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A B S T R A C T   

The naïve empirical Bayes method has been widely used as an ad hoc tool in fitting linear mixed-effect models, 
which is much computationally efficient than the maximum likelihood estimation method. However, the 
shrinkage effect of the empirical Bayes method causes bias in the estimates of the fixed effects. Bias-correction 
has been proposed for the mixed-effects model when only one covariate is present. In this paper, we derive the 
shrinkage factor of the empirical Bayes predictors of the random effects and the variance-covariance matrix of 
the corrected estimates when the model has more than one covariate. The empirical Bayes estimates and test 
statistics are then corrected using the derived factor. Theoretical derivations, simulation studies and a real data 
application demonstrate the validity of the proposed method in that the corrected estimates are unbiased and the 
corrected tests have correct p-values.   

1. Introduction 

Mixed-effects modeling provide a useful tool for the analysis of 
longitudinal data. Likelihood-based algorithms, including maximum 
likelihood (ML) or restricted maximum likelihood (REML), are often 
used for parameter estimation and hypothesis testing in mixed-effects 
model (Searle et al., 1992), including covariate analysis. To circum
vent complex algorithms involved in ML or REML, Empirical Bayes Es
timates (EBEs), derived from the base mixed-effects model without 
covariates has long been used as an ad hoc approach to facilitate vari
able selection (Davidian and Giltinan, 2003; Combes et al., 2014). For 
example, EBEs are extremely useful in population pharmacokinetic 
studies for investigating the influence of the individual’s baseline 
characteristics on the individual parameters. EBEs based inferences help 
researchers to gain insight into within-subject pharmacokinetic pro
cesses of absorption, distribution, and elimination of drug concentration 
in human body (Pinheiro and Bates, 2000). Other examples can be found 
in HIV viral dynamic studies, tumor growth inhibition modeling and 
genome-wide association studies with longitudinal phenotypes (Maitre 
et al., 1991; Mandema et al., 1992; Wu and Ding, 1999; Lindbom et al., 
2004; Savic and Karlsson, 2009; Londono et al., 2013; Meirelles et al., 

2013; Combes et al., 2014; Sikorska et al., 2015; Barbolosi et al., 2016). 
Approaches based EBEs generally decompose the full mixed-effects 
model into a null mixed-effects model without covariates and a simple 
linear model, thus the fitting complexity of a full mixed-effects model 
with many covariates is substantially reduced. Despite its simplicity, it is 
well known that the EBEs are biased as they tend to be shrunk to the 
corresponding population mean estimate, and may not be suitable for 
identification of significant variables (Davidian and Giltinan, 2003; 
Savic and Karlsson, 2009). 

In order to utilize the simplicity and effectiveness of empirical Bayes 
estimates, algorithms have been developed to correct the bias in esti
mation and variance of EBEs for univariate analysis in the situation that 
only one covariate is considered in the model (Yuan et al., 2019, 2020, 
2021). Yuan proposed a quick and efficient bias correction method for 
modeling longitudinal data with the mixed-effects model (Yuan et al., 
2019). They considered both linear and non-linear mixed effects model 
with one covariate having effect on one random-effects parameter, 
derived the expression of shrinkage factor and used it for bias correction. 
Yuan extended the approach to the situation when one covariate has 
effects on several random parameters (Yuan et al., 2020, 2021). These 
algorithms, particularly simultaneous correction methods, not only 
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correct the bias caused by shrinkage, and provides numerically identical 
estimation and p-values to those from the standard mixed-effects model, 
but also drastically improve the computational efficiency for 
high-dimension variable selection with linear and nonlinear longitudi
nal outcomes. 

However, when multiple correlated covariates have joint effects on 
random-effect parameters, which is more common in practice, the 
correction algorithms for single variable analysis may not work prop
erly. Therefore, it is necessary to develop bias correction methods for 
EBE-based approaches with more than one covariate. Here we extend 
the single-variable correction approach to a more general situation in 
which multiple covariates have effects on multiple random-effect pa
rameters; the extended approach is named mSCEBE. We derived the 
correction matrix theoretically and correct biases for both estimation 
and variance. Extensive simulations and real application are imple
mented to illustrate the proposed method. 

The rest of this paper is organized as follows. Section 2 introduces 
mixed-effects models and the theoretical results. Extensive simulation 
studies are performed to examine the performance of the proposed 
methods in Section 3. In Section 4, we apply the bias correction methods 
to a real data from a subsample of the Alzheimer’s Disease Neuro
imaging Initiative (ADNI), who had developed Alzheimer’s disease from 
mild cognitive impairment (MCI) at the base line. Conclusions and dis
cussions are given in the last section. 

2. Methods 

Suppose there are m individuals and the ith individual has ni obser
vations yi =

(
yi1, yi2,…, yini

)′ at time points ti = (ti1, ti2,…, tini )
′. There 

are q candidate covariates considered to be associated with observations 
yi. A typical linear mixed model with multiple covariates can be 
described as follows, 

yi = Ziβi + ϵi
βi = α + γxi + ηi i = 1, 2,…,m
ϵi ∼ N(0,Gi) and ηi ∼ N(0,R)

(1)  

where βi is the p × 1 random effect vector, Zi is a ni × p design matrix, xi 

=
(
xi1, xi2,…, xiq

)′
is the observed values of the q covariates for the ith 

individual, α is the p × 1 intercept parameter, and the slope parameter γ 
is a p × q matrix. The base model is constructed by omitting all cova
riates in the linear model for random effects, 

yi = Ziβ∗
i + ϵ∗i

β∗
i = α∗ + η∗

i i = 1, 2,…,m
ϵ∗i ∼ N

(
0,G∗

i

)
and η∗

i ∼ N(0,R∗)

(2) 

The best linear unbiased predictor (BLUPs) for β∗
i , defined as the 

posterior mean of β∗
i given data yi and nuisance parameters α∗, G∗

i ,R∗, 
equals to 

BP
(
β∗

i

)
=
(
Z

′

iG
∗
i
− 1Zi + R∗− 1)− 1

(Z
′

iG
∗
i
− 1yi +R∗− 1α∗)

The parametrical empirical Bayesian estimators (naive EBE) of β∗
i , 

denoted as β̂
∗

i , is then obtained by plugging the MLEs of nuisance pa
rameters such as α∗,G∗

i ,R∗. In the second step, we regress the BLUPs on 
covariates via the following multiple and multivariate regression model, 
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⎟
⎟
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x = 1
m
∑m

i=1xi. The least square estimator for parameter matrix γ∗ is γ̂∗
=

B̂
∗T

Xc
(
XT

c Xc
)− 1 which is called NEBE in this article. We made vectori

zation of matrix γ̂∗ and calculated its expectation as E[vec(γ̂∗
) ] =

Scvec(γ). The expression of Sc is given as follows and the details to derive 
this expression can be found in Appendix A1, 

Sc =
(
XT

c Xc
)− 1⨂Ip(

∑m

i=1

(
(xi − x)xT

i

)
⨂
(
Ip − S∗

i

)
+
∑m

i=1
(xi − x)⨂S∗

i

×
∑m

j=1
(xT

j ⨂W∗
j ))

where S∗
i =

(
Z′

iG
∗
i
− 1Zi + R∗− 1

)− 1
R∗− 1,W∗

j =
(∑m

j=1Z′

jΣ
∗
j
− 1Zj

)− 1
Z′

j 

Σ∗
j
− 1Zj, and ⨂ denotes the Kronecker product. 
Then S− 1

c can be served as the simultaneous correction matrix and the 
simultaneously corrected estimator of γ, which is called mSCEBE, can be 
expressed as vec(γ̂ sim) = S− 1

c vec(γ̂∗). vec(⋅) is the vectorization operation 
for a certain matrix and ⨂ stands for the kronecker product. In order to 
construct the testing statistics, we need to derive the covariance matrix 
of ̂γsim. The covariance matrix of vec(γ̂∗) under model (1) can be derived 
by calculating covariance matrix of yi and formal delta method. Denote 

A∗
i =

(
Z

′

iG
∗
i
− 1Zi + R∗− 1)− 1

Z
′

iG
∗
i
− 1  

B∗
i =

(
Z

′

iG
∗
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− 1Zi + R∗− 1)− 1

R∗− 1  

C∗
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(
∑m

i=1
Z

′

iΣ
∗
i
− 1Zi

)− 1

Z
′

iΣ
∗
i
− 1  

D∗ = blockdiag(Ai, i = 1, 2,…,m) + (B∗
i C∗

j , i, j = 1, 2,…,m)

‘blockdiag’ means block diagonal matrix with each block element Ai. 
The second term in D∗ is a block matrix with the ijth block element B∗

i C
∗
j .

Then the covariance matrix of vec(γ̂∗) can be calculated as 
{[(

XT
c Xc
)− 1XT

c

]
⨂Ip

}
D∗blockdiag(Σi, i

= 1, 2,…,m)D∗T
{[(

XT
c Xc
)− 1XT

c

]
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}T 

The t-test for H0ij : γij = γij0 can be constructed as follows 

tij =
γ̂ ij − γij0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
S− 1

c Var(vec(γ̂∗
) )
(
S− 1

c

)′ ]

u,u

√

u = i+ p(j − 1)

where γ̂ ij is the (i, j) component of γ̂sim, and the subscript (u, u) denotes 
the uth diagonal of the matrix, which is the variance estimation of γ̂ ij. 
Details to derive the covariance matrix of vec(γ̂∗) are provided in Ap
pendix A2. 

It should be noted that the covariance matrix of random effects 
estimated based on the base model are inflated due to removed covariate 
effects. Thus it should be considered with caution when taking R̂

∗
as an 

estimation of R in the calculation of Var( γ̂sim). Since η∗i in the base model 
is related to the covariates and error term in the full model by η∗i = γxi +

εi, which implies that R∗ = var
(
η∗i
)
= var(γxi) + var(εi) = γ′cov(xi)γ +

R. Therefore, an alternative estimate of R can be chosen to be (R̂
∗
−
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γ̂simVar(x)γ̂T
sim), the derived method with this variance correction is 

named rmSCEBE. We will compare the performance of those two esti
mates of covariance matrix in the following contexts. 

3. Simulation 

3.1. Parameter settings 

To investigate the accuracy of corrected estimators and tests by the 
multiple correction factor, we perform simulations with four approaches 
(LMER/NEBE/mSCEBE/rmSCEBE) based on a linear mixed-effects 
model with ten covariates, where LMER refers to the full model-based 
likelihood method, which is used in this paper as the gold standard for 
comparison. 

yij = βi1 + βi2tij + eij, j = 1, 2,…, ni  

βi1 = α1 + γ11xi1 +…+ γ110xi10 + bi1  

βi2 = α2 + γ21xi1 + … + γ210xi10 + bi2, i = 1, 2,…,m  

where the random intercept effects bi1 and slope effects bi2 are inde
pendently generated from a normal distribution N(0, σ2

b), and the 
ni-dimensional within-subject error vector ei = (ei1, ei2,…, eini )

T are 
independently simulated from a multivariate normal distribution with 
mean 0 and a diagonal covariance matrix σ2I. In simulations, α1 and α2 

are set to be zero, and the coefficient matrixγ =

(
γ11 … γ110
γ21 … γ210

)

is set 

to be one of the following four situations: 

Situation 1. : γ1k = 0.2,γ2k = 0,k = 1,…,5; γ1k = 0,γ2k = 0.2,k = 6,
…,10;. 

Situation 2. : γ1k = 0.2, γ2k = 0,k = 1,…,10;. 

Situation 3. : γ1k = 0, γ2k = 0.2,k = 1,…,10;. 

Situation 4. : γ1k = γ2k = 0.2,k = 1,…,10.. 

We chose these scenarios for investigating both cross-sectional co
variate effects and the interaction effects. In situation 1, there are only 
cross-sectional effects on random intercept parameter and only 
covariate-time interaction effects on the random slope parameter. In 
situation 2, there are both cross-sectional and interaction effects on 
random intercept, but no effects on the random slope. The third situation 
is the opposite of the second situation. It has effects on the random slope 
while no effect on the random intercept. The fourth situation simulates 
that cross-section and interaction effects are imposed on both random 
intercept and slope. These four situations of coefficient include all situ
ations that may be encountered in practice. The between-subject error 
σb = 0.3, 0.4,0.5 and the within-subject error σ = 0.3,0.6. Simulations 

Fig. 1. Estimation comparisons for both cross-sectional effects and covariate-time interaction effects based on NEBE, mSCEBE, rmSCEBE and LMER methods. NEBE: 
EBEs-based method without bias correction; mSCEBE: EBEs-based method with bias correction; rmSCEBE: EBEs-based method with revised bias correction for 
covariance matrix; LMER: standard maximum estimates and likelihood ratio test produced by lmer package in R. Four figures correspond to situations 1–4 in the order 
from left to right and top to bottom. 

Table 1 
Number of measurements and sampling time points.  

Number of measurements Sampling time points 

3 0.05,0.3,1 
5 0.05,0.15,0.3,0.6,1 
7 0.01,0.05,0.1,0.2,0.4,0.6,1 
9 0.01,0.05,0.1,0.2,0.3,0.4,0.6,0.8,1  
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are replicated 1000 times for each scenario. Both balanced design and 
unbalanced design are investigated. The sample size m = 500,800, and 
the number of measurements is fixed at 3 or 7 for the balanced design, and 
are randomly sampled from 3, 5, 7, 9 with replacement for the unbal
anced design. The corresponding measuring time points are summarized 
in Table 1. Covariates xi = (xi1,…, xi10)

T are independently generated 
from a multivariate normal distribution with mean zero and a covariance 
matrix with 0.09 for all the diagonals and 0.009 for the other elements. 
There are 24 scenarios in total for both balanced and unbalanced design. 

3.2. Estimation 

Fig. 1 compares model estimates for both cross-sectional and 
covariate-time interaction effects based on NEBE, the derived methods 
(mSCEBE/rmSCEBE) and LMER (maximum likelihood estimates ob
tained by a standard approach implemented in lmer package in R soft
ware) with various simulation scenarios. As expected, compared to 
LMER, NEBE is biased for either cross-sectional effects or the covariate- 
time interaction (Fig. 1). However, after corrections, the estimates from 
mSCEBE are virtually identical to those based on the LMER approach as 
the data points perfectly aligned on the 1:1 identity line. rmSCEBE has 
the same correction factor as mSCEBE for effect estimation, thus pro
vides the same results. 

3.3. Association tests 

For the association test, all of the four investigated approaches can 
well controlled the familywise error rates at the nominal level 0.05 

Table 2 
Familywise error rates for LMER, NEBE, mSCEBE and rmSCEBE under various 
scenarios.  

N nt σ σb FWER     

LMER NEBE mSCEBE rmSCEBE 

500  3  0.3  0.3  0.054  0.046  0.050  0.059     
0.3  0.4  0.046  0.043  0.041  0.051     
0.3  0.5  0.063  0.063  0.058  0.067     
0.6  0.3  0.052  0.045  0.048  0.056     
0.6  0.4  0.046  0.046  0.044  0.053     
0.6  0.5  0.053  0.051  0.051  0.061 

500  7  0.3  0.3  0.053  0.052  0.050  0.061     
0.3  0.4  0.038  0.036  0.034  0.040     
0.3  0.5  0.054  0.052  0.050  0.061     
0.6  0.3  0.058  0.044  0.057  0.060     
0.6  0.4  0.056  0.060  0.051  0.062     
0.6  0.5  0.058  0.066  0.052  0.064 

800  3  0.3  0.3  0.048  0.057  0.044  0.053     
0.3  0.4  0.057  0.051  0.053  0.058     
0.3  0.5  0.055  0.051  0.052  0.055     
0.6  0.3  0.054  0.047  0.051  0.058     
0.6  0.4  0.058  0.044  0.055  0.066     
0.6  0.5  0.037  0.049  0.035  0.041 

800  7  0.3  0.3  0.055  0.053  0.055  0.058     
0.3  0.4  0.057  0.054  0.053  0.061     
0.3  0.5  0.070  0.059  0.068  0.072     
0.6  0.3  0.046  0.043  0.044  0.048     
0.6  0.4  0.059  0.053  0.056  0.065     
0.6  0.5  0.059  0.050  0.055  0.061  

Fig. 2. P-values (on the –log10 scale) comparisons for both cross-sectional effects and covariate-time interaction effects based on NEBE, mSCEBE, rmSCEBE and 
LMER method in simulation situations 1–4. NEBE: EBEs-based method without bias correction; mSCEBE: EBEs-based method with bias correction; rmSCEBE: EBEs- 
based method with revised bias correction for covariance matrix; LMER: standard maximum estimates and likelihood ratio test produced by lmer package in R. Four 
figures correspond to situations 1–4 in the order from left to right and top to bottom. 
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(Table 2). Although the p-values calculated based on NEBE appear to be 
trending the same way as those based on the LMER approach, the 
discrepancy in the p-values from these two approaches was obvious as 
the data points scatter around the 1:1 identity line (Fig. 2). On the 
contrast, mSCEBE provided more accurate p-values for the association 
test than the NEBE on both intercept and the slope of the model 
compared to the LMER approach regardless of the level of shrinkage. 
However, mSCEBE still tends to be biased when p-value is very small. 
The rmSCEBE can completely correct the bias in p-value and provide 
almost identical p-value to the standard LMER approach. 

4. Application 

We applied our method to a cohort of 785 individuals who had 
developed Alzheimer’s disease(AD) from mild cognitive impairment 
(MCI) at the baseline, which is a section of the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI; ADNI-1, ADNI-2, and ADNI-GO) cohort 
study. In the current analysis, we worked on the top 20 most significant 
SNPs selected by the EBE-APML0 method (Xu et al., 2020). Both 
cross-sectional covariate effects and interactions were examined by the 
rmSCEBE method and the lmer function in R. Comparisons between 

estimates and p-values are shown in Figs. 3 and 4. The results show that 
rmSCEBE can correct the deviation of naïve EBE and obtain unbiased 
estimates and p-values compared to LMER from the standard likelihood 
approach. 

We presented the results of rmSCEBE ordered by the ascending p- 
values of each effect in Table 3. SNP rs429358 has a relatively large 
effect (1.693) and p-value smaller than a suggestive significance level 
(p < 0.05/20) at both cross-sectional effect and interaction. This SNP is 
located in the fourth exon of the APOE gene, and its combination with 
rs7412 determines APOE isoforms (ϵ2, ϵ3, ϵ4). The allele APOE ϵ4 has 
been shown to be involved in the pathogenesis of both late-onset familial 
and sporadic AD (Saunders et al., 1993). Our results suggest that 
rs429358 is associated with both onset and development (time course) 
of AD. 

5. Discussion 

Longitudinal data arise in a wide variety of areas, including agri
culture, biology, public health and biomedicine. Examples include 
wheat yields (Stroup et al., 1994), body weight growth (Hand and 
Crowder, 1996), tumor growth inhibition modeling (Barbolosi et al., 

Fig. 3. Comparisons between estimates from LMER and rmSCEBE with the top 20 most significant SNPs selected by the EBE-APML0 method (Xu et al., 2020).  

Fig. 4. Comparisons between –log 10 (p-values) from LMER and rmSCEBE with the top 20 most significant SNPs selected by the EBE-APML0 method (Xu 
et al., 2020). 
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2016), viral dynamic modeling (Wu and Ding, 1999) and gene expres
sion dynamic modeling (Marguet et al. 2019) etc. The mixed-effects 
models can distinguish between the within-group variabilities and 
between-group variabilities, thus can easy handle the unbalanced and 
missing data. 

In this study, we investigated the EBE-based approaches of linear 
mixed-effects model with multiple correlated covariates, and presented 
a simultaneous correction method rmSCEBE. The classical likelihood 
theory based method (LMER) is computationally inefficient when mul
tiple covariates are considered. In contrast, our proposed method is 
much more efficient, it only needs to fit a basic mixed-effects model 
without covariates and perform a simple regression of the predictions of 
random effects on the covariates. However, estimates obtained from 
EBEs are biased. We considered to estimate the bias caused by shrinkage 
effect of the empirical Bayes method and the overestimated variances on 
the base model, and use these quantities to correct for the biases of EBE. 
It was shown that our method could correct for biases of e EBEs 

effectively. 
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Appendix 

A1:Derivation of simultaneous correction matrix Sc 

Denote the covariance matrix of yi under model (2) to be Σ∗
i = ZiR∗Z′

i + G∗
i , then the MLE of α∗ under the base model (2) is 

( ∑m
i=1Z′

iΣ
∗
i
− 1Zi

)− 1∑m
i=1Z′

iΣ
∗
i
− 1yi which can be regarded as the weighted average of yi. The expectation of β̂

∗

i under the true model (1) is 

Eβ̂
∗

i = α+
(
I − S∗

i

)
γxi + S∗

i

(
∑m

i=1
Z

′

iΣ
∗
i
− 1Zi

)− 1
∑m

i=1
(Z

′

iΣ
∗
i
− 1Ziγxi)

where S∗
i =

(
Z′

iG
∗
i
− 1Zi + R∗− 1

)− 1
R∗− 1. By plugging the expression of Eβ̂

∗

i and applying the vectorization of matrix, we obtain the expectation of the 

vectorization of γ̂∗ as follows, 

vec(Eγ̂∗
) =

(
XT

c Xc
)− 1⨂Ip(

∑m

i=1

(
(xi − x)xT

i

)
⨂
(
Ip − S∗

i

)
+
∑m

i=1
(xi − x)⨂S∗

i

∑m

j=1

(
xT

j ⨂W∗
j

))
vec(γ)

where W∗
j =

(∑m
j=1Z′

jΣ
∗
j
− 1Zj

)− 1
Z′

jΣ
∗
j
− 1Zj and ⨂ denotes the Kronecker product. Denote. 

Sc =
(
XT

c Xc
)− 1⨂Ip(

∑m
i=1
(
(xi − x)xT

i
)
⨂
(
Ip − S∗

i
)
+
∑m

i=1(xi − x)⨂S∗
i
∑m

j=1(xT
j ⨂W∗

j )), then Sc can be served as the simultaneous correction matrix. 

Table 3 
Top 20 significant SNPs and their corresponding genes for baseline disease status and disease progression.  

Snp.name Gene Relationship MAFa Disease Statusa Disease Progressiona     

estimation p-value estimation p-value 

rs429358 APOE within 0.2369 1.6933 0.0000 0.0720  0.0000 
rs17836364 LILRA4 within 0.1726 0.9176 0.0050 0.0386  0.0000 
rs157357 ZNF274 within 0.1102 -0.9660 0.0142 -0.0480  0.0000 
rs62111293 NOVA2 within 0.1408 0.7191 0.0438 0.0357  0.0004 
rs12973761 ZIM3 within 0.1580 -0.6569 0.0483 0.0280  0.0025 
rs143988316 PBX4 nearby 0.0764 0.9018 0.0518 0.0525  0.0001 
rs12979207 ZNF431 within 0.0720 0.8385 0.0728 0.0471  0.0004 
rs62131315 ZNF805 nearby 0.0580 0.9137 0.0884 0.0428  0.0051 
19_14572615 NDUFB7 nearby 0.1121 0.6367 0.1135 0.0559  0.0000 
rs62109563 ERCC1 within 0.0796 0.6703 0.1288 0.0540  0.0000 
rs73488486 ZNF358 & LOC105372261 within 0.1006 0.4712 0.2452 0.0387  0.0007 
rs3816034 LINC01837 & LINC01533 within 0.0732 0.5254 0.2459 0.0544  0.0000 
rs55869726 HCN2 nearby 0.0637 0.5330 0.3039 0.0564  0.0002 
rs16969505 SCGB1B2P within 0.0503 0.5474 0.3323 0.0457  0.0037 
19_10096680 ANGPTL6 within 0.0580 0.4870 0.3647 0.0530  0.0009 
rs147388909 LOC107987267 within 0.0752 -0.3808 0.4124 -0.0453  0.0004 
rs62111468 ZNF493 nearby 0.0567 0.3781 0.4622 0.0751  0.0000 
rs11878192 RPL7AP69 nearby 0.0688 -0.3418 0.4852 -0.0276  0.0464 
rs35194062 RELB within 0.0573 0.2989 0.5739 0.0499  0.0014 
rs111677971 ERFL within 0.0898 -0.0524 0.9010 0.0453  0.0003  

a MAF: minor allele frequency; Disease Status: the effect of SNP on disease status (intercept in mixed-effects model); Disease Progression: the effect of SNP on disease 
progression (slope in mixed-effects model). 

Y. Li et al.                                                                                                                                                                                                                                        



Computational Biology and Chemistry 99 (2022) 107697

7

A2: Derivation of the covariance matrix of vec(γ̂∗)

First, we calculate the covariance matrix of the vectorization of γ̂∗. The vectorization of γ̂∗ has the explicit form as follows 

vec(γ̂∗
) =

[(
XT

c Xc
)− 1XT

c

]
⨂Ipvec

(
B̂

∗T)
=
[(

XT
c Xc
)− 1XT

c

]
⨂IpD∗(y1, y2,…, ym)

T 

By applying the delta method and noticing that the covariance matrix of yi is Σi = ZiRZ′

i +Gi under the true model. Therefore, the covariance matrix 
of vec(γ̂∗

) under model (1) can be expressed as follows. 

Var(vec(γ̂∗
) ) =

{[(
XT

c Xc
)− 1XT

c

]
⨂Ip

}
D∗

⎛

⎜
⎜
⎝

Σ1
Σ2

⋱
Σm

⎞

⎟
⎟
⎠D∗T

{[(
XT

c Xc
)− 1XT

c

]
⨂Ip

}T  

where D∗ is defined as: 

D∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A∗
1

A∗
2

⋱
A∗

m

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B∗
1

B∗
2

⋮
B∗

m

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(C∗
1 C∗

2 … C∗
m )

with A∗
i =

(
Z′

iG
∗
i
− 1Zi + R∗− 1

)− 1
Z′

iG
∗
i
− 1, B∗

i =
(

Z′

iG
∗
i
− 1Zi + R∗− 1

)− 1
R∗− 1 and C∗

i =
( ∑m

i=1Z′

iΣ
∗
i
− 1Zi

)− 1Z′

iΣ
∗
i
− 1. 

A3: Results of more simulation scenarios 

See Figs. A1–A5. 

Fig. A1. Estimation comparisons for cross-sectional effects and covariate-time interaction effects based on NEBE, mSCEBE, rmSCEBE and LMER methods. Parameter 

γ is set according to the four scenarios in Section 3, but the random effects is distributed as multivariate normal with mean 0 and covariance matrix 
(

0.09 0.045
0.045 0.09

)

. 

Four figures are arranged from left to right and top to bottom in the order of scenario 1–4. 
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Fig. A2. P-values (on the –log10 scale) comparisons for both cross-sectional effects and covariate-time interaction effects based on NEBE, mSCEBE, rmSCEBE and 
LMER method in simulation situation 1–4. Parameter γ is set according to the four scenarios in Section 3, but the random effects is distributed as multivariate normal 

with mean 0 and covariance matrix 
(

0.09 0.045
0.045 0.09

)

. Four figures are arranged from left to right and top to bottom in the order scenario 1–4. 

Fig. A3. Results for both cross-sectional effects and covariate-time interaction effects (left: estimation and right: -log10 (p-value)) based on NEBE, mSCEBE, 
rmSCEBE and LMER method in simulation when gamma is randomly sampled from uniform distribution U(− 0.2,0.2). 
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Fig. A4. Estimation comparisons for cross-sectional effects and covariate-time interaction effects based on NEBE, mSCEBE, rmSCEBE and LMER methods when 
sample size is 100 and covariates are correlated with a coefficient 0.5. 
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