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Diagnosing Alzheimer’s disease (AD) in the preclinical stage offers opportunities for
early intervention; however, there is currently a lack of convenient biomarkers to
facilitate the diagnosis. Using radiomics analysis, we aimed to determine whether the
features extracted from multiparametric magnetic resonance imaging (MRI) can be
used as potential biomarkers. This study was part of the Sino Longitudinal Study on
Cognitive Decline project (NCT03370744), a prospective cohort study. All participants
were cognitively healthy at baseline. Cohort 1 (n = 183) was divided into individuals
with preclinical AD (n = 78) and controls (n = 105) using amyloid-positron emission
tomography, and this cohort was used as the training dataset (80%) and validation
dataset (the remaining 20%); cohort 2 (n = 51) was selected retrospectively and divided
into “converters” and “nonconverters” according to individuals’ future cognitive status,
and this cohort was used as a separate test dataset; cohort three included 37 converters
(13 from the Alzheimer’s Disease Neuroimaging Initiative) and was used as another
test set for independent longitudinal research. We extracted radiomics features from
multiparametric MRI scans from each participant, using t-tests, autocorrelation tests,
and three independent selection algorithms. We then established two classification
models (support vector machine [SVM] and random forest [RF]) to verify the efficiency
of the retained features. Five-fold cross-validation and 100 repetitions were carried out
for the above process. Furthermore, the acquired stable high-frequency features were
tested in cohort three by paired two-sample t-tests and survival analyses to identify
whether their levels changed with cognitive decline and impact conversion time. The
SVM and RF models both showed excellent classification efficiency, with an average
accuracy of 89.7–95.9% and 87.1–90.8% in the validation set and 81.9–89.1% and
83.2–83.7% in the test set, respectively. Three stable high-frequency features were
identified, all based on the structural MRI modality: the large zone high-gray-level
emphasis feature of the right posterior cingulate gyrus, the variance feature of the left
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superior parietal gyrus, and the coarseness feature of the left posterior cingulate gyrus;
their levels were correlated with amyloid-β deposition and predicted future cognitive
decline (areas under the curve 0.649–0.761). In addition, levels of the variance feature
at baseline decreased with cognitive decline and could affect the conversion time
(p < 0.05). In conclusion, this exploratory study shows that the radiomics features of
multiparametric MRI scans could represent potential biomarkers of preclinical AD.

Keywords: Alzheimer’s disease, preclinical AD, radiomics, MRI, multiparametric MRI, features, imaging
biomarker, cross-validation

INTRODUCTION

Alzheimer’s disease (AD) is an evolving medical challenge
that represents the largest unmet medical need because of its
epidemiology and irreversible as well as incurable nature (Long
and Holtzman, 2019; Jia et al., 2020). A series of disappointing
large-scale clinical trials in symptomatic patients have resulted in
clinical consensus that efforts should move forward to the early
stages of the disease (Sperling et al., 2011b; Golde et al., 2018).
According to the latest National Institute on Ageing–Alzheimer’s
Association (NIA-AA) diagnostic framework, cognitively healthy
individuals with brain amyloid-β (Aβ) deposition have already
entered the irreversible Alzheimer’s continuum (Jack et al., 2018)
and have a higher risk of developing cognitive and functional
decline (Papp et al., 2017; Insel et al., 2018). These individuals
can be defined as preclinical AD patients. The accurate ultra-
early diagnosis of the preclinical stage of AD exactly provides
a window of opportunity for intervention and is thus of great
clinical importance and being the first imperative.

As Aβ deposition is the criterion standard for the diagnosis
of preclinical AD, its detection has become a crucial issue.
Currently, the internationally recognized state-of-the-art biopsy
assessment for brain Aβ depends on amyloid positron emission
tomography (PET) imaging and cerebrospinal fluid analysis (Jack
et al., 2018); however, their popularization has been limited by
cost and the invasiveness of the procedure (Li T. R. et al., 2019).
Hence, there is an urgent need for a convenient and inexpensive
diagnostic technique. Magnetic resonance imaging (MRI) has
been widely used in the clinical evaluation of neurodegeneration
and has been incorporated into the AD diagnostic framework
(Jack et al., 2018); comparatively, functional MRI (fMRI) and
diffusion tensor imaging (DTI) are essentially limited to scientific
research. Considerable research progress has been made in
the discrimination of mild cognitive impairment (MCI) and
dementia through the use of these different imaging modalities
(Promteangtrong et al., 2015), which have shown promise in the
identification of preclinical AD; however, there is currently a lack
of diagnostic biomarkers.

Radiomics, a method of high-dimensional minable data
analysis, can quantitatively examine a large set of phenotypic
features and has previously been successfully applied to the
evaluation of multiparametric MRI (MPMRI) and PET as
imaging biomarkers in AD (Rathore et al., 2017; Zhou et al.,
2018; Li Y. et al., 2019). Many studies have shown changes
in the volumetric and morphometric indices of specific brain
regions, including the hippocampus, thalamus, callosum, and

cingulate gyrus, in the prophase of cognitive decline (Baron
et al., 2001; Thomann et al., 2006; Balthazar et al., 2009; Pedro
et al., 2012; Guo et al., 2014). Recent studies of texture analysis
have suggested that abnormalities of textural features occur early
(Sørensen et al., 2016; Feng F. et al., 2018; Lee et al., 2020) and
can also distinguish between healthy controls, AD-MCI, and AD–
dementia patients based on cortical, subcortical, or whole-brain
analysis (de Oliveira et al., 2011; Li et al., 2014; Chaddad and
Niazi, 2018; Chaddad et al., 2018; Feng F. et al., 2018; Feng
Q. et al., 2018; Luk et al., 2018; Kun et al., 2020), and their
accuracy in predicting the transition from MCI to dementia is
higher than that of volume reduction (Sørensen et al., 2016; Luk
et al., 2018; Lee et al., 2020). Relative to controls, both AD-
MCI and AD–dementia patients showed widespread changes
in multiple indices of DTI (Alves et al., 2012; Gyebnár et al.,
2018). These findings highlight the potential use of MPMRI
radiomics analysis as a measure of neurodegenerative processes
in AD, which may contain unique information about changes
at the microscopic level that can occur before changes at the
macroscopic level, such as atrophy. However, to the best of our
knowledge, no such studies focusing on preclinical AD have
been previously reported. Deep learning is another effective
classification method, but it requires a large number of image
datasets, and clinicians cannot obtain interpretable features as
imaging biomarkers (Yamanakkanavar et al., 2020); thus, we did
not utilize this methodology.

With this study, we aimed to (a) explore novel imaging
biomarkers based on radiomics analysis of MPMRI
[structural MRI (sMRI), fMRI, and DTI]; and (b) employ
classification models to discriminate preclinical AD based on
radiomics features.

MATERIALS AND METHODS

Study Design
The comprehensive workflow is shown in Figure 1, including
establishment of the cohorts (A), preprocessing of images
(B), extraction and selection of radiomics features (C), model
establishment, classification experiments, correlation analysis
(D), and longitudinal studies of typical features (E).

Participants
The study was part of the Sino Longitudinal Study on Cognitive
Decline (SILCODE), an ongoing prospective cohort study
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FIGURE 1 | Workflow diagram. (A) Three cohorts were enrolled. Cohort 1 (n = 183) and cohort 2 (n = 51) were both from the SILCODE project and divided
qualitatively by Aβ status or future cognitive outcomes, respectively. Cohort 3 (n = 37) included 24 “converters” from SILCODE and 13 from the ADNI. All participants
were cognitively healthy at baseline and were evaluated in a standardized protocol. (B) Preprocessing of amyloid PET and MPMRI was performed for each modality.
(C) Radiomics features were extracted from each modality, and a novel method characterized by the combination of function perturbations (t-test, autocorrelation
test, and three independent algorithms) and sample perturbations (five-fold cross-validation and 100 repetitions) was performed to select features from the training
dataset (80% of cohort 1). (D) Retained features were incorporated into classification models and verified in the validation (the remaining 20% of cohort 1) and test
dataset (cohort 2), respectively. Furthermore, during the process of selection, stable high-frequency features were identified that were undisturbed by perturbations
and correlated with the SUVR values, which played a good role in predicting prospective cognitive decline (cohort 2). (E) Levels of stable high-frequency features
were tested to determine whether they change with cognitive decline or impact the conversion time. ADNI, Alzheimer’s Disease Neuroimaging Initiative; MRI,
magnetic resonance imaging; sMRI, structural MRI; fMRI, functional MRI; DTI, diffusion tensor imaging; MPMRI, multiparameter MRI; PET, positron emission
tomography; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; SUVR, standard uptake value ratio; Aβ, amyloid β; Lasso, least
absolute shrinkage and selection operator; mRMR, max-relevance and min-redundancy; SVM, support vector machine; RF, random forest; ROC, receiver operating
characteristic; AUCs, areas under curve; NC, normal control; CI, cognitive impairment.

(ClinicalTrials.gov identifier: NCT03370744; the protocol can
be accessed at ClinicalTrials.gov) (Li X. et al., 2019), which
centers on Xuanwu Hospital in cooperation with an alliance of
94 hospitals from 50 cities in China. The SILCODE project is a
constellation of interconnected substudies, and one of its aims is
to assess the diagnostic application of imaging in different stages
of the cognitive continuum. Therefore, baseline standardized
clinical evaluation and MPMRI were offered to all participants,
resulting in the enrollment of 1,594 individuals with different
diagnoses and ranging from being cognitively unimpaired to a
confirmed diagnosis of dementia. In this study, we established
three cohorts from the database and the Alzheimer’s Disease
Neuroimaging Initiative (ADNI, 1) with high selectivity. In
cohort 1, 183 cognitively healthy participants with amyloid-
PET imaging were recruited between July 2016 and November
2018 sequentially, all from the SILCODE project (Supplementary
Figure 1A). In cohort 2, 51 participants were included; they
participated in the SILCODE project between December 2009
and December 2015, were selected retrospectively, and were
interviewed every 10–15 months until the end of 2019, with 24
later experiencing cognitive decline and 27 remaining healthy
(Supplementary Figure 1B). In cohort 3, the 24 “converters”

1www.loni.ucla.edu/ADNI

from cohort 2 and an additional 13 individuals from ADNI
were included; they all underwent MPMRI examinations at
baseline and also when cognitive deterioration was first identified.
The entry criteria for healthy individuals have been described
previously (Chen et al., 2019; Li X. et al., 2019). The diagnosis of
dementia was based on the guidelines of the NIA-AA workgroups
(McKhann et al., 2011), and of MCI was based on Petersen’s
criteria (before 2016) (Petersen, 2004) or a neuropsychological
method (after 2016) (Bondi et al., 2014).

Participants in cohort 1 underwent a dynamic scan
with Florbetapir F-18 (AV45). The whole brain voxel-wise
standardized uptake value ratio (SUVR) was normalized to the
whole cerebellum, representing the mean cortical SUVR. For the
dichotomy, amyloid-PET positivity (that is, participants who in
the preclinical stage of the Alzheimer’s continuum) was defined
a priori with the established cutoff of >1.18 (Fakhry-Darian
et al., 2019). The results for each participant were confirmed
by two senior radiologists who were blinded to any clinical
information and made positive or negative judgments. If the
judgment was inconsistent, a third radiologist was consulted to
arbitrate in the dispute.

Informed consent was obtained from all participants. Further
details regarding the rigorous evaluation of our participants are
presented in Supplementary Figure 1 and Material.
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Imaging Acquisition and Preprocessing
The MRI data of participants from SILCODE project were
acquired using a 3.0-T MRI scanner (Magnetom Sonata; Siemens
Healthineers AG, Erlangen, Germany) before 2016, or an
integrated simultaneous 3.0-T time-of-flight PET/MR (SIGNA;
GE Healthcare, Chicago, IL, United States) after that time point.
Before undergoing imaging, subjects were instructed to keep their
eyes closed but not fall asleep, relax their minds, and move as little
as possible during imaging. Foam pads and headphones were
used to minimize head movement and scanner noise. The sMRI
was obtained with a magnetization prepared rapid gradient echo
sequence (Siemens/GE): repetition time (TR) = 1,900 ms/6.9 ms,
echo time (TE) = 2.2 ms/2.98 ms, slice number = 176/192;
fMRI was obtained with a single-shot gradient-echo echo planar
imaging (EPI) sequence (Siemens/GE): TR = 2,000 ms/2,000 ms,
TE = 40 ms/30 ms, slice number = 28/28; and a single-shot spin-
echo diffusion-weighted EPI sequence was used for the DTI data
(Siemens/GE): TR = 11,000 ms/16,500 ms, TE = 98 ms/95.6 ms,
slice number = 60/75. The detailed protocols can be found in the
Supplementary Material.

The images of the ADNI participants were downloaded
from the ADNI database. Detailed information regarding the
acquisition protocol is publicly available on the LONI website2.

The standardized preprocessing of amyloid PET and MPMRI
has been described in previous studies (Hassan et al., 2016; Li X.
et al., 2019; Tian et al., 2019). The original DICOM data were
converted to the NIfTI file format by using DCM2NII3. We then
processed the MPMRI and amyloid-PET imaging data separately
for each participant. For sMRI, the images were normalized
and showed a spatial resolution of 91-mm × 109-mm × 91-
mm with a 2-mm × 2-mm × 2-mm voxel size after being
segmented into gray matter, white matter, and cerebrospinal
fluid tissues. We then smoothed them using an isotropic
Gaussian smoothing kernel with a full width at half maximum
of 4 mm × 4 mm × 4 mm. For fMRI, the first 10 time-point
images were discarded for magnetization balance. After that, the
remaining 230 time-point images were corrected and aligned
to the first time-point image to correct for head movements.
The resulting motion-corrected volumes were coregistered to the
anatomical T1-weighted images and normalized to the Montreal
Neurological Institute template, resampling to a 3-mm cube voxel
resolution. For DTI, we employed the Eddy Correct tool to
correct the head motion and eddy current distortions (Wang
et al., 2016; Tang et al., 2017) and used the brain extraction tool
to remove the nonbrain tissues of the B0 image and create the
brain mask (Smith, 2002). We then adopted the DTIFIT tool to
fit the diffusion tensor at each voxel and produced four parameter
maps encompassing fractional anisotropy, mean diffusivity, axial
diffusivity, and radial diffusivity (Basser et al., 1994). For amyloid
PET, the structural images were individually registered to the
averaged PET images. We then performed segmentation of
all the coregistered structural images, spatially normalizing the
PET images to the Montreal Neurological Institute standard
space by using the forward parameters (estimated during the

2https://ida.loni.usc.edu/login.jsp
3https://people.cas.sc.edu/rorden/mricron/dcm2nii.html

segmentation), and smoothed the images with an 8-mm full
width at half maximum Gaussian kernel.

The sMRI and fMRI images were preprocessed using the
Data Processing Assistant for resting-state fMRI (DPASF;
4) implemented in MATLAB R2018a (MathWorks, Natick,
MA, United States) (Chao-Gan and Yu-Feng, 2010). DTI
was performed using the pipeline for analyzing brain
diffusion images (PANDA) implemented based on the FMRIB
Software Library (Smith et al., 2004); amyloid-PET data were
obtained using the Statistical Parametric Mapping (SPM12; 5)
implemented in MATLAB.

Feature Extraction
Feature extraction was performed for each modality separately.
For sMRI, 43 texture features and 172 wavelet features of each
region of interest (ROI; 116 in total, based on the AAL template)
were extracted. For fMRI, 43 texture features of each ROI
were extracted. For DTI, we calculated the white matter tracts
and viewed the fractional anisotropy, mean diffusivity, axial
diffusivity, and radial diffusivity as features. All extracted features
were adjusted before selection using linear regression to control
for the impact of age, gender, and education.

Feature extraction of the sMRI and fMRI data was performed
using the Texture Toolbox from radiomics tools developed by
Vallières et al. (2015)6 based on MATLAB; for DTI, the procedure
was carried out using the PANDA (Smith et al., 2004; Cui
et al., 2013). Further details are described in the Supplementary
Table 1 and Material.

Feature Dimensionality Reduction and
Selection
This step was achieved using MATLAB. More specifically, we
performed a five-fold cross-validation on the dataset of cohort
1; that is, the data were randomly divided into a training set
(80%) and a validation set (the remaining 20%). In the training
set, three steps including t-tests, autocorrelation tests, and three
independent algorithms [Fisher score, least absolute shrinkage
and selection operator (Lasso), and max-relevance and min-
redundancy (mRMR)] were adopted to filter the redundant and
meaningless features. The remaining features were retained and
incorporated into classification models. Importantly, we repeated
the above steps 100 times. More details can be found in the
Supplementary Material.

In addition, for each type of the above three algorithms, we
calculated the number of occurrences of each retained feature,
ranging from 0 to 500. The top 10 most frequently appearing
features were defined as high-frequency features, and the stable
high-frequency features represented the overlaps among the
three perturbations.

Classification Experiments
The support vector machine (SVM) and random forest (RF)
are both popular and mature machine learning algorithms with

4http://www.rfmri.org/DPARSF
5https://www.fil.ion.ucl.ac.uk/spm/software/spm12
6https://github.com/mvallieres/radiomics
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a solid theoretical basis (Uddin et al., 2019). Here, these two
classification models were established to verify the performance
of retained features in the validation (20% of cohort 1) and test
set (cohort 2), respectively. The SVM model employed three
different kernels: sigmoid, linear, and radial basis. Corresponding
to the retained features, there were 500 permutation experiments
using the Fisher score, Lasso, or mRMR algorithm. The final
accuracy, sensitivity, and specificity results were presented as
average values ± standard deviation (SD) for each model.

In addition, receiver operating characteristic (ROC) analyses
were performed to evaluate the ability of each stable high-
frequency feature in predicting prospective cognitive decline of
participants in the test set, and the areas under curve (AUCs)
were calculated. The analysis was performed using SPSS 13.0
software (SPSS Inc., Chicago, IL, United States). Further details
are provided in the Supplementary Material.

Longitudinal Analyses
As an independent longitudinal research study, this aspect of
the study aimed to further clarify the role of the stable high-
frequency features identified from the training dataset (80% of
cohort 1) in another separate test dataset, that is, cohort 3. The
feature extraction was identical to that mentioned above. In
order to test whether the levels of stable high-frequency features
changed with cognitive decline, we performed comparisons at
two different time points of cognitive stages and verified whether
these features affected the conversion time of individuals using
survival analyses.

Statistical Analysis
The demographic data of participants are summarized as
numbers (%) or mean ± SD for categorical and continuous
variables, respectively. The between-group comparisons were
performed using the χ2 test for categorical variables or the two-
sample t-test for continuous variables (two-tailed). A p < 0.05
was considered statistically significant.

In the process of dimensionality reduction, the two-sample
t-test was two-tailed and considered significant when p < 0.05;
for the autocorrelation test, we calculated the Pearson correlation
coefficients between features and considered the paired features
to have a high correlation when values in the pairwise
correlation were greater than 0.8. Furthermore, in order to better
understand the association between radiomics features and iconic
pathological changes in AD, we created Pearson correlations to
evaluate the relationship between stable high-frequency features
and mean cortical SUVR values and acquired the results after
adjusting for age, gender, education, and Montreal Cognitive
Assessment (MoCA) scores.

In the longitudinal analyses, we mapped out the changing
trajectory of each stable high-frequency feature at the individual
level and performed paired two-sample t-tests at the group
level (two-tailed, p < 0.05). In the survival analyses, individuals
of cohort 3 were divided into two parts, the high-level group
(n = 18) and low-level group (n = 19), according to the
median level of each stable high-frequency feature. Subsequently,
cumulative probabilities of clinical conversion by the two groups
were displayed according to the Kaplan–Meier method, and the

survival curves were compared between groups in a univariate
analysis using the log-rank test.

These above analyses were performed in SPSS or MATLAB.

RESULTS

Participants
In cohort 1,183 healthy participants were included. Their
clinical and MPMRI examinations were almost continuous,
and amyloid PET was performed within 3 months of
the MPMRI scan. Eventually, 78 amyloid-positive and 105
negative participants were identified. Compared to the negative
individuals, individuals who were positive were older (p = 0.039)
and had a higher AV45 SUVR (p < 0.0001), but there were no
statistical differences in the other clinical data collected (Table 1).

In cohort 2, an additional 51 healthy participants were
dichotomized according to their future cognitive outcomes.
They were interviewed every 10–15 months, and we found the
cognition of 24 of these participants deteriorated after an average
of 41.2 months [interquartile range (IQR), 24.5–52.7], with 23
progressing to MCI and one to dementia. The others remained
healthy after at least three follow-up visits (54.8 months; IQR,
48.9–58.9). As shown in Table 1, there were no differences
between the two groups.

Cohort 3 included the 24 converters from cohort 2 as well as
13 from ADNI. Their average score on the MoCA scale dropped
from 23.7 ± 2.7 at baseline to 20.5 ± 3.8 at the follow-up time
point. The average conversion time of ADNI participants was
62.1 months (IQR, 55.1–66.5), compared to 48.1 months (IQR,
27.8–61.7) across the whole group. The individuals from ADNI
were used as an additional supplement, with 12 progressing from
cognitively healthy individuals to MCI and one to dementia.
Other data are shown in Table 1.

Radiomics Features Selection
For each participant in the three cohorts, 30,128 features were
extracted, including 24,940 features from sMRI, 4,988 from
fMRI, and 200 from DTI. To avoid overfitting, these features
were screened before being included in the classification models.
In the training set, 9,000–11,000 features were retained after
the two-sample t-tests (p < 0.05) and 2,200–2,500 types of
uncorrelated features were reserved after the autocorrelation
tests. The remaining features were further filtered by three
independent selection algorithms. More specifically, we retained
the top 50 ranked features using the Fisher score test, 50–70
features using the Lasso method, and the top 50 ranked features
after the mRMR test.

Generally, the retained features were consistent in repeated
experiments. As shown in Table 2, there were 10 high-frequency
features of each composite function disturbance; notably, they
were all based on the sMRI modality. For the features selected
from the disturbance containing the Fisher score test, the
frequency was 420–500 times, mainly originating from the
posterior cingulate (left, 3/10; right, 3/10). For the features
selected from Lasso, the frequency was 383–468, and no specific
regions were identified. Regarding the features selected from
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TABLE 1 | Clinical characteristics of participants.

Cohort 1 Cohort 2 Cohort 3

Group Aβ _P (n = 78) Aβ _N (n = 105) P-value Cog_D (n = 24) Cog_M (n = 27) P-value ADNI (n = 13) ADNI + Cog_D (n = 37)

Gender (male/female) 21/57 36/69 0.280 11/13 11/16 0.714 4/9 15/22

Age (y) 67.4 ± 6.0 65.6 ± 5.5 0.039* 69.5 ± 7.6 68.9 ± 7.3 0.775 74.85 ± 6.75 73.32 ± 9.06

Education 12.8 ± 3.6 12.3 ± 3.1 0.275 11.0 ± 4.8 13.0 ± 2.7 0.074 14.7 ± 1.2 12.30 ± 4.29

MoCA 26.2 ± 3.1 25.9 ± 2.8 0.486 23.5 ± 1.9 (23 Ava) 25.0 ± 3.2 (26 Ava) 0.054 23.8 ± 3.8 (12 Ava) 23.7 ± 2.7 (35 Ava)

APOE ε4 28 (77 Ava, 36.4%) 38 (36.2%) 0.981 9 (21 Ava, 42.9%) 13 (48.1%) 0.715 1 (7.7%) 10 (34 Ava, 29.4%)

SUVR 1.230 ± 0.047 1.089 ± 0.057 <0.0001**

Cohort 1 was qualitatively divided into Aβ-P and Aβ-N groups according to participants’ SUVR (cutoff: 1.18); cohort 2 was classified by participants’ future cognitive outcomes, including Cog-D and Cog-M groups. At
baseline, all participants were cognitively healthy, and we made comparisons of the clinical data between the two groups of cohorts 1 and 2. Cohort 1 was used as the training and validation dataset, and cohort 2 was
used as the test set. Cohort 3 was applied to the longitudinal study, including the 24 participants from cohort 2 (Cog-D) and 13 from the ADNI; the latter was a supplement and identical to the evaluation of the Cog-D
group. The MoCA scale applied in cohort 1 was the Chinese MoCA-Basic version, in cohort 2 was the MoCA-Beijing version, and in ADNI was the traditional MoCA version. Continuous measures are presented as
mean ± standard deviation. Statistical analysis was conducted using the χ2 test for categorical variables and an independent two-sample two-tailed t-test for quantitative variables. *p < 0.05, **p < 0.001. Aβ, amyloid-β;
P, positive; N, negative; Cog, cognition; D, deteriorated; M, maintained; MoCA, Montreal Cognitive Assessment; SUVR, standard uptake value ratio; ADNI, Alzheimer’s Disease Neuroimaging Initiative; Ava, available.

TABLE 2 | The high-frequency features selected by cross-validation with different methods.

Two-sample t-test, autocorrelation, and Fisher score Two-sample t-test, autocorrelation, and Lasso Two-sample t-test, autocorrelation, and mRMR

Feature (ID) Times Brain region R Feature (ID) Times Brain region R Feature (ID) Times Brain region R

LZHGE (6486) 500 Cingulum_Post_L 1/2 Busyness (26056) 468 Frontal_Mid_Orb_R 2 LZHGE (6486) 495 Cingulum_Post_L 1/2

LZHGE (6529) 500 Cingulum_Post_R 1/2 Homogeneity (24775) 467 Vermis_7 3/2 LZHGE (6529) 488 Cingulum_Post_R 1/2

LZHGE (11474) 500 Cingulum_Post_L 2/3 Variance (27442) 430 Parietal_Sup_L 2 LZHGE (11517) 486 Cingulum_Post_R 2/3

LZHGE (11517) 500 Cingulum_Post_R 2/3 Contrast (14273) 419 Cerebelum_6_R 2/3 ZSN (27076) 445 Occipital_Sup_R 2

Variance (27442) 480 Parietal_Sup_L 2 Complexity (9287) 402 Cerebelum_6_R 1/2 LZHGE (11474) 441 Cingulum_Post_L 2/3

LZLGE (24803) 447 Vermis_7 3/2 Coarseness (6489) 399 Cingulum_Post_L 1/2 Variance (27442) 441 Parietal_Sup_L 2

Strength (18834) 428 Temporal_Inf_R 1 Kurtosis (7485) 397 Parietal_Sup_L 1/2 SZLGE (11471) 420 Cingulum_Post_L 2/3

Coarseness (6489) 423 Cingulum_Post_L 1/2 Busyness (26314) 394 Cingulum_Ant_R 2 SZLGE (18179) 398 Temporal_Mild_L 1

ZSN (27076) 423 Occipital_Sup_R 2 LZHGE (11517) 391 Cingulum_Post_R 2/3 Coarseness (6489) 339 Cingulum_Post_L 1/2

GLN (16497) 420 Cingulum_Post_R 1 Kurtosis (5292) 383 Frontal_Mid_R 1/2 ZSV (28977) 320 Cerebelum_Crus2_R 2

Under the sample disturbance of five-fold cross-validation, we carried out three different kinds of composite function disturbances separately to screen features in the training dataset and repeated the process 100
times. We calculated the number of occurrences of each retained feature, ranging from 0 to 500, and listed the top 10 most frequently appearing features here; they all originated from the sMRI modality. Three
stable high-frequency features were verified, and their identification numbers were 11517, 27442, and 6489. The kurtosis feature belongs to the “global” category; the homogeneity and variance features belong to the
“gray-level co-occurrence matrix” category; the GLN, ZSN, LZHGE, SZLGE, LZLGE, and ZSV features belong to the “gray-level size zone matrix” category; and the strength, coarseness, busyness, complexity, and
contrast features belong to the “neighborhood gray-tone difference matrix” category. Notably, the variance and contrast features could also originate from the “global” and “gray-level co-occurrence matrix” category,
respectively. The “R” represents weights to bandpass sub-bands in wavelet filtering. Lasso, least absolute shrinkage and selection operator; mRMR, max-relevance and min-redundancy; ID, identify number; sMRI,
structural magnetic resonance imaging; L, left; R, right; Post, posterior; Sup, superior; Inf, inferior; Mid, middle; Orb, orbital; Ant, anterior; GLN, gray-level nonuniformity; ZSN, zone-size nonuniformity; LZHGE, large zone
high-gray-level emphasis; SZLGE, small zone low gray-level emphasis; LZLGE, large zone low-gray-level emphasis; ZSV, zone-size variance.
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mRMR, the frequency was 320–495, also mainly from the
posterior cingulate (left, 4/10; right, 2/10).

Three stable high-frequency features were identified during
the process as follows: the large zone high-gray-level emphasis
(LZHGE) feature of the right posterior cingulate gyrus on sMRI
(ID: 11517; 459 times on average), the variance feature of the
left superior parietal gyrus on sMRI (ID: 27442; 450 times on
average), and the coarseness feature of the left posterior cingulate
gyrus on sMRI (ID: 6489; 387 times on average). They were
undisturbed by the combined disturbances and may be of great
importance in the preclinical stage of AD. Additionally, among
features and the number of occurrences greater than 300, another
two were also identified as overlaps: the LZHGE feature of the
left posterior cingulate gyrus on sMRI (ID: 6486; 458 times on
average) and the zone-size variance feature of right cerebellum-
crus2 on sMRI (ID: 28977; 319 times on average).

Other retained features that occurred more than 300 times and
the meanings of stable high-frequency features are described in
Supplementary Table 2 and Material.

Classification Performance
We introduced two types of models to determine whether the
retained features were compatible for classification analysis.
Table 3 presents the classifier performance results in terms of
accuracy, sensitivity, and specificity. As shown, the SVM model
(radial basis kernel) showed excellent classification efficiency,
with an average accuracy of up to 90.2–95.9% (sensitivity, 85.9–
92.8%; specificity, 93.7–98.3%) in the validation set and 84.5–
88.9% (sensitivity, 79.8–82.9%; specificity, 86.0–96.7%) in the test
set. Similar results were obtained in the RF model (Table 3) or
the SVM models with the other two kernels (Supplementary
Table 3). In contrast, the average accuracy of pure clinical
data–based models in diagnosing preclinical AD reached only
random-level accuracy at 55.9–56.0% (details are presented in the
Supplementary Table 4 and Material).

We further verified the classification efficiency of stable high-
frequency features on the test set and found that their individual
AUCs ranged from 0.649 to 0.761, and when we combined them,
the predictive ability improved (AUCs = 0.839; Figures 2A–D).
In addition, feature 6486 also had a good classification effect
(AUCs = 0.739) and improved the AUCs to 0.863 when combined
with the three stable features (Supplementary Figure 2). In
contrast, the performance of feature 28977 was too poor to create
an ROC curve. These results indicate that radiomics analysis is
a reliable feature extraction method in the preclinical stage of
AD and provides promising imaging biomarkers for identifying
cognitively healthy individuals that go on to experience future
cognitive decline.

Correlation Analysis
In order to further understand the association between radiomics
features and pathological changes in AD, we performed a
correlation analysis between stable high-frequency features and
mean cortical SUVR values on amyloid PET and found that
they were highly correlated. In detail, feature 6489 levels were
positively correlated with SUVR values (r = 0.433, p < 0.0001,
Figure 2E), whereas the feature 11517 and 27442 levels were both

inversely correlated with SUVR values (r = -0.416, p < 0.0001,
Figure 2F; r = -0.348, p< 0.0001, Figure 2G). Similar results were
found for feature 6486 (r = -0.400, p < 0.0001, Supplementary
Figure 2). The correlation results did not change after adjusting
for age, gender, education, and MoCA score (Supplementary
Figure 3). Our findings revealed high correlations between
the levels of these features and Aβ deposition, suggesting that
radiomics features based on MPMRI may reflect pathological
changes in the brain and can be used for the diagnosis of AD.

Longitudinal Analyses
In this study, 37 participants from cohort 3 were followed up
until cognitive impairment was identified. First, we detected
the longitudinal changes of each stable high-frequency feature.
As shown, features 6,489 and 11,517 did not show isotropic
changes in the two cognitive stages at the individual level
(Figures 3A,B); correspondingly, there were also no statistical
differences between the two paired groups (Figures 3D,E).
Similar results were obtained for feature 6486 (Supplementary
Figures 4A,B). Although some individuals had a heterogeneous
change pattern of feature 27442 (Figure 3C), its levels in the
cognitive impairment stage were still lower than those in the
cognitively healthy stage (p = 0.0403; Figure 3F). Second, we
performed survival analyses of these features. In detail, the
median baseline levels of features 6489, 11,517, and 27,442 were
0.0297356, 17228.308, and 0.865647, respectively; Figures 3G–I
show the probability of cognitive impairment by levels of features
> and ≤ these cutoffs. Notably, in the comparison between paired
groups, only grouping by feature 27,442 was meaningful (log rank
p = 0.015). The result of feature 6,486 was also unsatisfactory
when grouped by the median level of 48.967 (log-rank p = 0.442;
Supplementary Figure 4C). These results indicated that the
levels of feature 27,442 decreased with cognitive decline, and the
deterioration occurred earlier when the baseline level was less
than 0.865647. However, considering the limited sample size, the
value is for reference only, and it is more accurate to state that the
baseline level can affect the conversion time.

DISCUSSION

Using cross-validations with widely used machine learning
techniques, this study demonstrated that radiomics features
appear to be robust imaging biomarkers of preclinical AD. The
real pathophysiological process of AD is thought to begin several
decades before symptom onset and is generally followed by a
rigid progress pattern, such as Aβ accumulation-neurofibrillary
tangles-neuronal damage; neurons are already damaged to some
extent when cognitive impairment begins (Li T. R. et al., 2019;
Long and Holtzman, 2019). Radiomics analysis can extract
high-dimensional features of MPMRI and may identify imaging
patterns in the preclinical stages that cannot be recognized by
human readers; however, there is a paucity of published literature
assessing the radiomics features of individuals in the preclinical
stage of AD and those who go on to develop future cognitive
decline. In this ongoing prospective cohort study, we adopted
a novel composite method to select features from the training
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TABLE 3 | Classification performance of the SVM model (radial basis kernel) and RF model.

SVM model (radial basis kernel) RF model

Group Method ACC SEN SPE ACC SEN SPE

Validation dataset Fisher score 90.23% ± 4.78% 85.91 ± 8.94% 93.71 ± 5.45% 87.07 ± 5.53% 80.29 ± 10.53% 92.46 ± 5.85%

Test dataset Fisher score 84.48 ± 5.58% 82.87 ± 12.56% 85.98 ± 7.11% 83.19 ± 5.89% 77.80 ± 12.38% 88.19 ± 6.47%

Validation dataset Lasso 95.90 ± 3.29% 92.82 ± 6.84% 98.26 ± 2.80% 90.81 ± 4.76% 84.58 ± 9.13% 95.74 ± 4.60%

Test dataset Lasso 88.94 ± 5.33% 80.56 ± 10.71% 96.70 ± 3.83% 83.68 ± 6.85% 74.26 ± 13.86% 92.41 ± 5.78%

Validation dataset mRMR 93.00 ± 4.19% 89.07 ± 7.11% 96.08 ± 3.98% 90.28 ± 4.97% 84.14 ± 10.03% 95.08 ± 4.96%

Test dataset mRMR 86.08 ± 5.68% 79.76 ± 12.13% 91.93 ± 5.00% 83.52 ± 6.62% 75.85 ± 13.47% 90.63 ± 6.01%

Under the sample disturbance of five-fold cross-validation, we carried out three different kinds of composite function disturbances separately to screen features in the
training dataset and repeated the process 100 times. The retained features were incorporated into the SVM model and RF model each time, and we then calculated
the models’ classification performance in the validation dataset and test dataset separately. The measures are presented as mean ± standard deviation. SVM, support
vector machine; RF, random forest; ACC, accuracy; SEN, sensitivity; SPE, specificity; Lasso, least absolute shrinkage and selection operator; mRMR, max-relevance
and min-redundancy.

FIGURE 2 | The ROC curves of stable high-frequency features and correlation analysis. (A–D) Show the ROC curves of stable high-frequency features in the test
dataset; they all have high discriminating power. In detail, the 6489 feature AUCs = 0.649 (A), 11517 feature AUCs = 0.729 (B), and the 27442 feature
AUCs = 0.761 (C). The value increased to 0.839 when combined (D). E–G show the correlations between the levels of these features and the mean cortical SUVR
values in participants of cohort 1. The features were the coarseness feature of the left posterior cingulate gyrus on sMRI (ID: 6489; A,E), the LZHGE feature of the
right posterior cingulate gyrus on sMRI (ID: 11517; B,F) and the variance feature of the left superior parietal gyrus on sMRI (ID: 27442; C,G). LZHGE, large zone
high-gray-level emphasis; SUVR, standardized uptake value ratio; ROC, receiver operating characteristic; AUCs, areas under curve; sMRI, structural magnetic
resonance imaging; Num, number.

dataset, established classification models, and verified them in
the validation and test sets. We found that both models could
distinguish whether individuals were in the preclinical stage
of AD or whether their cognition will decline in the future,
with an accuracy of more than 80%. In addition, three stable
high-frequency features were identified, which were independent
of perturbations, correlated with Aβ deposition, and classified
the test set accurately (AUCs 0.649–0.761). In the independent
longitudinal analyses, we further verified that levels of the feature
27,442 (variance feature of the left superior parietal gyrus on
sMRI) decreased with cognitive decline and affected individuals’
conversion time. Together, these data showed that radiomics
features of MPMRI could be important imaging biomarkers for
identifying patients with preclinical AD.

Our previous studies confirmed that cognitively normal
individuals at high risk of developing AD already appeared to

have altered brain functional networks (fMRI), white matter
networks (DTI), or some refined areas (sMRI) (Li et al., 2016;
Shu et al., 2018; Yan et al., 2018; Zhao et al., 2019), suggesting that
there may be more unmined MPMRI data in the preclinical stage
of AD. As expected, the pure clinical data–based classification
models were meaningless at this stage, and the traditional
volumetric and functional indices were also not sensitive enough
(details are presented in the Supplementary Table 5 and
Material). Although it is generally believed that radiomics
analysis is more sensitive, current studies are still limited to the
symptomatic stages of the disease (Alves et al., 2012; Chaddad
and Niazi, 2018; Feng F. et al., 2018; Kun et al., 2020; Lee et al.,
2020). Chaddad et al. found that the features derived from a single
subcortical region produced AUCs up to 80% for identifying
AD–dementia in healthy individuals and reached 91.5% when
combined with all regions (Chaddad and Niazi, 2018). By using
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FIGURE 3 | The longitudinal changes and survival analyses of stable high-frequency features. In Study 2, 37 participants were included. Their cognition was normal
at baseline and impaired during follow-up, with two progressing to dementia and 35 to mild cognitive impairment. We compared the levels of each stable
high-frequency feature between the two time points. (A–C) Show the changing trajectory at the individual level; (D–F) are at the group level, with paired two-sample
t-tests (two-tailed, p < 0.05). Furthermore, these individuals were stratified into high-level (n = 18) and low-level group (n = 19) groups by the baseline median level of
each stable high-frequency feature. (G–I) Show Kaplan–Meier curves demonstrating the cumulative probabilities of conversion of the two groups (shaded area
represents the 95% confidence interval); differences are displayed by log-rank tests (p < 0.05). Only feature 27,442 was different at the two time points (p = 0.0403),
and its low-level group had a shorter conversion time than the high-level group (p = 0.015). The features were the coarseness feature of the left posterior cingulate
gyrus on sMRI (ID: 6489; A, D, G), the LZHGE feature of the right posterior cingulate gyrus on sMRI (ID: 11517; B, E, H), and the variance feature of the left superior
parietal gyrus on sMRI (ID: 27442; C, F, I). NC, normal control; CI, cognitive impairment; sMRI, structural magnetic resonance imaging; LZHGE, large zone
high-gray-level emphasis.

hippocampal features, researchers can distinguish AD–dementia
with an accuracy of 86.7 and 70.5% of MCI (Feng F.
et al., 2018). Identical conclusions were obtained in a recent
large-scale multicenter study where the hippocampal features
served as robust biomarkers for clinical identification of AD–
dementia/MCI and further predicted whether MCI patients
would convert to dementia (Kun et al., 2020). In contrast,
the deep learning method can indeed acquire slightly better
diagnostic capabilities in the Alzheimer’s continuum (Jo et al.,
2019; Yamanakkanavar et al., 2020); however, it is difficult to

explain the clinical correlations between these deep features
and AD itself, and notably, Li et al. (2017) have proved
that the performance in identifying dementia from controls
using radiomics is comparable to deep learning (91.4 and
93.9%, respectively). Here, in distinguishing preclinical AD
patients or clinical converters, the accuracy of our models
reached 81.9–95.9%, even higher than when distinguishing
symptomatic patients from controls. We believe that several
reasons may account for this. First, compared with extracting
features solely on sMRI, we utilized MPMRI. Second, instead
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of selecting regions based on prior knowledge, we adopted
template segmentation and extracted features. Third, among
the 30,128 features, we used an innovative selection method
to improve robustness. Four, we diagnosed individuals based
on Aβ profile and not purely on clinical data, significantly
reducing the heterogeneity of participants. Moreover, the use
of different types of models further verified the reliability
of our findings.

The Aβ deposition associated with neuronal degeneration
may have resulted in subtle alterations in MRI signal intensity;
therefore, we speculate that radiomics features could reflect
changes at the microscopic level during the early pathological
stages, which occur before changes at the macroscopic
level. In addition to the computer-aided classification, three
stable high-frequency features that were not affected by
function perturbations (three different algorithms) and sample
perturbations (five-fold cross validation and 100 repetitions)
were identified during the selection process: the LZHGE feature
of the right posterior cingulate gyrus, the variance feature of
the left superior parietal gyrus, and the coarseness feature of
the left posterior cingulate gyrus (all on the sMRI modality).
Importantly, the earliest accumulation of Aβ deposition is also
in the superior parietal gyrus and posterior cingulate (Long
and Holtzman, 2019). More specifically, in symptomatic AD
patients, previous autopsy findings and amyloid-PET studies
have suggested that the parietal lobe and posterior cingulum
are vulnerable to Aβ invasion during the early stages of AD
(Thal et al., 2002; Cho et al., 2018). In cognitively normal
individuals, the annual increase in Aβ also localizes to these
two regions (Sojkova et al., 2011). From other perspectives,
Aβ deposition is associated particularly with cortical atrophy
of the superior parietal gyrus (Becker et al., 2011; Weston
et al., 2016) and the rate-limiting enzyme of Aβ production is
also significantly elevated in this area (Coulson et al., 2010).
These developments prove the accuracy of the identified
anatomical locations and support our findings that these
features were correlated with SUVR values and played a
good role in predicting future cognitive decline (AUCs 0.649,
0.729, and 0.761, respectively; 0.839 when combined) and
thus probably represent the imaging biomarkers of preclinical
AD. Interestingly, we found that retained features only came
from the sMRI modality, which is probably in part due
to the relatively small number of fMRI and DTI features
utilized in our study. Additionally, a recent study concluded
that DTI parameters are not useful for the identification
of preclinical AD (Teipel et al., 2019). To the best of our
knowledge, this is the first time that texture analysis of fMRI
has been applied to the field of AD (Hassan et al., 2016).
Uncertainty still exists, and the significance of DTI and fMRI
radiomics features cannot be completely ruled out in this
exploratory study.

In the longitudinal analyses, we found that the variance
feature of the left superior parietal gyrus on sMRI decreased
with cognitive impairment, suggesting that it may be of great
importance in the whole cognitive continuum and not just in
the preclinical stage. This feature is extracted from the gray-level
co-occurrence matrix category and is an indicator of dispersion

of the unit values around the mean. With cognitive decline,
the cortical accumulation of Aβ will increase continuously to
a certain extent (Long and Holtzman, 2019) and may result in
alterations in signal intensity, with subtle changes captured by
the radiomics analysis of sMRI. Next, we conducted survival
analyses to compare the conversion time between groups within
cohort 3. The median value was chosen subjectively for grouping;
coincidently, we found that the variance feature can affect the
conversion time, further suggesting its predictive effects on
clinical outcome.

Our study had some limitations. First, the small sample
number limited the statistical power of our data. We tried
to overcome this issue by enrolling participants from other
subcenters and the ADNI, but the requirement of amyloid
PET, long-term follow-up, or MPMRI data greatly limited the
quantity of potential participants. Moreover, the performance of
our models may differ when using different imaging protocols.
Second, considering there is no standard definition of “unstable
preclinical AD”, we referred to the 36 months of “unstable MCI”
and required the nonconverters to remain cognitively stable for
at least three follow-up visits. The average conversion time of
converters was 41.2 months, which needs to be verified. Third,
other anatomical regions, such as the anterior cingulate, are also
susceptible to Aβ attack (Thal et al., 2002; Cho et al., 2018).
However, we did not find any stable features in these regions;
some high-frequency features came from regions that are not
or are weakly related to AD, such as the cerebellum, and it
is difficult to associate these regions with clinical significance.
Fourth, in cohort 3, most of the patients were limited to the
MCI stage and few to the dementia stage at the follow-up
time point; thus, it is not clear whether features were related
to the degree of cognitive deterioration. Fifth, the positive
result of Study two was not significant (p = 0.0403), and
the feature levels of some individuals increased disparately,
which was probably due to the heterogeneity of MCI and the
relatively older age of the ADNI participants. Sixth, age may
cause differences in our results because of its impact on Aβ

and atrophy. Seventh, the positive rate of amyloid PET (42.6%)
was higher than that reported in previous studies (10–30%
mostly) (Chételat et al., 2013), partly because of the exclusion of
some negative individuals (Supplementary Figure 1A) and the
existence of individuals with subjective cognitive decline, itself
a high-risk state for developing AD (Jessen et al., 2020). This
bias may increase uncertainty. Eighth, different guidelines have
inconsistent definitions of preclinical AD (Dubois et al., 2007,
2010, 2014; Sperling et al., 2011a; Jack et al., 2018). The latest NIA-
AA 2018 definition requires additional evidence of tau deposition
in patients with preclinical AD (Jack et al., 2018), but the tau
status of participants was not clear in our study. Considering
these limitations, multicenter collaboration to include more
participants is needed in the future.

In conclusion, radiomics analysis of MPMRI is expected to
become a new evaluation method for Aβ deposition and future
cognitive decline in cognitively healthy individuals, which would
be of great importance in diagnosing preclinical AD and targeting
ultra-early secondary prevention clinical trials. Additionally,
we have proposed a novel feature extraction paradigm and
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preservation method for feature subsets, solving the problem of
instability and nonrepeatability for future studies.
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