might be more effective.
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