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y can recover three-dimensional longitudinal brain changes over time by
nonlinearly registering baseline to follow-up MRI scans of the same subject. Here, we compared the
anatomical distribution of longitudinal brain structural changes, over 12 months, using a subset of the ADNI
dataset consisting of 20 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40
individuals with mild cognitive impairment (MCI). Each individual longitudinal change map (Jacobian map)
was created using an unbiased registration technique, and spatially normalized to a geometrically-centered
average image based on healthy controls. Voxelwise statistical analyses revealed regional differences in
atrophy rates, and these differences were correlated with clinical measures and biomarkers. Consistent with
prior studies, we detected widespread cerebral atrophy in AD, and a more restricted atrophic pattern in MCI.
In MCI, temporal lobe atrophy rates were correlated with changes in mini-mental state exam (MMSE) scores,
clinical dementia rating (CDR), and logical/verbal learning memory scores. In AD, temporal atrophy rates
were correlated with several biomarker indices, including a higher CSF level of p-tau protein, and a greater
CSF tau/beta amyloid 1-42 (ABeta42) ratio. Temporal lobe atrophy was significantly faster in MCI subjects
who converted to AD than in non-converters. Serial MRI scans can therefore be analyzed with nonlinear
image registration to relate ongoing neurodegeneration to a variety of pathological biomarkers, cognitive
changes, and conversion from MCI to AD, tracking disease progression in 3-dimensional detail.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease is the most common form of dementia,
afflicting over 24 million people worldwide. In early AD, short-term
memory function is typically among the first to be impaired, followed
by a progressive decline in other cognitive functions (such as language,
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attention, orientation, visuospatial skills, and executive function) along
with emotional/behavioral disturbances. At present, there is no cure
for AD,whose natural course is insidious yet gradually debilitating, and
is typically fatal at its most advanced stage, usually due to medical
complications. In recent years, scientific interest has also focused on
mild cognitive impairment (MCI), a pre-dementia stage that carries a
4–6-fold increased risk of future diagnosis of dementia, relative to the
general population (Petersen et al., 1999, 2001; Petersen, 2000).

Many investigators have used MRI and PET imaging to measure
longitudinal progression of brain changes in normal aging, MCI and
AD, with varying results. As drug candidates that might slow the
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progression of Alzheimer's pathology began to be developed, the need
to develop robust and sensitive imaging methods to quantify
progression of Alzheimer's disease has become increasingly impor-
tant. To this end, the National Institute of Aging and pharmaceutical
industry funded the Alzheimer's Disease Neuroimaging Initiative,
with the goal of developing improved methods based on imaging and
other biomarkers, for AD treatment trials.

A variety of methods have been used to quantify the longitudinal
changes in structural brain MRI including: region-of-interest mea-
surements (especially of the hippocampus (Frisoni et al., 1999), the
“boundary shift integral” technique which quantifies differences
between two successive co-registered 3D MRIs (Fox et al., 2000),
voxel-based morphometry (Good et al., 2001; Whitwell et al., 2007),
and tensor-based morphometry (Studholme et al., 2004, 2006; Leow
et al., 2007).

Tensor-based morphometry (TBM) is a relatively new image
analysis technique that identifies regional structural differences in
the brain, across groups or over time, from the gradients of the
deformation fields that align, or ‘warp,’ images to a common
anatomical template (reviewed in Ashburner and Friston, 2003).
Highly automated methods such as TBM are being tested to examine
their utility in large-scale clinical trials, and in studies to identify
factors that influence disease onset and progression (Leow et al.,
2005b; Cardenas et al., 2007), or normal development (Thompson et
al., 2000a; Chung et al., 2001; Hua et al., 2007).

In this paper, TBM is applied to a longitudinal ADNI dataset by
using a nonlinear registration algorithm to match 3D baseline
structural MR images with follow-up images acquired 1 year later
(for related approaches, see Leow et al. 2005a; Studholme et al., 2006;
Studholme and Cardenas, 2007; van de Pol et al., 2007; Barnes et al.,
2008; Ridha et al., 2008).

Color-coded Jacobian maps — which show the local expansion or
compression factor at each point in the image — can be used to
indicate local volume loss or gain relative to the baseline image
(Freeborough and Fox, 1998; Chung et al., 2001; Fox et al., 2001;
Ashburner and Friston, 2003; Riddle et al., 2004). Here we examined
longitudinal brain changes, using these Jacobianmaps, in groups of AD
and MCI subjects relative to controls. We also investigated, at a
voxelwise level, how ongoing brain atrophy correlated with clinical
measures including MMSE scores, and the global Clinical Dementia
Rating (CDR), as well as biomarkers of AD pathology including CSF
levels of tau protein, 181-phosphorylated tau protein (p-tau), beta
amyloid (ABeta 42), and tau/Abeta42 ratio (Andreasen et al. 2001; Itoh
et al., 2001; Verbeek et al., 2003; Clark et al., 2003; Hampel et al.,
2004; Lee and Trojanowski, 2006).

Our hypotheses were as follows: (1) brain atrophic rates would be
greater in AD and MCI than in controls, with MCI-control differences
restricted primarily to the temporal lobe; (2) MCI converters (who
transitioned to AD during the one-year follow-up interval) would have
faster atrophic rates than non-converters, but slower atrophic rates
than those with AD; (3) longitudinal temporal lobe atrophy would be
significantly correlated with progression of cognitive impairment in
AD and MCI; and (4) higher CSF tau protein level, lower CSF ABeta42
level, and higher p-tau/ABeta42 ratiowould be significantly associated
with higher rates of temporal lobe atrophy. In further tests that were
considered exploratory rather than hypothesis-based, for purposes of
statistical inference, we also determined which additional CSF
biomarkers might correlate best with atrophic rates in each diagnostic
group, and in all subjects combined.

Methods

Subjects

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005a,b) is a large multi-center longitudinal MRI and FDG-PET
(fluorodeoxyglucose positron emission tomography) study of 800
adults, ages 55 to 90, including 200 elderly controls, 400 MCI subjects,
and 200 AD patients. The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessments acquired in
a multi-site manner mirroring enrollment methods used in clinical
trials, can replicate results from smaller single site studies measuring
the progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.

At the time of writing this report, data collection for the ADNI
project was in progress. In this paper, we studied longitudinal brain
structural changes in 100 subjects, divided into 3 groups: 40 healthy
elderly individuals, 40 individuals with amnestic MCI, and 20
individuals with probable AD. All groups were well matched for
gender and age: each group included 50%men and 50% women; mean
ages for the control, MCI and AD groupswere, respectively, 75.27 years
(standard deviation (SD)=5.33 years), 75.43 years (SD=7.02), and
75.70 years (SD=7.36), with no significant age differences among the
three groups. We included twice as many subjects in the MCI and
control groups versus the AD group, based on the availability of one-
year follow-up scans at the time of writing this paper.

All subjects underwent thorough clinical/cognitive assessment at
the time of both the baseline and the follow-up scan acquisitions. As
part of each subject's cognitive evaluation, the Mini-Mental State
Examination (MMSE) was administered to provide a global measure of
mental status based on evaluation of five cognitive domains (Folstein et
al., 1975; Cockrell and Folstein, 1988); scores of 24 or less (out of a
maximum of 30) are generally consistent with dementia. The Clinical
Dementia Rating (CDR) was also assessed as a measure of dementia
severity (Hughes et al., 1982; Morris, 1993). A global CDR of 0, 0.5, 1, 2
and 3, respectively, indicate no dementia, very mild, mild, moderate,
and severe dementia. The elderly normal subjects had MMSE scores
between 28 and 30 (inclusive), all had a global CDR of 0, and no
symptoms of depression, MCI, or other forms of dementia. The MCI
subjects had MMSE scores in the range of 24 to 30, all had a global CDR
of 0.5, and mild memory complaints, with memory impairment
assessed via education-adjusted scores on the Wechsler Memory
Scale–Logical Memory II (Wechsler, 1987). All AD patients met
NINCDS/ADRDA criteria for probable AD (McKhann et al., 1984) with
baselineMMSEscores ashigh as 26, and a lower limit of 20. In this study,
16 AD patients had a CDR of 0.5, and the remainder had a CDR of 1.
Detailed exclusion criteria, e.g., regarding concurrent use of psycho-
tropic medications, can be found in the ADNI protocol (Mueller et al.,
2005a,b). Briefly, subjects were excluded if they had any serious
neurological disease other than incipientAD, anyhistoryof brain lesions
or head trauma, or psychotropic medication use (including antidepres-
sants, neuroleptics, chronic anxiolytics or sedative hypnotics, etc.).

MRI acquisition and image correction

All subjects were scanned with a standardized MRI protocol,
developed after a substantial effort evaluating and comparing 3D T1-
weighted sequences for morphometric analyses (Leow et al., 2006;
Jack et al., 2008). High-resolution structural brain MRI scans were
acquired at multiple ADNI sites using 1.5 Tesla MRI scanners from
General Electric Healthcare and Siemens Medical Solutions (ADNI also
collects a smaller subset of data at 3 Tesla but it was not analyzed here
to avoid the additional complications of combining data across
scanner field strengths). All scans were collected according to the
standard ADNI MRI protocol. For each subject, two T1-weighted MRI
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scans were collected using a sagittal 3D MP-RAGE sequence. As
described in Jack et al. (2008), typical 1.5 T acquisition parameters are
repetition time (TR) of 2400 ms, minimum full TE, inversion time (TI)
of 1000 ms, flip angle of 8°, 24 cm field of view, with a 192×192×166
acquisition matrix in the x-, y-, and z-dimensions yielding a voxel
size of 1.25×1.25×1.2 mm3. In-plane, zero-filled reconstruction
yielded a 256×256 matrix for a reconstructed voxel size of 0.9375×
0.9375×1.2 mm3.

Additional image corrections were also applied, using a processing
pipeline at the Mayo Clinic, consisting of: (1) a procedure termed
GradWarp for correction of geometric distortion due to gradient
non-linearity (Jovicich et al., 2006), (2) a “B1-correction,” to adjust for
image intensity inhomogeneity due to B1 non-uniformity using
calibration scans (Jack et al., 2008), (3) “N3” bias field correction, for
reducing residual intensity inhomogeneity (Sled et al., 1998), and (4)
geometrical scaling, according to a phantom scan acquired for each
subject (Jack et al., 2008), to adjust for scanner- and session-specific
calibration errors. In addition to the original uncorrected image files,
images with all of these corrections already applied (GradWarp, B1,
phantom scaling, and N3) are available to the general scientific
community (at www.loni.ucla.edu/ADNI).

Image pre-processing

To adjust for global differences in brain positioning and scale across
individuals, all scans were linearly registered to the stereotactic space
defined by the International Consortium for Brain Mapping (ICBM-53)
(Mazziotta et al., 2001) with a 9-parameter (9P) transformation (3
translations, 3 rotations, 3 scales) using the Minctracc algorithm
(Collins et al., 1994). Globally aligned images were resampled in an
isotropic space of 220 voxels along each axis (x, y, and z) with a final
voxel size of 1 mm3.

Specifically, baseline scans were first linearly normalized with a 9-
parameter registration to the ICBM space. Follow-up scans, on the
other hand, were 9-parameter registered to their corresponding
baseline scans, followed by normalization to the ICBM space using the
same baseline transformation that carries baseline scans to the ICBM
space (for discussions on the effect of global scaling in longitudinal
studies, see Paling et al., 2004; Whitwell et al., 2004).

Three-dimensional Jacobian maps quantifying structural changes
over time

To quantify 3D patterns of volumetric brain atrophy over time for
each subject, an individual change map, or Jacobian map, was
computed by non-linearly registering the follow-up scan to the
baseline scan with an unbiased registration algorithm we developed
(Leow et al., 2007). The unbiased image registration technique
computes deformation fields by penalizing statistical bias in the
resulting Jacobian maps, thus eliminating skew from the distribution
of Jacobian determinants, and has been shown to perform favorably in
recovering true physiological changes in serial MRI data (Yanovsky et
al., 2007). Non-positive Jacobians are prevented when using unbiased
registration, as a regularization term is penalized based on the
logarithmic transform of the local Jacobian values. Moreover, unbiased
registration is inherently symmetric (i.e., inverse-consistent), so there
is no methodologically-induced bias towards detecting gain versus
loss (see Leow et al., 2005, Leow et al., 2007, for examination of the
Jacobian statistical distributions).

Unbiased group average template — Minimal Deformation Target (MDT)

To facilitate voxelwise comparisons between groups, we followed
our previous approaches and further nonlinearly registered all
individual brains and their corresponding Jacobian maps to the
Minimal Deformation Target (MDT) created in Hua et al. (2008), an
unbiased average template image in the ICBM space representing
common anatomical features on a voxel level for the group of control
ADNI subjects (Good et al., 2001; Kochunov et al., 2002; Joshi et al.,
2004; Studholme and Cardenas, 2004; Kovacevic et al., 2005;
Christensen et al., 2006; Lorenzen et al., 2006; Lepore et al., 2008).

After this final step, these spatially normalized Jacobian maps now
share a common anatomical coordinate as defined by the MDT. Thus,
statistical analyses may be conducted at each voxel to assess the
magnitude and significance of deficits in MCI and AD versus the
healthy controls.

Statistical tests

Using these spatially normalized Jacobian maps that encode
longitudinal brain changes, we carried out voxel-wise statistical
tests between the Jacobian maps in each group. The Jacobian maps in
MCI and ADwere compared to those from normal controls, using both
a spatial average of the Jacobian values within specific regions of
interest (ROIs; defined below), and voxel-wise tests controlled for
multiple comparisons. In the latter, at each voxel, we evaluated the
significance level of group differences using a two-sample t test with
unequal variance. The resulting p-values were displayed as maps to
visualize patterns of significant differences throughout the brain.

To correct for multiple comparisons, we used permutation testing
to assess the overall significance of group differences (see, e.g.,
Bullmore et al., 1999; Nichols and Holmes 2002; Thompson et al.
2003a,b; Chiang et al., 2007a,b). A null distribution for the group
differences in Jacobian at each voxel was constructed using 10,000
random permutations of the data. The number of permutations Nwas
chosen to be 10,000, to control the standard error SEp of the omnibus
probability p, which follows a binomial distribution B(N, p) with
known standard error (Edgington, 1995). When N=10,000, the
approximate margin of error (95% confidence interval) for p is
approximately 5% of p. For each test, the subjects' diagnosis was
randomly permuted and voxel-wise t tests were conducted to identify
voxels more significant than p=0.05. The volume of voxels in the brain
more significant than p=0.05 was computed for the real experiment
and for the random assignments. Finally, a ratio, describing the
fraction of the time the suprathreshold volume was greater in the
randomized maps than the real effect (the original labeling), was
calculated to give an overall p-value for the significance of the map.

CDF plots

Cumulative distribution function (CDF) plots based on the above
two-sample t-tests were used to compare the effect sizes of group
differences and effects of covariates of interest in all three groups.
These CDF plots are commonly generated when using false discovery
rate methods to assign overall significance values to statistical maps
(Benjamini and Hochberg, 1995; Genovese et al., 2002; Storey, 2002);
they may also be used to compare effect sizes of different methods,
subject to certain caveats (Lepore et al., 2008; Hua et al., 2008; Morra
et al., 2008a,b), as they show the proportion of supra-threshold voxels
in a statistical map, for a range of thresholds.

Regions of interest (ROIs)

Regions of interest, including frontal, parietal, temporal, and
occipital lobes, were defined by manually labeling the normal group
MDT. The MDT was traced by a trained anatomist to generate binary
masks for each lobe, which were subsequently used to summarize
brain atrophy at a regional level in each group. Within each lobe,
tissue types were distinguished by creating maps of gray and white
matter, CSF, and non-brain tissues using the partial volume classifica-
tion (PVC) algorithm from the BrainSuite software package (Shattuck
and Leahy, 2002). One single voxel was eroded from the boundary of

http://www.loni.ucla.edu/ADNI
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each tissue class to avoid the inclusion of partial volumed voxels at
tissue interfaces (e.g., CSF, gray and white matter mixtures) where the
Jacobian values may not be representative of the rest of the region. To
avoid confounding the average values in regions where tissue atrophy
was assessed, CSF was excluded from the masks for the ROI-based
Jacobian averages, but was included for voxel-wise comparisons (i.e.,
maps of group differences).

Correlations of structural brain differences (Jacobian values) with clinical
measurements and biomarkers

At each voxel, correlations were assessed for each group, using the
general linear model, between the Jacobian values and several clinical
measures at baseline — MMSE scores (Folstein et al., 1975), the
geriatric depression scale (GDS), Clinical Dementia Rating summary
scores (Morris, 1993), and CDR sum-of-boxes scores. The CDR assesses
a patient's cognitive and functional performance in six areas on a scale
Fig. 1. Unbiased registration was performed on 100 pairs of serial MR images, acquired 12 m
selected sample consisted of 20 patients with Alzheimer's disease (AD), 40 individuals with m
resulting Jacobian maps in each group is superimposed on a brain volume.
of 0 (no impairment) to 3 (impaired): memory, orientation, judgment
and problem solving, community affairs, home and hobbies, and
personal care. As there is a significant range restriction with global
CDR scores, we also assessed correlations with the CDR ‘sum-of-boxes’
scores, which has a greater dynamic range (0–18), and may provide
more useful information than the CDR global score, especially in mild
cases (Lynch et al., 2006). In addition, several biomarkers obtained
from CSF were also included for assessing correlations, including beta
amyloid 1-42 (ABeta42), tau protein, phosphorylated-tau protein 181
(p-tau), the tau and ABeta42 ratio (tau/ABeta42), and p-tau ABeta42
ratio (p-tau/ABeta42). Biomarker measurements were performed by
Drs. Leslie Shaw and John Trojanowski of the ADNI Biomarker Core at
the University of Pennsylvania School of Medicine, which collects and
banks biological samples (DNA, blood, urine and CSF) from all
participating sites, and conducts studies of selected AD biomarkers,
including apolipoprotein E (ApoE) genotype, isoprostanes, tau, ABeta,
and homocysteine levels (Shaw et al., 2007).
onths apart, from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The
ild cognitive impairment (MCI), and 40 healthy elderly controls (CTL). The mean of the
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As individual Jacobianmaps encode structural differences between
baseline and follow-up scans, correlationswere also assessed between
the Jacobian values and the differences in clinical measures between
the two time points. All correlations were corrected for multiple
comparisons as described above.

Results

3D maps of brain atrophy in MCI and AD

We first visualized the mean brain structural change map for each
group (AD,MCI, and CTL) by averaging individual Jacobianmapswithin
each group. These maps may be considered as showing the mean
percent tissue loss over theone-year interval, or, if changes are assumed
to be approximately linear, they provide a regional estimate of the
atrophy rate. The resulting statistical maps, shown in Fig. 1, suggest
widespread progressive atrophy throughout the entire brain and
expansion of ventricular and CSF spaces in AD (compared to controls),
and a more restricted pattern of atrophy in MCI. To test whether there
were statistically significant volume changes, over this 12-month time
period, for each group, and whether these changes differ between
groups, we conducted regional (ROI) analyses as well as voxel-wise
tests controlled for multiple comparisons as follows (Figs. 2 and 3).
Fig. 2. Voxel-wise Z-statistics (top row) comparing mean Jacobian values for AD (N=20)
versus Controls (N=40) on the top, and MCI (N=40) versus Controls (N=40) on the
bottom. Corresponding color-coded P maps also show the local significance of these
differences (bottom row). There is widespread progressive atrophy in AD, at a faster
mean rate than in normals — this difference in rates reaches the voxelwise significance
level of 0.05 in most regions of the brain, and remains significant after corrected for
multiple comparisons in ROIs including the temporal lobes, parietal lobes, occipital
lobes, and frontal lobes. By contrast, for MCI versus Controls, only the parietal and
temporal lobes reach ROI significance. Please refer to the Results section for more
detailed discussions.
Mean Jacobian values within each ROI, normalized to indicate
annualized rates of atrophy (in percent per year) were computed to
represent overall differences in the rates of atrophy for each region
(Fig. 3). Here, we also separated MCI converters (N=7) from MCI non-
converters (N=32). (These MCI subgroups excluded the one MCI
subject whose diagnosis was changed to control at follow-up). In
general, a consistent trend was observed for atrophy rates, with AD
NMCI converters NMCI non-converters. MCI non-converters showed
comparable rates to controls (see bars colored camel and white,
respectively, in Fig. 3). The AD group (N=40) showed significant
progressive atrophy (p values, based on 1-sample t-test, b0.01 for all
ROIs) in the frontal lobes (annual atrophy rate in AD: 2.41%), occipital
lobes (2.07%), parietal lobes (2.40%), and temporal lobes (2.22%). The
correspondingmean atrophy rates were 0.37%, 0.63%, 0.22%, and 0.74%
for the control group, with corresponding P-values exhibiting
significance for the occipital lobes (p=0.02) and the temporal lobes
(p=0.05) (the MCI non-converter group showed a similar atrophy
profile; see Fig. 3 for more explanations). The small group of MCI
converters (N=7) showed an atrophy profile resembling AD (no
statistical tests were conducted in this sub-group due to a smaller
sample size, although the MCI converters/AD combined group, with a
sample size of 27, also exhibited significant volume loss for all ROIs).
These data are consistent with earlier reports assessing atrophy rates
using 2 MRI brain scans separated by a 12-month interval: using the
boundary shift integral method, Fox et al. (2000) found that mean (SD)
rate of brain atrophy for the patients with mild to moderate AD was
2.37% (1.11%) per year, while in the control group it was 0.41% (0.47%)
per year.

Permutation tests, using suprathreshold percentages, were con-
ducted to assess the presence of statistically significant local volume
change differences between groups, based on the voxel-wise two-
sample t-test on the rates of change (Fig. 2). This step provides a
detailed 3-D visualization of the local atrophy profile, in terms of
voxel-wise mean change rates and their significance level). Here,
significantly greater atrophy rates in AD versus controls were
confirmed for all ROIs, including left/right/both temporal lobes
(p=0.0021/0.0015/0.0015, corrected), occipital lobes (p=0.0014, cor-
rected), parietal lobes (p=0.0015, corrected), and frontal lobes
(p=0.005, corrected). Also, significantly greater atrophy rates in MCI
versus controls were confirmed in the left/right/total temporal lobe
(p=0.03/0.03/0.03, corrected), and parietal lobe (p=0.046, corrected)
but not in the occipital or frontal lobes (non-converters were not
separated in this permutation testing, due to a relatively small sample
size of 7). This is consistent with previous findings that parietal and
temporal lobes are among the first to be involved in AD. Although
mean Jacobian values (Fig. 3) — when spatially averaged across the
temporal lobe — were similar in MCI (both converters and non-
converters) and controls (annual atrophy rate 0.73% and 0.74%), locally
faster atrophy was detected in the MCI group versus controls using a
voxelwise permutation test. This is partly due to contributions from
the converters, who have smaller Jacobian values in general —

denoting faster atrophy — compared to non-converters. This also
shows that permutation testing, on the suprathreshold volume of
statistics in a map may be more powerful for detecting group
differences than performing univariate tests on regional averages
(numeric summaries) derived from the maps.

Correlations of Jacobian values with clinical measures and biomarkers

Any quantitative measure of brain atrophy has greater value if it
can be shown to correlate with established measures of cognitive or
clinical decline, or with future outcome measures. Here, we
investigated whether longitudinal temporal lobe atrophy over this
12-month period correlates with cognitive decline over the same
interval. Our results in Tables 1 and 2 show corrected p-values for
these correlations (although all markers and clinical measures were



Fig. 3. Percent brain tissue loss from baseline to follow-up as determined by the average Jacobian value within each lobe (with CSF excluded). The diagnosis for the AD, MCI, and CTL
groups was determined at baseline. Here, MCI at 12Mo denotes subjects diagnosed with MCI at baseline who did not convert to AD at 12-month follow-up, whereas MCI to AD
signifies those who had converted to AD at 12-month follow-up. One MCI subject's diagnosis converted back to control at follow-up, and thus was excluded from the MCI subgroups.
The first bar in each group (colored white), shows mild but significant progressive atrophy in controls. The 2nd bar (turquoise) denotes MCI subjects at baseline, and is followed by
bars denoting converters and non-converters. Mean rates are typically higher in the converters, comparable to subjects diagnosed as AD at both time-points, or AD at the last time
point (last two bars). An ⁎ indicates pb0.01 for the comparison. Here, p values for MCI to AD group are not given, as there were only 7 subjects (significance levels were as follows:
pb0.01 for all lobes in AD and AD at 12Mo; p=0.012, 0.054, and 0.02 in MCI for the temporal, frontal and occipital lobes; p=0.02 and 0.055 in controls for the occipital and temporal
lobes; p=0.068 and 0.045 in MCI at 12Mo for occipital and temporal lobes; regions not reported here do not reach significance at the 0.05 level).
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correlated for each diagnostic group, only significant results are
reported here). To avoid reductions in power due to restricting the
range to the AD or MCI groups separately, correlations were also
examined across the entire sample of 100 subjects (which we will
refer to as the “pooled” group). In this case, the normal subjects, who
tend to score in the normal range for all clinical measures, drive these
associations to some extent. Diagnostic groups were not pooled
together for these cognitive tests since the groups are stratified
according to their test scores.

Our results in Table 1 and Fig. 4a indicate that higher CSF tau
protein level, lower CSF ABeta42 level, and higher p-tau/ABeta42 ratio
are significantly associated with higher rates of temporal lobe atrophy
only in the pooled group (p=0.003, 0.001 and 0.002, corrected), but
not in any of the 3 individual diagnostic groups. On the other hand,
correlations between temporal lobe atrophy rates and the CSF p-tau
level and tau/Abeta42 ratio were significant for both the pooled data
(p=0.01 and 0.0003) and within the AD group (p=0.02 and 0.02).

For clinical measures (Table 2; Fig. 4b), longitudinal temporal lobe
atrophy was significantly correlated with progression of cognitive
impairment in the MCI group, including an increase over time in CDR
score (p=0.03), a decrease over time in MMSE (p=0.02), a worsening
in immediate logical memory performance (p=0.04), and worsening
Table 1
Biomarker information and voxel-wise correlation results

Relationship of ongoing temporal atrophy to biomarkers

Control MCI

Mean (SD) N p Mean (SD) N

↓Aβ1–42 (pg/mL) 210 (51) 26 0.6 154 (56) 26
↑Tau (pg/mL) 61 (22) 26 0.6 101 (58) 26
↑Tau/Aβ1–42 0.31 (0.17) 26 0.5 0.81 (0.67) 26
↑P-tau181P (pg/mL) 24 (16) 26 0.3 32 (15) 26
↑P-tau181P/Aβ1–42 0.13 (0.12) 26 0.3 0.25 (0.17) 26

We give the standard deviations (SD) and the means of the underlying scores to give the rea
the variable are associated with greater atrophy, whereas a ↑ implies that higher numeric v
scores on the 30-minute delayed auditory verbal learning test (AVLT)
(p=0.04). Moreover, a higher baseline Geriatric Depression Score (i.e.,
more severe depression) and a lower baseline score on the delayed
logical memory test also correlated with a greater ongoing rate of
temporal lobe atrophy (p=0.02 and 0.04). Lastly, converters exhibited
significantly faster rates of temporal lobe atrophy (p=0.03) than non-
converters (i.e., atrophy rates differentiated the group of converters
from non-converters).

Interestingly, in our analysis, longitudinal temporal lobe atrophy
was not correlated with baseline MMSE, CDR, or sum-of boxes scores.
Nor does it correlate with the change in sum-of-boxes scores over
the one-year interval. However, in the AD group, a higher baseline
sum-of-boxes score, i.e., greater cognitive impairment at baseline,
correlated with less ongoing atrophy (i.e., larger Jacobian values)
(p=0.02). In AD, the sum-of-boxes score may therefore better reflect
the disease severity in advanced AD, at a point when advanced
temporal atrophy has already occurred, and progressive atrophy has
slowed.

CDF curves
The cumulative distribution curves in Fig. 4 show relative effect

sizes for the associations between rates of brain atrophy and different
AD All pooled

p Mean (SD) N p Mean (SD) N p

0.3 129 (39) 14 0.6 171 (59) 66 0.001
0.2 112 (40) 13 0.1 87 (48) 65 0.004
0.7 0.92 (0.45) 13 0.1 0.63 (0.55) 65 0.0005
0.5 39 (12) 14 0.03 30 (16) 66 0.02
0.4 0.32 (0.15) 14 0.04 0.22 (0.16) 66 0.002

der an impression of the variables' distribution. A ↓ implies that lower numeric values of
alues of the variable are associated with greater atrophy.



Table 2
Baseline cognitive scores (a), changes in cognitive scores (b), and conversion from MCI to AD (c) and voxel-wise correlation results

Relationship of ongoing temporal atrophy to:

a) Baseline cognitive scores

Control (N=40) MCI (N=40) AD (N=20)

Score quartile [25, 50, 75] p Score quartile [25, 50, 75] p Score quartile [25, 50, 75] p

↓Logical memory — delayed [10, 12, 14.5] 0.6 [5, 8, 9] 0.04 [3, 5, 6] 0.06
↑Geriatric Depression Score [0, 1 ,1] 0.9 [1, 2, 2.25] 0.03 [1, 1.5, 2] 1

b) Change in cognitive scores
↓Change in MMSE [−1, 0, 1] 0.6 [−2, 0, 1] 0.03 [−2, 0, 1] 0.3
↑Change in CDR [0, 0, 0] 0.8 [0, 0, 0.125] 0.03 [0, 0, 0.125] 0.2
↓Change in logical memory — immediate [−1, 2, 4] 0.9 [−3, −1, 2] 0.04 [−2, 0.5, 2] 0.7
↓Change in AVLT — 30 min delay [−2, 1, 2] 0.5 [−1, 0, −1] 0.04 [−1, 0, 0.25] 0.5

c) Conversion from baseline to follow-up
MCI to AD (N=39) – – ⁎ 0.03 – –

We give the 25th, 50th, and 75th percentiles for these variables to give the reader an impression of their distribution. A ↓ implies that lower numeric values of the variable are
associated with greater atrophy, whereas an ↑ implies that higher numeric values of the variable are associated with greater atrophy. ⁎Conversion was coded as 1 for converting
(N=7), 0 for not converting (N=32).
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pathological markers and clinical correlates. In general, curves that
rise more sharply at the origin denote statistical maps with greater
effect sizes, and those curves that intersect the line y=20x at points
other than the origin, pass the conventional criterion of controlling
the false discovery rate at an expected rate of 5%, and are regarded as
significant after multiple comparisons correction. This approach
allows an approximate ranking of the effect sizes for different
correlates: higher tau/ABeta42 ratio was the pathological biomarker
most highly correlated with higher rates of temporal lobe atrophy
when all subjects were combined; other biomarkers showed
comparable but slightly lower effect sizes. The clinical score that
correlated most with higher rates of temporal lobe atrophy was one-
year change in MMSE in MCI, with many other cognitive measures
showing comparable but slightly lower effect sizes.

Discussion

In this paper, our hypotheses were largely confirmed regarding
longitudinal brain structural changes in three groups of subjects
including normal controls, those with MCI, and patients with
Alzheimer's disease. Alzheimer's disease was associated with sig-
nificantly faster ongoing atrophy in the temporal and parietal lobes,
relative to matched healthy controls. There was also significantly
faster expansion in the CSF spaces, consistent with previous studies
(e.g., Boyes et al., 2006), and significant progressive tissue loss in
frontal and occipital lobes, indicating that ongoing atrophy is widely
distributed in AD.

Prior studies of the disease trajectory in AD (e.g., Scahill et al.,
2002; Thompson et al., 2003a,b), show a shift in the distribution of
atrophy with advancing disease. In line with the trajectory of
neurofibrillary pathology (Braak and Braak, 1991), the entorhinal
and medial temporal lobes show the earliest signs of atrophy in MCI,
with frontal atrophy typically occurring later, and primary sensory and
motor cortices spared until late in the illness (see Thompson and
Apostolova, 2007, for a review of this trajectory mappedwith different
imaging modalities). Consistent with this, in our MCI group,
progressive atrophy was detected only in the temporal and parietal
lobes, in line with evidence that ongoing changes are more
anatomically restricted at this pre-dementia stage.

One notable aspect of the topography of brainmatter loss shown in
Figs. 1 and 2 is that the greatest proportion of brain matter loss
appears to lie in the white matter rather than at the voxels on the
cortical surface. There are two reasons for this, both technical: (1) the
deformations are spatially smooth and partial volume averaging
effects occur and diminish the signal somewhat at tissue boundaries,
such as the cortex/CSF interface, and (2) the registration accuracy of
TBM is poorer at the cortical surface, at least relative to some
approaches that explicitly model the cortical surface. To clarify this,
note that Figs. 1 and 2 visualize group differences by averaging rates of
volumetric changes (i.e., Jacobian maps), after nonlinearly aligning
individual maps of change to the minimal deformation template
(MDT). This deformation field is spatially smooth, so some partial
volume effects between cortex and CSF are inevitable and are more
pronounced along the MDT boundary. As a result, some signal
spillover from outside of the brain tissue may be present, explaining
the reduction in the atrophy signal along the boundary. This effect has
been noted in our prior work (Hua et al., 2008), where the disease-
related expansion in the ventricles spills over into the subcortical
white matter by about 1–2 mm, in the average maps. Similarly, the
cortical atrophy signal is partially canceled by the signal in the CSF
outside the brain, which may not show the same level of atrophy, and
if anything, may show slight expansion over time. Second, and
perhaps more importantly, the deformation fields are based on
automated matching of intensities in the images, and the spatial
smoothness of the fieldsmakes it difficult to register the entire cortical
mantle within subjects from one time-point to the next, as would be
required to gauge the atrophy of cortical gray matter. Alternative
approaches may be used that compute thickness at each point, but
these are typically more time-consuming as they generally require
extraction of explicit models of the cortical surface as geometric
meshes, prior to computing the cortical thickness either directly from
the meshes (Lerch and Evans, 2005), or by tissue classification of the
images and voxel coding (Thompson et al., 2004; Aganj et al., 2008).

There are at least two possible solutions to better sensitizing our
TBM approach for detecting cortical gray matter loss. The first is to use
a method termed voxel-based morphometry (VBM; Ashburner and
Friston, 2000) or a related approach termed RAVENS (Davatzikos et al.,
2001). In VBM, the deformation-based compression signal at each
point is multiplied bymaps of graymatter density, which are based on
smoothing maps of gray matter voxels derived from an explicit tissue
classification into gray and white matter and CSF. An additional
modulation step is also included that preserves information on the
volume of gray matter in the baseline images after warping. When
gray matter density and deformation signals are multiplied together
in this way, VBM maps in AD do typically show progressive cortical
gray matter atrophy in a temporal-to-frontal pattern that matches the
spread of neurofibrillary tangle pathology (Baron et al., 2001). A
second approach to identifying cortical gray matter atrophy with TBM
was developed by (Studholme et al., 2003), in which deformation-
based compression signals at each point are smoothed adaptively
depending on the amount of gray matter lying under the filter kernel.
This is a way to avoid some of the signal depletion that occurs when
atrophying graymatter is partial-volumedwith CSF. A third solution is
to run the deformationmaps at a very high spatial resolution andwith
less spatial regularization, or with a regularization term that enforces
continuity but not smoothness. Because of the complexity of
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differentiating cortical gray matter changes from underlying white
matter changes, we seek to assign signals to the cortex without
surface-based modeling, which can be time consuming for larger
analyses (Thompson et al., 2004), Thus, in this paper, we decided to
combine both gray and white matter for each region of interest (ROI)
in our analyses, instead of separating them.
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Although much of the literature has suggested that gray matter
loss is the primary change in AD that is observable on MRI (see
Thompson and Apostolova, 2007, for a review), there has been
substantial theoretical and empirical evidence supporting white
matter pathology in AD (Bartzokis et al., 2003). For example, in Rose
et al. (2000), the authors summarized recent DTI studies in AD, and
many have reported reduced FA (fractional anisotropy) in temporal,
frontal, and parietal lobes, especially in the internal capsule and limbic
association fibers, the corticothalamic pathway, superior longitudinal
fasciculus, and posterior cingulate bundle (Yoshiura et al., 2002).
White matter degeneration in AD has also been detected with MR
relaxometry (Bartzokis et al., 2003) and myelin and oligodendrocyte
reductions have been detected in neuropathological studies of AD.
Future MRI studies, using state-of-the-art techniques such as diffu-
sion-weighted MRI (Rose et al., 2000; Choi et al., 2005; Medina et al.,
2006) or High Angular Resolution Diffusion Imaging (HARDI), are
likely to further elucidate white matter pathology in AD.

A further notable feature, which requires some explanation, is that
a related technique (the voxel-compression method) has shown
unequivocally temporal gray matter loss and ventricular expansion,
but no change in the white matter (Fox et al., 2001) in serial MRI
studies of AD. As already noted, we did indeed detect subtle and
diffuse changes in the subcortical white matter, but the ability to
detect them depends to some degree on the level of regularization
used in TBM. In TBM, there is a smoothness term, which causes
correlations in the deformation signals at neighboring voxels. In
general, for simplicity and practicality, an elastic (Leow et al., 2005a)
or fluid (Fox et al., 2001) model of registration is used, in which the
Green's function of the governing operator is spatially uniform and
fixed. If the correlations are assumed to be long-range (i.e., the
deformations are spatially quite smooth), there is more signal
enhancement in large homogeneous regions such as the white matter,
whereas if the correlations are assumed to be short-range (i.e., the
deformations are spatially quite rough, as in the fluid registration
model of Fox et al., 2001), there is typically more sensitivity to finer-
scale differences (as found in the gray matter in the Fox et al. study),
while sacrificing some power to detect broader-scale differences (e.g.,
the failure to detect white matter atrophy in Fox et al., 2001). In future,
the differential sensitivity of both approaches could be combined by
estimating these spatially varying correlations empirically from
anatomical landmarks using 6-dimensional covariance tensors (Fillard
et al., 2008) and incorporating them into a statistically-based adaptive
registration model as we have begun to do (Brun et al., 2007 and
2008).

In this paper, the correlations between atrophy and CSF biomarkers
are also of significant interest. Prior literature has indicated that there
is lower ABeta42, but higher tau and p-tau protein, in the CSF of AD
patients versus those with other dementia subtypes or normal
subjects (Andreasen et al. 2001; Itoh et al., 2001; Verbeek et al.,
2003; Clark et al., 2003; Hampel et al., 2004). More recently,
researchers have also investigated the utility of using these markers
for predicting conversion from MCI to AD (Fagan et al., 2007; Li et al.,
2007). In our results, progressive temporal lobe atrophy was highly
correlated with baseline p-tau, tau/ABeta42 ratio (for both AD groups
and all subjects pooled), ABeta42, and tau (the latter two only for data
pooled across all diagnostic groups). This suggests that p-tau and tau/
Abeta42 may be more clinically useful than Abeta42 or tau in
predicting ongoing atrophy (in Fig. 4, CDF curves rise more rapidly
for the correlations with p-tau and with the tau/ABeta42 ratio).
Fig. 4. (a) CDF plots for voxel-wise correlation of progressive temporal lobe tissue loss in M
ABeta42 (AB142), tau protein (TAU), phosphorylated-tau 181 (PTAU), tau/ABeta42 ratio (TAU
those in Tables 1 and 2. Here, biomarkers correlate better in AD and the pooled group (but not
sensitive biomarkers or clinical measures, the departure of the early part of the correspondin
biomarkers and ongoing temporal lobe atrophy in the MCI group is most likely due to the he
the MCI group support the use of serial neuropsychiatric testing in monitoring disease prog
We could not demonstrate significant correlations between
biomarkers and ongoing temporal lobe atrophy in the MCI group.
This is perhaps not surprising due to the heterogeneous nature of MCI,
and the relatively small sample of 40 subjects.

Clinical measures correlated more strongly with atrophy rates in
MCI than in AD, supporting the use of serial neuropsychiatric testing in
monitoring disease progression in MCI. In AD, atrophy rates exceeded
those in MCI, but did not correlate so strongly with interval changes in
neuropsychiatric test scores. This may suggest that (1) decline in
cognition is more tightly linked with atrophy rates early in the illness,
or (2) in late AD, atrophy rates may eventually plateau or slow down,
which may disrupt any correlation between the absolute rate of tissue
loss and further changes in cognition, or (3) correlations may only be
detectable in samples that are larger and/or have a broader range of
disease severity. Our AD sample was only half the size of our MCI
sample, and was somewhat restricted in disease severity to reflect
relatively mild AD; by contrast, in recent study of 52 subjects with
mild-to-moderate AD (Ridha et al., 2008), there was a strong
association between brain atrophy rate and MMSE decline (r=0.59,
pb0.0001). In addition, there is some evidence that atrophy rates do
not slow down as AD progresses; Chan et al. (2003) found that in 12
patients with mild dementia (MMSE=23), scanned from a presympto-
matic stage through to moderately severe dementia, mean yearly loss
of brain volume was 2.8% (95% CI: 2.3–3.3), but rose by 0.32% per year
(0.15–0.50). In 39 healthy control subjects, Scahill et al. (2003) also
found rates of atrophy accelerated nonlinearly with increasing age,
with the most marked changes occurring after the age of 70.

To summarize, our results further support the value of serial MRI
scanning, combined with quantitative nonlinear registration, for
tracking disease progression in Alzheimer's and MCI. Our detailed
3D Jacobian maps, reflecting regional brain atrophy, correlated well
with disease progression and conversion to AD, as well as with various
biomarkers and clinical measures. Moreover, groups of MCI converters
and non-converters were differentiated by measures of temporal lobe
atrophy over time.

Lastly, instead of separating hippocampus in our analysis, it was
included as part of the temporal lobe. Any TBM study is limited by the
accuracy with which deformable registration can match anatomical
boundaries between individual brains and corresponding regions on
the template. Our mean deformation template (MDT) was created
after rigorous nonlinear registration, and geometric centering. Most
anatomical features and boundaries are well-preserved in the MDT,
and the hippocampus is sufficiently discernible to be labeled by hand.
Even so, it may not always be possible to achieve accurate regional
measurements of atrophy in small regions such as the hippocampus,
since that would require a locally highly accurate registration. Some
research groups have successfully computed hippocampal atrophy
rates from fluid registration methods (e.g., Crum et al., 2001), and
found that they can be superior to manual delineations in separating
AD from controls (pb0.0001; Barnes et al., 2007a,b) and more reliable
(van de Pol et al., 2007).

To detect more subtle effects, direct modeling of brain structures,
e.g., using surface-based geometrical methods (e.g., Morra et al.,
2008a,b), or using a template in conjunction with boundary shift
integral measures (Barnes et al., 2007a,b), may offer additional
statistical power to detect subregional differences. We are currently
investigating longitudinal hippocampal changes using the ADNI
dataset with a range of different methods, which we plan to report
in the future.
CI, AD, and pooled groups (ALL, N=100) with (a) various biomarker indices including
AB), and PTAU/AB42 ratio (PTAUAB), and (b) various clinical measures corresponding to
in MCI), while clinical measuresmanifest better correlations in theMCI group. Formore
g CDF curve (i.e., the upswing) will be larger. The lack of significant correlations between
terogeneous nature of MCI. By contrast, the better correlations with clinical measures in
ression. Please refer to text for more detailed discussions.
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