
RESEARCH ARTICLE

Performance evaluation in [18F]Florbetaben

brain PET images classification using 3D

Convolutional Neural Network

Seung-Yeon LeeID
1,2, Hyeon Kang2, Jong-Hun JeongID

3, Do-young KangID
1,2,4*

1 Department of Translational Biomedical Sciences, Dong-A University, Busan, Korea, 2 Institute of

Convergence Bio-Health, Dong-A University, Busan, Korea, 3 DEEPNOID Inc., Seoul, Korea, 4 Department

of Nuclear Medicine, Dong-A University Medical Center, Busan, Korea

* dykang@dau.ac.kr

Abstract

High accuracy has been reported in deep learning classification for amyloid brain scans, an

important factor in Alzheimer’s disease diagnosis. However, the possibility of overfitting

should be considered, as this model is fitted with sample data. Therefore, we created and

evaluated an [18F]Florbetaben amyloid brain positron emission tomography (PET) scan

classification model with a Dong-A University Hospital (DAUH) dataset based on a convolu-

tional neural network (CNN), and performed external validation with the Alzheimer’s Dis-

ease Neuroimaging Initiative dataset. Spatial normalization, count normalization, and skull

stripping preprocessing were performed on the DAUH and external datasets. However,

smoothing was only performed on the external dataset. Three types of models were used,

depending on their structure: Inception3D, ResNet3D, and VGG3D. After training with 80%

of the DAUH dataset, an appropriate model was selected, and the rest of the DAUH dataset

was used for model evaluation. The generalization potential of the selected model was then

validated using the external dataset. The accuracy of the model evaluation for Inception3D,

ResNet3D, and VGG3D was 95.4%, 92.0%, and 97.7%, and the accuracy of the external

validation was 76.7%, 67.1%, and 85.3%, respectively. Inception3D and ResNet3D were

retrained with the external dataset; then, the area under the curve was compared to deter-

mine the binary classification performance with a significance level of less than 0.05. When

external validation was performed again after fine tuning, the performance improved to

15.3%p for Inception3D and 16.9%p for ResNet3D. In [18F]Florbetaben amyloid brain PET

scan classification using CNN, the generalization potential can be seen through external val-

idation. When there is a significant difference between the model classification performance

and the external validation, changing the model structure or fine tuning the model can help

improve the classification performance, and the optimal model can also be found by collabo-

rating through a web-based open platform.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0258214 October 20, 2021 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lee S-Y, Kang H, Jeong J-H, Kang D-y

(2021) Performance evaluation in [18F]Florbetaben

brain PET images classification using 3D

Convolutional Neural Network. PLoS ONE 16(10):

e0258214. https://doi.org/10.1371/journal.

pone.0258214

Editor: Pierpaolo Alongi, Fondazione Istituto G.

Giglio di Cefalu, ITALY

Received: April 8, 2021

Accepted: September 21, 2021

Published: October 20, 2021

Copyright: © 2021 Lee et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

available on Figshare: https://doi.org/10.6084/m9.

figshare.16702519.v1.

Funding: This work was supported by the Dong-A

University research fund. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-1779-1801
https://orcid.org/0000-0002-8954-3559
https://orcid.org/0000-0003-1688-0818
https://doi.org/10.1371/journal.pone.0258214
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258214&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258214&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258214&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258214&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258214&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258214&domain=pdf&date_stamp=2021-10-20
https://doi.org/10.1371/journal.pone.0258214
https://doi.org/10.1371/journal.pone.0258214
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.16702519.v1
https://doi.org/10.6084/m9.figshare.16702519.v1


1 Introduction

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease in which

a patient gradually loses memory, mental function, and the ability to continue daily activities

[1]. As there is no effective treatment for AD, an accurate diagnosis is essential for developing

the patient’s future treatment plan. Neuroimaging technology using AD-related biomarkers is

widely used to increase the reliability of AD diagnosis [2]. Radiotracers are among the types of

biomarkers that can be injected into the subject’s body and observed via PET. Representative

radiotracers used to diagnose AD include 2-[18F]fluoro-D-glucose, which can identify the

degree of brain metabolism, and [18F]Florbetaben, [18F]Florbetapir and [18F]Flutemetamol

which can observe brain amyloid plaque load.

According to specific or diagnostic criteria [3–5], several systems apply brain PET scans to

machine learning and deep learning models to train, evaluate, and classify images. Moreover,

there is also recent work using them on automatic and semi-automatic segmentation algo-

rithms in PET [6, 7]. In one study, an AD diagnosis classifier using PCA and SVM was utilized

after image dimension reduction of [18F]Florbetaben brain PET images [8], and in another,

images were classified according to amyloid deposition with an accuracy of 89% [9] using

Visual Geometry Group (VGG) 16 [10], which is a well-known structure among convolutional

neural networks (CNN) [11, 12] that specializes in image feature extraction using deep learn-

ing technology.

Meanwhile, because of the nature of medical images, acquisition costs can be high; thus, it

is not easy to construct a large dataset. When a model is trained and tested with a limited num-

ber of datasets, to confirm the generalization possibility, it is necessary to configure an external

dataset that is different from the source of the training dataset and to validate its potential.

Previous studies, such as the external validation of pancreatic cancer from CT images [13]

and the external validation of malignancy risk prediction of lung nodules [14], have been

reported. It is necessary to apply the validation process to brain imaging to build a model and

then to externally validate the model with the same type of brain images obtained from other

sites.

In this study, brain PET scans of [18F]Florbetaben, a diagnostic radiotracer that visualizes

the classification of β-amyloid (Aβ), the main component of amyloid plaques found in the

brain, were acquired from Dong-A University Hospital (DAUH) and used to construct a data-

set. We created models that receive 3D voxel input by deriving characteristic structures from

the well-known CNN structures Inception, VGG, and ResNet. We then selected one represen-

tative model for each structure after training according to the model selection criteria. With

this model, the images acquired from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) were used as a dataset and externally validated to examine the possibility of

generalization.

2 Materials and methods

2.1 Data acquisition

The DAUH dataset, listed in Table 1, comprises a total of 432 subjects according to the visually

assessed criteria of [18F]Florbetaben PET. An available database was collected from 2015 to

2020 from the Department of Nuclear Medicine at DAUH for a possible population of [18F]

Florbetaben PET. Labeling for Aβ negative and positive was performed according to the deci-

sion of a nuclear medicine specialist at DAUH.

PET scans of the possible population were acquired using a Biograph 40 mCT Flow PET/

CT Scanner (Siemens Healthcare, Knoxville, TN, USA) and reconstructed via UltraHD-PET
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(TrueX-TOF) to obtain PET images, and the obtained images were processed with a 3mm

FWHM Gaussian filter. All patients underwent a 20 min positron emission scan at 90 min

after intravenous injection of 300mBq of [18F]Florbetaben (NeuraCeq, Piramal, Mumbai,

India), and the helical CT scans were acquired with a 0.5 s rotation time at 100 kVp and 228

mAs. The images were finally stored in the DICOM format.

Finally, [18F]Florbetaben PET images collected from the Alzheimer’s Neuroimaging Initia-

tive (ADNI) database (www.loni.ucla.edu/ADNI) were used as an external dataset in this

study. The database includes scans of subjects with normal control, mild cognitive impairment

(MCI), and AD. These scans were preprocessed as an ADNI internal protocol and co-registra-

tion, averaging, size changing, standardization, and smoothing processes were performed.

However, since ADNI does not determine whether the [18F]Florbetaben scans are Aβ negative

or positive, classification was performed by the nuclear medicine specialists at DAUH.

Unlike the DAUH dataset, images from the external dataset were not processed with 3 mm

FWHM Gaussian filters. To achieve the same conditions, a 3 mm FWHM Gaussian filter was

used to process the statistical parametric mapping (SPM) after the acquisition. An example of

Gaussian filter processing is shown in Fig 1.

2.2 Image preprocessing in common

We performed spatial normalization and count normalization to classify Aβ deposition using

brain PET. We used the SPM library [15] based on MATLAB. All dataset groups applied the

same preprocessing procedure using the same protocol, even if there were differences in the

source and collection times.

Table 1. Demographics and positivity of study participants according to each dataset group.

Dataset DAUH External

n 432 251

Visual Assessment Negative Positive Negative Positive

Subjects 191 241 142 109

Age 68.1 69.9 70.8 73.7

Sex, male % 35.6 44.4 40.8 56.9

Education 9.1 10 16.1 16

https://doi.org/10.1371/journal.pone.0258214.t001

Fig 1. Smoothing of the external data. After the smoothing process, an image in which noise is reduced can be

obtained.

https://doi.org/10.1371/journal.pone.0258214.g001
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Spatial normalization is the registration of the original image to a specific PET template.

Subjects with various brain shapes can be compared through image registration by mapping

the subject’s PET image to a reference brain template [16].

Meanwhile, we made a reference brain PET template in-house. Co-registration was per-

formed with a PET image and a paired CT image obtained from a subject. The template images

are average images of 20 normal brains, 20 Alzheimer’s dementia brains, and 40 left and right

inversion images, for a total of 80 images. After image registration, the tissue is stretched or

compressed to fit the template brain. We can average the PETs of multiple individuals to

reconstruct them into a reference brain space and provide atlas anatomical addresses mapped

to the same reference brain space at the data locations in the image. We also performed a crop-

ping process that cuts the empty space around the brain, reducing its size from 400 × 400 ×
110 to 95 × 79 × 68.

Count normalization is intended for numerical comparisons between images because the

image intensity level varies due to differences in the number of radioactive isotopes adminis-

tered, individual characteristics, or individual body conditions. This normalization was per-

formed assuming that the absorption of radioactive tracers in a brain region is constant for

each person. Count normalization normalizes the entire observation area to the value of the

area representing non-specific, lesion-independent absorption, allowing absolute and relative

comparisons in specific absorption areas of the patient-patient image [17].

The [18F]Florbetaben radiotracer exhibits non-specific uptake in the cerebellar region and

specific uptake in the gray matter region of the cerebrum; thus, count normalization was per-

formed by using the cerebellar region of the PET template applied in spatial normalization to

each patient image.

In addition, the skull, a non-brain tissue, is included in the image because it is spatially nor-

malized with a CT-driven PET template. The presence of these non-brain tissues is considered

an obstacle in brain image analysis. Therefore, in brain imaging analysis studies, a preprocess-

ing commonly referred to as skull stripping is required [18].

In the [18F]Florbetaben amyloid brain PET classification model, spatial normalization,

count normalization, and skull stripping are commonly performed for all datasets, and an

example of a brain PET scan image that has been preprocessed is shown in Fig 2.

2.3 Model architecture

In this study, we apply CNNs of three well-known architectures to the amyloid classification

problem in [18F]Florbetaben brain PET. The architectures considered are Inception [19, 20],

ResNet [21], and VGG19 [10]. The reasons for choosing these models were to achieve the best

performance in various tasks, use a small kernel (3 × 3) [10] instead of a large kernel, utilize a

deep but sparse network structure [19], and provide residual connectivity [21]. We imple-

mented the model ourselves by adopting parts of the primary characteristics of these structures

and applying 3D convolution filter. Each representative structure is shown in Fig 3.

To briefly summarize the meaning of each layer:

• Conv3D: 3D convolution kernel layer.

• BatchNormalization: To avoid gradient vanishing problems due to structural complexity

and speed up the training [22].

• Activation: When the data that has passed through the layer is transmitted to the next layer,

it plays a role in determining whether to transmit the input data according to a specific crite-

rion, and all model structures in this study apply the Rectifier Linear Unit (ReLU) [23] acti-

vation function.
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• Concatenate: To connect data horizontally.

• Pooling: Also known as sub-sampling, the image is reduced by selecting a large value or tak-

ing an average in the corresponding receptive field.

• Dropout: Only certain weights are kept at a certain probability and the remaining connected

units are diluted. This is known to prevent network overfitting [24].

Recently, 3D CNN research has been actively conducted to extract features of 3D medical

images for classification [25]. Moreover, because brain images are volume data, 3D CNNs can

be configured for image classification to extract 3D spatial features from 3D PET images.

Accordingly, Inception, ResNet, and VGG models are constructed in the form of a 3D CNN

and are named Inception3D, ResNet3D, and VGG3D in our experiment.

2.4 Model selection and evaluation

Eighty percent of the DAUH dataset, as shown in Fig 4, was used for model training and the

rest is used for model evaluation. The samples were splitted with Stratified ShuffleSplit cross-

Fig 2. Commonly applied preprocessing.

https://doi.org/10.1371/journal.pone.0258214.g002
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Fig 3. Primary structure of the models. (a) and (b) are the most characteristic parts of the structure, and (c) is the

overall structure of the model. The ‘×2’ written on the side means that the process is repeated as many times as the

number.

https://doi.org/10.1371/journal.pone.0258214.g003

Fig 4. DAUH and external datasets for model training and validation.

https://doi.org/10.1371/journal.pone.0258214.g004
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validator (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

StratifiedShuffleSplit.html), which was randomly extracted from each group labeled amyloid

positive and negative. Along with the training set, there was also a validation set used to ensure

that the model is trained well. This is explained in more detail in Fig 5.

The model training was conducted by four-fold cross-validation with 192 amyloid positive

subjects and 153 amyloid negative subjects from the DAUH dataset. If the dataset is small, the

reliability of the performance evaluation is reduced. If the performance varies depending on

how the validation set is held, the effect of the match will bias the model evaluation perfor-

mance. To solve this, cross-validation ensures that all data are used as a validation set at least

once.

As shown in Fig 6, the entire dataset can be divided into four subsets; the first subset is used

as the validation set in the first iteration, and the remaining subsets are used as the training set.

In the second iteration, the second subset is used as the validation set, and the remaining sub-

sets are used as the training set. By repeating the number of subsets in this manner, we could

select the lowest loss model out of the four performances.

All models of each structure were selected through four-fold cross-validation [26] and eval-

uated with the model evaluation set of the DAUH dataset specified in Fig 4.

In the external dataset, some samples were randomly extracted using the same sample

extraction method. If the accuracy was significantly different between the model evaluation

and the external validation, it is possible that a part of the external dataset could be included in

the training set to acquire generalization performance. In that case, only a portion of the data-

set was composed of the external validation set.

3 Results

We investigated information about the model and the time required for each experiment.

Specifications about the models can be viewed in Table 2. Experiment time consists of training,

image loading, and prediction using the validation set. The required time for each network is

Inception3D 1.46hrs, ResNet3D 1.9hours, and VGG3D 1.90 hours. Inference time took about

0.24 seconds per subject, and all experiments were performed on a workstation with four NVI-

DIA Titan Xp GPUs.

3.1 Data distribution

To confirm the data distribution of the preprocessed DAUH and external datasets before

CNN-based analysis, as shown in Fig 7, t-SNE (Stochastic Neighbor Embedding) [27] visuali-

zation, which is widely used for visualization after a data dimension reduction, was performed.

Although the sources of the datasets are different, the same groups have a similar distribution.

In other words, data similarity was observed between the same groups.

3.2 Model evaluation

The model evaluation results of the Inception3D, ResNet3D, and VGG3D models after train-

ing the models with the DAUH training dataset are summarized in Table 3. To evaluate the

performance of each model, three metrics were considered: sensitivity, specificity, and

accuracy.

Sensitivity is the proportion of subjects who are inferred to be positive among all Aβ-posi-

tive subjects and is defined as follows:

Sensitivity ¼
TP

TP þ FN
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where TP represents the number of true positives and FN represents the number of false

negatives.

Specificity is the proportion of subjects who are inferred to be negative among all Aβ-nega-

tive subjects and is defined as follows:

Specificity ¼
TN

TN þ FP

where TN represents the number of true negatives and FP indicates the number of false

positives.

PPV(Positive Predictive Value) is the probability that those that come out Aβ positive actu-

ally have Aβ positive according to the ground truth. NPV(Negative Predictive Value) is the

probability that those that come out Aβ negative actually have Aβ negative according to the

ground truth.

PPV ¼
TP

TP þ FP

NPV ¼
TN

FN þ TN

Fig 5. Overall workflow.

https://doi.org/10.1371/journal.pone.0258214.g005

Fig 6. Four-fold cross-validation for each iteration.

https://doi.org/10.1371/journal.pone.0258214.g006
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Accuracy is the degree of closeness between the predicted value and the actual value of the

subjects. It is calculated as the number of true positives and negatives among all accurate and

evaluated subjects as follows:

Accuracy ¼
TP þ TN

TP þ FN þ TN þ FP

We plotted the receiver operating characteristic (ROC) curve of our method for Aβ positiv-

ity, as shown in Fig 8, and calculated the area under the curve (AUC). The AUC value was

close to 1 for all three models.

Table 4 summarizes the pairwise comparison results of ROC curves obtained from the

Inception3D, ResNet3D, and VGG3D inferences that performed model evaluation. At the

95% significance level, since both p-values are greater than 0.05, the corresponding two com-

parison areas are not significantly different.

3.3 External validation

With respect to accuracy and AUC, VGG3D showed the best classification performance. As

summarized in Table 3, the AUC of the external validations was lower than that of the model

evaluation, and a comparison of the p-values summarized in Table 4 indicates that Incep-

tion3D and ResNet3D were below the significance level; thus, there were significant differences

in the performance evaluation. However, there was no significant difference between the

model evaluation and the external validation for the VGG model, as shown by the significance

level, p = 0.1950. The ROC curves of the comparison are plotted in Fig 9.

Table 2. Specifications about the models.

Inception3D ResNet3D VGG3D

Total params 6,098,530 17,620,196 17,236,386

Trainable params 6,093,538 17,612,642 17,236,002

Non-trainable params 4,992 7,554 384

Size on disk 70 202 195

https://doi.org/10.1371/journal.pone.0258214.t002

Fig 7. Dataset distribution using t-SNE visualization.

https://doi.org/10.1371/journal.pone.0258214.g007
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3.4 Retraining model

This is a method of redefining the model to create a generalized model by additionally retrain-

ing a part of the external dataset to the model trained with the DAUH training set. In this part,

excluding the external validation set shown in Fig 4, the 38 Aβ positives and 50 Aβ negatives

were configured as a retraining set for fine tuning. the pre-trained model was imported as it is,

and all layers were retrained.

As summarized in Table 5, when the external validation was performed, the classification

performance was improved compared to before retraining. The evaluation performance of the

models trained with DAUH was compared with that of models additionally retrained with the

residue of the external datasets by independent ROC. Both evaluation performances were

within the 95% confidence level (Inception3D: 0.5124, ResNet3D: 0.3247), as shown in

Table 6. No significant difference was observed between the two evaluations for each model,

and the ROC curves are shown in Fig 10.

Table 3. Classification evaluation metrics.

Inception3D ResNet3D VGG3D

Model Evaluation External Validation Model Evaluation External Validation Model Evaluation External Validation

AUC 0.996 0.883 0.968 0.901 0.98 0.945

Sensitivity 0.918 0.845 0.918 0.944 0.959 0.831

Specificity 1 0.707 0.921 0.469 1 0.945

PPV 1 0.69 0.938 0.458 1 0.831

NPV 0.905 0.855 0.897 0.918 0.95 0.87

Accuracy 0.954 0.767 0.92 0.671 0.977 0.87

Standard Deviation 0.487 0.452 0.482 0.351 0.95 0.853

95% Confidence Interval 0.950 to 1.000 0.823 to 0.928 0.907 to 0.994 0.845 to 0.942 0.923 to 0.998 0.898 to 0.974

https://doi.org/10.1371/journal.pone.0258214.t003

Fig 8. ROC curves for each model evaluation.

https://doi.org/10.1371/journal.pone.0258214.g008
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Table 4. Comparison of ROC curves.

Pairwise comparison of ROC curves for each model evaluation

Difference between areas SE 95% CI P-value

Inception3D vs. ResNet3D 0.0274 0.0154 -0.00282 to 0.0576 0.0756

Inception3D vs. VGG3D 0.0161 0.0208 -0.0246 to 0.0569 0.4384

ResNet3D vs. VGG3D 0.0113 0.0203 -0.0285 to 0.0510 0.5780

Comparison of independent ROC curves with the model evaluations and the external validations

Inception3D 0.113 0.0266 0.0610 to 0.165 <0.05

ResNet3D 0.0672 0.0306 0.00733 to 0.127 <0.05

VGG3D 0.0349 0.0269 -0.0179 to 0.0876 0.1950

Note. SE = standard error, CI = confidence interval

https://doi.org/10.1371/journal.pone.0258214.t004

Fig 9. ROC curve comparison for each model. In the legend of each plot, ‘ext_val’ means the external validation, and ‘model_eval’ means the model

evaluation.

https://doi.org/10.1371/journal.pone.0258214.g009

Table 5. External validation after model retraining.

Inception3D ResNet3D

AUC 0.95 0.943

Sensitivity 0.845 0.915

Specificity 0.967 0.783

Accuracy 0.92 0.84

https://doi.org/10.1371/journal.pone.0258214.t005

Table 6. Comparison of independent ROC curves with the model evaluations and the external validations after retraining.

Difference between areas SE 95% CI P-value

Inception3D 0.0185 0.0283 -0.0369 to 0.0740 0.5124

ResNet3D 0.0251 0.0255 -0.0249 to 0.0751 0.3247

https://doi.org/10.1371/journal.pone.0258214.t006
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4 Discussion

Currently, PET scans are used to diagnose AD by determining the level of amyloid deposition,

which is assessed for severity through visual assessment by experts. We also assessed it and

obtained Fleiss’ Kappa coefficient to determine it statistically, and the interreader agreement

was derived as κ = 0.8950. However, this method cannot provide consistent results, as different

specialists may interpret images differently. In addition, a doctor’s prior experience can have a

significant impact on the reliability of the diagnostic results. Therefore, CNN-based medical

image analysis, a deep learning procedure, can produce consistent results and improve confi-

dence in the diagnosis.

Similar to other CNN-based neuroimaging classification studies, our model evaluation of

the amyloid positivity classification problem in [18F]Florbetaben brain PET yielded an average

of approximately 95% accuracy results. In addition, the CNN trained with the single institution

dataset demonstrated satisfactory performance when tested with [18F]Florbetaben brain PET

images obtained from the subjects in the ADNI database. These results support that this CNN

model can help diagnose AD by developing a computer-aided detection tool to determine

amyloid positivity since these CNN models can recognize the amyloid deposition features of

the brain well.

In the external validation, the classification performance of the VGG 3D model was the best

with an AUC of 0.945 and an accuracy of 85.3%, but the optimal model may be different if the

experimental conditions are different or other model structures are performed. There was also

a difference in the classification performance between the model evaluation and the external

validation with the Inception3D and ResNet3D models (significance level < 0.05). Thus, a

method to overcome these issues is yet to be developed. This improves optimization by fine

tuning [28, 29] weights using the learning part or all the layers in Section 3.4.

4.1 Open platform

Our CNN-based [18F]Florbetaben amyloid brain PET classification studies have a limitation in

that only the DAUH dataset and ADNI have been utilized. Therefore, a medical imaging artifi-

cial intelligence (AI) research platform that enables doctors with medical knowledge and med-

ical data to perform medical AI research without programming is needed. DEEP:PHI is one

such open platform (https://www.deepphi.ai). It is a research platform developed by DEEP-

NOID, a Korean medical AI startup company that is currently being serviced in the form of a

Fig 10. ROC curve comparison between the external validation after retraining and the model evaluation. The

‘fine_tuning’ curve indicates the external validation after retraining and ‘model_eval’ indicates the model evaluation.

https://doi.org/10.1371/journal.pone.0258214.g010
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closed beta, and a number of doctors are using this platform to conduct artificial intelligence

research.

As shown in Fig 11, DEEP:PHI comprises a GUI, and it is possible to perform image pre-

processing, neural network model generation, and neural network training results verification

within the DEEP:PHI platform from the workflow window. In addition, the server provides a

high-end research environment without a GPU and hard disk drive in the local environment.

As it operates on the web, the platform allows doctors and developers of various organizations

to collect data and perform collaborative research directly on the web. The models from our

research can also be uploaded to the DEEP:PHI platform and used for various AI research. If

necessary, it is possible to modify and create modules specialized for specific research through

the code editor.

5 Conclusion

The Aβ classification model was evaluated and external validation was performed with the

ADNI dataset. The detailed information on model evaluation and external validation results

can be seen in S1 File. The model evaluation results show that the classification performance

produces the high accuracy. On the other hand, data from other sources may have differences

in quality when compared to the evaluation dataset, which could lead to the poor classification,

and preprocessing to minimize these differences is important in external validation. Even

though the data have been refined, when the deep learning classification model does not clas-

sify tasks well in the external validation step, the model performance can be improved by

including other structures or retraining the model. In addition, it is possible to implement an

optimal model through various research collaborations using an open platform for medical

image AI research.

Fig 11. GUI of DEEP:PHI. The image preprocessing, performance, etc. can be seen in the window.

https://doi.org/10.1371/journal.pone.0258214.g011
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Supporting information

S1 File. Aβ positive probability using CNN. This is the probability of predicting the label for

each CNN model(EXCEL). The label is coded as Aβ positive 1 and Aβ negative 0, and if the

probability exceeds 0.5, it is predicted as Aβ positive, and if it is less than 0.5, it is predicted as

Aβ negative. One tab is configured for each validation type, and the meaning of the tab name

is as follows:

• model_eval: model evaluation.

• external_val: external validation.

• ext_additional: external validation after the fine tunning.

(XLSX)
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