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Abstract 

Background: Identifying biomarkers associated with Alzheimer’s disease (AD) progression may enable patient 
enrichment and improve clinical trial designs. Epigenome-wide association studies have revealed correlations 
between DNA methylation at cytosine-phosphate-guanine (CpG) sites and AD pathology and diagnosis. Here, we 
report relationships between peripheral blood DNA methylation profiles measured using Infinium® MethylationEPIC 
BeadChip and AD progression in participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.

Results: The rate of cognitive decline from initial DNA sampling visit to subsequent visits was estimated by the 
slopes of the modified Preclinical Alzheimer Cognitive Composite (mPACC; mPACC digit and mPACC trailsB) and Clinical 
Dementia Rating Scale Sum of Boxes (CDR-SB) plots using robust linear regression in cognitively normal (CN) partici-
pants and patients with mild cognitive impairment (MCI), respectively. In addition, diagnosis conversion status was 
assessed using a dichotomized endpoint. Two CpG sites were significantly associated with the slope of mPACC in CN 
participants (P < 5.79 ×  10−8 [Bonferroni correction threshold]); cg00386386 was associated with the slope of mPACC 

digit, and cg09422696 annotated to RP11-661A12.5 was associated with the slope of CDR-SB. No significant CpG sites 
associated with diagnosis conversion status were identified. Genes involved in cognition and learning were enriched. 
A total of 19, 13, and 5 differentially methylated regions (DMRs) associated with the slopes of mPACC trailsB, mPACC digit, 
and CDR-SB, respectively, were identified by both comb-p and DMRcate algorithms; these included DMRs annotated 
to HOXA4. Furthermore, 5 and 19 DMRs were associated with conversion status in CN and MCI participants, respec-
tively. The most significant DMR was annotated to the AD-associated gene PM20D1 (chr1: 205,818,956 to 205,820,014 
[13 probes], Sidak-corrected P = 7.74 ×  10−24), which was associated with both the slope of CDR-SB and the MCI 
conversion status.

Conclusion: Candidate CpG sites and regions in peripheral blood were identified as associated with the rate of 
cognitive decline in participants in the ADNI cohort. While we did not identify a single CpG site with sufficient clinical 
utility to be used by itself due to the observed effect size, a biosignature composed of DNA methylation changes may 
have utility as a prognostic biomarker for AD progression.
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Background
Nearly all (99.6%) clinical trials of Alzheimer’s disease 
(AD) that were registered at ClinicalTrials.gov dur-
ing 2002 to 2012 failed, likely because of inadequate 
understanding of disease pathways and drug targets and 
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difficulty in identifying patients at early stages of the 
disease [1]. A total of 2621 trials for AD have been com-
pleted, yet the disease remains incurable [2]. Over the 
years, the United States Food and Drug Administration 
(FDA) has approved a limited number of drugs that pro-
vide symptomatic relief [3]. Although no curative treat-
ments currently exist for AD, several disease-modifying 
therapies that aim to slow disease progression, especially 
during early stage, are under investigation [4, 5]. As of 
January 5, 2021, 126 investigative agents were in clinical 
trials for AD; most of them targeting the biological pro-
cesses underlying AD to modify the disease [6]. Several 
biomarkers that may be correlated with disease progres-
sion and prognosis are being pursued. A new drug that 
reduces beta-amyloid (Aβ) plaques and may delay dis-
ease progression in patients with AD recently received an 
accelerated FDA approval [7].

The Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) is an important data source available to the 
scientific community that greatly contributes to the 
understanding of AD progression [8]. An analysis of cer-
ebrospinal fluid (CSF) samples from 287 participants in 
the ADNI database over 3 to 6 years identified a 16-pep-
tide signature that could not only differentiate between 
patients with AD and cognitively normal (CN) par-
ticipants but could also predict progression from mild 
cognitive impairment (MCI) to AD better than the tra-
ditional Aβ and tau biomarkers [9]. Similarly, a 24-month 
single-center imaging study showed that deposition of Aβ 
and cortical thickness are more sensitive biomarkers of 
disease progression in early AD compared with neuronal 
dysfunction [10]. Another recent study of patients from 
both Japanese and North American ADNI databases, 
which defined disease progression based on the change 
in Clinical Dementia Rating Scale Sum of Boxes (CDR-
SB) scores (≥ 1, progression; < 1, stable), identified several 
prognostic factors in early AD: baseline tau protein lev-
els in CSF and scores from Mini-Mental State Examina-
tion (MMSE), Functional Activities Questionnaire, and 
13-item Alzheimer’s Disease Assessment Scale-cognition 
subscale [11].

Neuroinflammation and activated microglia are also 
considered to play key roles in AD progression by inter-
acting with Aβ pathways [12], which may offer additional 
biomarkers of AD progression. A recent study showed 
a correlation between baseline levels of CSF cytokine 
CCL2 and the rate of cognitive decline in patients with 
MCI who have CSF biomarkers consistent with AD [13]. 
Furthermore, machine learning algorithms are being 
used to predict disease progression. A neural network 
model based on data from 1737 participants in the ADNI 
database was effective in predicting AD progression in 
a separate set of 110 participants who were CN or had 

MCI at baseline [14]. Other machine learning-based 
models have employed neuroimaging and noninvasive 
methods using blood biomarkers to predict AD progres-
sion [15, 16].

Despite these promising leads, additional biomarkers 
such as DNA methylation status may shed light on dis-
ease progression and potentially shorten the duration 
of clinical trials of AD. DNA methylation in peripheral 
blood has been used as a diagnostic biomarker in other 
diseases [17–19]. Although studies evaluating epigenetic 
markers in peripheral blood have shown differential DNA 
methylation in patients with MCI or AD compared with 
CN participants, suggesting that a DNA methylation-
based biosignature could potentially serve as a surrogate 
of AD diagnosis [20–23], these studies did not use lon-
gitudinal clinical data to assess whether peripheral DNA 
methylation might be associated with disease progression 
and prognosis. Peripheral DNA methylation was recently 
shown to be associated with normal brain aging and cog-
nitive decline (e.g., cognitively impaired [Montreal Cog-
nitive Assessment or MoCA < 26]) vs. cognitively normal 
[MoCA > 26]) [24]. DNA methylation in blood was previ-
ously studied in nonconverters versus converters to AD 
using Infinium® HumanMethylation450K BeadChip [25]; 
however, to our knowledge, it has not been profiled as 
a biomarker of AD progression and prognosis using the 
higher density Infinium® MethylationEPIC BeadChip.

This study aimed to investigate the relationship 
between baseline peripheral DNA methylation level and 
disease progression. The earliest available DNA sam-
ple from a participant (baseline) was analyzed to assess 
whether the epigenetic profile obtained at a single clinical 
visit is associated with the disease trajectory. Cognitive 
changes in patients across different stages of the disease 
continuum are captured using different scales, each pre-
sumably most sensitive to change in cognitive function 
for a specific disease stage. For example, the Alzheimer 
Disease Cooperative Study-Preclinical Alzheimer Cog-
nitive Composite (PACC) was designed as the primary 
outcome measure of cognitive decline in patients at the 
asymptomatic phase of AD [26]. Using the PACC score 
at 24 months to measure cognitive decline in study par-
ticipants with preclinical AD, Donohue et  al. previously 
showed that Aβ-positive participants had significantly 
more decline than Aβ-negative participants [26]. Accord-
ingly, the PACC, adapted for the available tests in ADNI 
[27], was used in the present study to assess cognitive 
decline in participants who were CN at baseline. The 
CDR-SB scale, which provides more detailed staging 
information compared with CDR global score for patients 
with MCI [28], was used to assess cognitive decline in 
patients with MCI at baseline to optimize the sensitivity 
to change in this population [29, 30]. Lower PACC scores 
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and higher CDR-SB scores represent poorer cognitive 
performance. In addition, dichotomized endpoints were 
used to assess conversion status in both CN participants 
and patients with MCI.

Results
Disease progression
The association of DNA methylation with disease pro-
gression was analyzed in 2 diagnosis groups: CN and 
MCI. Among 202 participants in the CN group, 56 
(27.7%) converted from CN at baseline to MCI (convert-
ers) and 146 (72.3%) did not (nonconverters), at up to 
8  years since DNA sampling. The mean (SD) follow-up 
period since DNA sampling in the CN group was 54.1 
(21.5) months for converters and 61.2 (19.4) months for 
nonconverters. Among 317 patients in the MCI group, 
115 (36.3%) converted from MCI to AD and 202 (63.7%) 
were nonconverters. The mean (SD) follow-up time since 
DNA sampling in the MCI group was 43.6 (20.9) months 
for converters and 57.2 (18.1) months for nonconverters.

Differentially methylated positions in peripheral blood
Two Cytosine-phosphate-guanine (CpG) sites were 
associated with the rate of cognitive decline in CN 
participants and patients with MCI at a level surpass-
ing Bonferroni correction threshold of P = 5.79 ×  10–8 
(Table 1). After BACON correction [31], all lambda val-
ues were < 1.04 (Additional file 1: Fig. 1 [Q-Q plots]; Fig. 2 
[Manhattan plots]). In CN participants, cg00386386 
was associated with the rate of cognitive decline as 
measured by the slope of modified PACC (mPACC) 
that used mPACC digit (P = 6.50 ×  10−9) (Table  1; 
Fig.  1A). In patients with MCI, cg09422696 annotated 
to RP11-661A12.5 was associated with the rate of cog-
nitive decline as measured by the slope of CDR-SB 
(P = 1.17 ×  10−8) (Fig. 1B, Table 1). Single nucleotide pol-
ymorphism (SNP) rs2382954 was correlated with DNA 
methylation level at cg09422696 (r =  − 0.98, P < 2.2e−16) 
and hence a methylation quantitative trait locus (mQTL) 
in cis (Fig.  1C), as reported previously [32]. The SNP 
rs2382954 was also associated with the slope of CDR-
SB (P = 8.12 ×  10−5). When adjusted for rs2382954, 
the association between cg09422696 methylation level 
and the slope of CDR-SB failed to meet the significance 
threshold (P > 0.05), suggesting that the association was 
driven solely by rs2382954. A list of P values suggestive 
of associations of other CpG sites with the rate of cogni-
tive decline (P < 1 ×  10−5) is available in Additional file 2: 
Table 1. No CpG probe was significantly associated with 
disease conversion status (ie, CN to MCI or MCI to AD) 
(Additional file 1: Figs. 1C, E, 2C, and E) passing Bonfer-
roni correction threshold.

Using all baseline study samples from the ADNI 
cohort, mPACC digit was negatively correlated with 
CDR-SB (r =  − 0.787, P < 2.2e−16) and highly correlated 
with mPACC trailsB (r = 0.980; P < 2.2e−16) (Additional 
file 1: Fig. 3). For participants who were CN at baseline, 
the correlation between mPACC digit and CDR-SB was 
reduced (r =  − 0.128; P = 0.004), and the dynamic range 
for mPACC digit was wider than that for CDR-SB (0–1) 
(Additional file  1: Fig.  4A), suggesting that mPACC digit 
measures the cognitive change in an asymptomatic popu-
lation. Despite the significant but attenuated correlation 
between mPACC digit and CDR-SB among baseline meas-
urements from participants who were MCI at baseline 
(r =  − 0.324, P < 2.2e−16, Additional file  1: Fig.  4B), the 
range of mPACC digit did not seem to vary much for par-
ticipants with CDR-SB ranging from 0 to 5.5, supporting 
the choice of using CDR-SB to capture the change in cog-
nitive function among patients who were MCI at base-
line. Additional file 1: Fig. 4C shows correlation between 
mPACC digit and CDR-SB for participants who were either 
CN or MCI at baseline (r =  − 0.637; P < 2.2e−16).

The effect sizes for the association between the slope of 
mPACC trailsB and methylation level of CpG probes were 
correlated with the effect sizes for mPACC digit (r = 0.997, 
P < 2.2e−16 for probes with PDMP < 1 ×  10−5 in either anal-
ysis). The effect sizes for the slope of mPACC trailsB were 
negatively correlated with the effect sizes for the conver-
sion status in CN participants (r =  − 0.660, P = 5.545e−8 
for probes with P < 1 ×  10−5 in either analysis, Fig.  2A) 
but not correlated with the effect sizes for the slope of 
CDR-SB (r = 0.020, P = 0.860) or the effect sizes for the 
conversion status in patients with MCI (r =  − 0.024, 
P = 0.868) for the probes with P < 1 ×  10−5 in either anal-
ysis. In contrast, the effect sizes for the slope of CDR-
SB were correlated with those for conversion status in 
patients with MCI (r = 0.866, P < 2.2e−16 for the probes 
with P < 1 ×  10−5 in either analysis; Fig.  2B), suggesting 
that the effect sizes from the continuous endpoints are 
concordant with those from the paired dichotomized 
endpoints, but the effect sizes in the two populations 
(CN vs. MCI at baseline) are quite far apart.

Gene set enrichment analysis (GSEA) using methylGSA 
revealed enrichment of mitogen-activated protein kinase 
signaling pathway (P = 0.002, adjusted P = 0.05) and Fc 
epsilon RI signaling pathway (P = 0.01, adjusted P = 0.14) 
for the rate of cognitive decline as measured by the slope 
of mPACC trailsB (Additional file 2: Table 2A). Overrepre-
sentation analysis of CpG probes with nominal P < 0.01 
revealed a common theme of enrichment of genes 
involved in neurogenesis for the rate of cognitive decline 
as measured by the slopes of mPACC trailsB (Additional 
file 2: Table 2A), mPACC digit (Additional file 2: Table 2B), 
CDR-SB (P = 7.00 ×  10−6, FDR adjusted P = 0.006, 
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Additional file 2: Table 2C), and for conversion status in 
the CN participants (Additional file  2: Table  2D). Gene 
sets involved in cognition were also nominally enriched 
for the rate of cognitive decline as measured by the slope 
of mPACC trailsB (P = 0.0007, adjusted P = 0.07, Additional 
file  2: Table  2A) and conversion status in patients with 
MCI (P = 0.0001, Additional file 2: Table 2E).

We compared our results with the analyses of follow-
up samples from 2 studies—AddNeuroMed (comparing 
MCI to AD converters with nonconverters) and Middle-
Aged Danish Twin (MADT) studies—which evaluated 
the relationship between epigenetic profiles and cogni-
tive changes over 10 years [33, 34]. The effect size from 
the top 1000 DMPs from the AddNeuroMed study [33] 
was weakly correlated with the effect size from the MCI 
to AD conversion status in this study (r = 0.1, P = 0.002, 
Additional file 1: Fig. 5). There are 22 CpG sites associ-
ated with disease progression with consistent direc-
tionality and nominal P < 0.05 between this study and 
AddNeuroMed study (Additional file 2: Table 3), includ-
ing cg20152430 (P = 0.003 in AddNeuroMed; P = 0.003 
in this study) that annotated to HOXB3 and cg12559197 
(P = 0.001 in the AddNeuroMed study; P = 0.0008 in this 
study) that annotated to PDE8B. In the MADT study 
[34], only 12 probes were reported to be associated with 
cognitive change over 10 years, among which cg27630540 
annotated to KIAA1530 (β =  − 0.01, P = 8.25 ×  10−6 
in the MADT study) trended in the same direction 
(β =  − 0.39, P = 0.06) as the slope of mPACC trailsB analy-
sis in this study, and cg13630845 annotated to SLC35E1 
(β =  − 0.0247, P = 7.73 ×  10−6 in the MADT study) 
trended in the same direction as observed in the CN to 
MCI converter versus nonconverter analysis (β = 0.04, 
P = 0.1).

There was no correlation at the CpG level between the 
effect sizes for the slope of either mPACC trailsB or CDR-
SB and the effect size for the 220 CpG sites associated 
with Braak stage across cortex in the brain previously 
identified in an epigenome-wide association meta-anal-
ysis study (EWAS) [35] (Additional file  1: Figs.  6A, B). 
Similarly, there was no correlation between the effect 
sizes for the clinical diagnosis (AD vs. CN) in blood pub-
lished previously [20] and the effect size for the 220 CpG 
sites across cortex in the EWAS meta-analysis (Addi-
tional file  1: Fig.  6C), suggesting a generally low con-
cordance between peripheral blood and brain, although 
the compared phenotypes are not identical, and the 
blood and brain data were not from the same individu-
als. In addition, there was no correlation at the CpG level 
between the effect sizes for the slope of either mPACC 
trailsB or CDR-SB and the effect size for AD diagnosis in 
blood from the same ADNI cohort [20] (Additional file 1: 
Fig. 7A and B).

Fig. 1 Association of CpG sites with rate of cognitive decline. A 
cg00386386 was associated with the slope of mPACC digit in CN 
participants. B cg09422696 was associated with the slope of CDR-SB 
in patients with MCI. C rs2382954–cg09422696 mQTL. Note that jitter 
was introduced for the x-axis. CDR-SB Clinical Dementia Rating Scale 
Sum of Boxes, CN cognitively normal, MCI mild cognitive impairment, 
mPACC digit modified Preclinical Alzheimer Cognitive Composite that 
used Digit Symbol Substitution Test, mQTL methylation quantitative 
trait locus
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Differentially methylated region (DMR) analysis
DMR analysis enabled identification of regions in the 
genome consisting of ≥ 3 probes. Overall, comb-p 
algorithm identified 70 and 76 DMRs to be signifi-
cantly associated with the rate of cognitive decline as 
measured by the slopes of mPACC trailsB and mPACC 
digit, respectively, in participants who were CN at 
baseline (Additional file  2: Tables  4A and B). Among 
these, 47 DMRs were common between the two 
endpoints, including a DMR annotated to HOXA4 
(chr7: 27,170,241 to 27,171,051 [14 probes], Sidak-
corrected P = 3.26 ×  10–6) associated with the slope 
of mPACC trailsB (Additional file  1: Fig.  8A) and 
an overlapping DMR annotated to HOXA4 (chr7: 
27,169,957 to 27,171,154 [16 probes], Sidak-corrected 
P = 1.24 ×  10–10) associated with the slope of mPACC 
digit (Additional file 1: Fig. 8B). In blood, the increased 
levels of methylation or probes in the DMR annotated 
to HOXA4 were associated with slower rate of cognitive 
decline (Additional file 1: Fig. 8A). In addition, 5 DMRs 
annotated to the protocadherin gamma gene clus-
ter were also identified as associated with the slope of 
mPACC digit, including DMRs annotated to PCDHGA4 

(chr5: 140,734,648 to 140,735,027 [4 probes], Sidak-
corrected P = 0.002), PCDHGA10 (chr5: 140,794,664 
to 140,794,993 [3 probes], Sidak-corrected P = 0.007), 
PCDHGB7 (chr5: 140,796,045 to 140,796,312 [3 
probes], Sidak-corrected P = 0.008), PCDHGA11 
(chr5: 140,802,432 to 140,802,831 [4 probes], 
Sidak-corrected P = 0.002), and PCDHGA12 (chr5: 
140,810,051 to 140,810,433 [9 probes], Sidak-corrected 
P = 1.75 ×  10–5). DMRcate detected fewer DMRs (24 
and 16 for mPACC trailsB and mPACC digit, respectively), 
among which 19 and 13 were also detected by comb-p. 
The DMRs annotated to HOXA4 and PCDHGA12 were 
detected by both methods.

A total of 102 and 5 DMRs, detected by comb-p and 
DMRcate, respectively (all 5 detected by DMRcate were 
also detected by comb-p), were significantly associated 
with the rate of cognitive decline as measured by slope of 
CDR-SB in patients who had MCI at baseline (Sidak-cor-
rected P < 0.05, Additional file 2: Table 4C). This included 
a DMR annotated to HOXB6 (detected by comb-p only, 
chr17: 46,681,111–46,681,550 [7 probes], Sidak-cor-
rected P = 0.0002) and a DMR annotated to HOXB9 
(detected by comb-p only, chr17: 46,698,598–46,699,155 

Fig. 2 The correlation of the effect size from DMP analysis for the slope of mPACC trailsB conversion status in CN participants (A) and the slope of 
CDR-SB vs. conversion status in patients with MCI (B). Only the probes with P < 1 ×  10–5 in either analysis are plotted. CDR-SB Clinical Dementia 
Rating Scale Sum of Boxes, CN cognitively normal, DMP differentially methylated positions, MCI mild cognitive impairment, mPACC trailsB modified 
Preclinical Alzheimer Cognitive Composite that used Trail-Making Test Part B
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[7 probes], Sidak-corrected P = 0.002); however, one 
DMR was hypermethylated and the other was hypometh-
ylated (Additional file 1: Figs. 8C and D).

For the dichotomized conversion status association, 
75 and 123 DMRs were identified by comb-p in study 
participants who were CN or had MCI at baseline, 
respectively (Additional file  2: Tables  4D and 4E), rep-
licating two previously reported DMRs (KCNAB3 and 
GABBR1) associated with MCI conversion status from 
the AddNeuroMed study [33]. For the probe annotated 
to GABBR1 among the top 1000 DMPs associated with 
MCI to AD conversion status in the AddNeuroMed study 
(cg06512249, β =  − 0.03, P = 0.003), the direction was 

consistent with multiple probes in the same region from 
this study (cg03316098, β =  − 0.05, P = 0.01; cg10234998, 
β =  − 0.10, P = 0.005; cg12061917, β =  − 0.07, P = 0.001; 
cg21481950, β =  − 0.06 P = 0.007) even though 
cg06512249 did not reach the nominally significant 
threshold in this study (P > 0.05) (Additional file  1: 
Fig. 8E). The probe from the KCNAB3 was not among the 
top 1000 DMPs associated with MCI to AD conversion 
status in the AddNeuroMed study, so the directionality 
could not be confirmed in this study. The most significant 
DMR identified in this study that was associated with 
conversion status in patients with MCI was annotated to 
PM20D1 (chr1: 205,818,956 to 205,820,014 [13 probes], 

Fig. 3 PM20D1 DMR association with the conversion status in patients with MCI (e.g., converters vs. nonconverters). Top panel: individual 
CpG association P-values; middle panel: gene structure; bottom panel: pairwise correlation between CpG sites in this DMR. CpG 
cytosine-phosphate-guanine, DMR differentially methylated region, MCI mild cognitive impairment
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Sidak-corrected P = 7.74 ×  10−24) (Fig. 3). A similar DMR 
annotated to PM20D1 (chr1: 205,818,956 to 205,819,609 
[12 probes], Sidak-corrected P = 7.00 ×  10−5) was also 
associated with the rate of cognitive decline as measured 
by the slope of CDR-SB in patients with MCI. In addition, 
a DMR annotated to DUSP22 (chr6: 291,634 to 292,823 
[10 probes], Sidak-corrected P = 8.09 ×  10−14, Additional 
file  1: Fig.  8F) was associated with conversion status in 
CN participants. DMRcate identified fewer DMRs (6 
and 21 in study participants who were CN or had MCI 
at baseline, respectively), among which 5 and 19, respec-
tively, overlapped with those identified by comb-p. The 
DMRs annotated to PM20D1 and DUSP22 were detected 
by both DMR methods.

Although the DMRs annotated to OXT and LDLRAD4 
associated with conversion status to AD in this study and 
the German Study on Aging, Cognition and Dementia in 
Primary Care Patients (AgeCoDe) [25], the probes in this 
study were hypomethylated among converters in contrast 
to the reported hypermethylation in blood in the Age-
CoDe cohort study. Another DMR annotated to PRRT1 
that associated with conversion status to AD in the Age-
CoDe study, was also associated with both the slope of 
mPACC trailsB (detected by both comb-p and DMRcate) 
and CDR-SB in this study but in opposite direction.

Multiple other DMRs were detected: ZFP57 (identi-
fied by both comb-p and DMRcate); LMTK3 (Addi-
tional file 1: Fig. 8G) and FBXO44 (identified by comb-p 
only) for the rate of cognitive decline as measured by the 
slope of CDR-SB in patients with MCI (Additional file 2: 
Table 4C); LOC105375131 and GAL3ST2 (both identified 
by comb-p alone) for conversion status in CN partici-
pants (Additional file 2: Table 4D); and FGFR2 (identified 
by both comb-p and DMRcate) for conversion status in 
patients with MCI (Additional file 2: Table 4E).

Furthermore, DMRs annotated to MORN4, AIRE, 
LY6G5C, and PRRT1 were identified for both rates of 
cognitive decline as measured by the slopes of mPACC 
digit/mPACC trailsB and CDR-SB. In addition, DMRs anno-
tated to FOXK1, ACY3, and ZBED9 were identified for 
conversion status in both subjects with CN and MCI at 
baseline. With the exception of the DMR annotated to 
ACY3 that was detected by both comb-p and DMRcate, 
the rest of DMRs were detected by comb-p alone. The 
overlap between DMRs association in the CN and MCI 
populations appears to be small, consistent with the low 
correlation of effect size in DMP analysis between the 
two populations. In contrast, there were 47 overlapped 
DMRs between the rate of cognitive endpoints defined by 
the slope of mPACC digit versus mPACC trailsB.

Genes involved in neuronal postsynaptic density were 
enriched among DMRs associated with the rate of cog-
nitive decline as measured by mPACC trailsB, and this 

enrichment was driven by DMRs annotated to BNIP3, 
NTRK2, and BAIAP2 (Additional file 2: Table 5A). Simi-
larly, genes involved in regulation of postsynaptic density 
assembly or organization were enriched among DMRs 
associated with conversion status in CN participants 
(Additional file  2: Table  5B). Notably, genes encoding 
neural cadherin-like cell adhesion proteins are highly 
enriched among the DMRs associated with the slope 
of mPACC digit (Additional file  2: Table  5C). Additional 
ontology terms that were enriched are shown in Addi-
tional file  2: Tables  5D and E. Furthermore, genes with 
literature evidence linking to neurogenesis, cognition, 
amyloid, and tau pathology are shown in Fig. 4 and Addi-
tional file 2: Table 6.

Discussion
We assessed the association between disease progression 
and DNA methylation in CN participants and patients 
with MCI. Approximately 30% of CN participants con-
verted to MCI and approximately 36% of patients with 
MCI converted to AD in a mean follow-up period of 54.1 
and 43.6 months, respectively. Two differentially methyl-
ated positions (DMPs) were significantly associated with 
cognitive decline at a level surpassing Bonferroni cor-
rection threshold: cg00386386 was associated with the 
slope of mPACC digit in CN participants, and cg09422696 
was associated with the slope of CDR-SB in patients 
with MCI. When adjusted for rs2382954, the association 
between cg09422696 methylation level and the slope of 
CDR-SB was no longer statistically significant, suggesting 
that the association was driven solely by rs2382954. No 
CpG sites were identified that were significantly associ-
ated with diagnosis conversion status.

In this study, we found several DMRs previously impli-
cated in AD, including those annotated to HOXA4, 
HOXB6/HOXB9 that were associated with the rate of 
cognitive decline as measured by the slopes of mPACC 
trailsB/mPACC digit, and CDR-SB, respectively; and those 
annotated to DUSP22 and PM20D1 that were associ-
ated with conversion status in CN and MCI partici-
pants, respectively. The DMRs annotated to HOXA4 
and HOXB6/HOXB9 gene clusters have been previously 
shown to be associated with tau pathology and/or neu-
rogenesis [33, 35–42]. The decreased levels of methyla-
tion for probes in the DMR annotated to HOXA4 were 
associated with faster rate of cognitive decline; in con-
trast, hypermethylation was reported for probes anno-
tated to the HOXA gene cluster in the brain in patients 
with AD [24, 35, 40–42]. A cell-type specific EWAS 
suggested that the hypermethylation was derived from 
neuronal cells [43]. In the present study, the hypermeth-
ylation of probes in the DMRs annotated to HOXB6 was 
associated with faster rate of cognitive decline, whereas 
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Fig. 4 Heatmap of co-occurrence in PubMed abstracts among genes annotated by DMRs across all endpoints and key concepts enriched in other 
analysis or biological processes important in AD. Hashed square means no reference was identified by Euretos AI Platform. Genes with 5 references 
associated with cognition, neurogenesis, amyloid, tau proteins are shown
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the hypermethylation of probes in the DMRs annotated 
to HOXB9 was associated with slower rate of cognitive 
decline. The hypermethylation in the HOXB gene cluster 
and HOXB6 gene were previously reported in brain and 
blood, respectively [33, 35, 41]; in contrast, expression of 
HOXB9 was reported to be increased in the brain tissue 
from patients with Huntington disease [44]. The effect 
sizes for the association between CpG and the slope of 
neither mPACC trailsB nor CDR-SB were correlated with 
the effect sizes for the 220 CpG sites across cortex pre-
viously identified [35]. DMR annotated to APOB associ-
ated with CN to MCI conversion status (called by both 
comb-p and DMRcate) was also implicated in neuronal 
survival and maintenance [45] and previously identified 
as a DMR in hippocampus in AD patients [24].

The most significant DMR was identified in the AD-
associated gene PM20D1 [46, 47], which was associated 
with both the slope of CDR-SB (called by comb-p) and 
the MCI to AD conversion status (called by both comb-
p and DMRcate). While variants associated with AD 
have been characterized as both meQTL and eQTL for 
PM20D1, the differential methylation of PM20D1 pro-
moters in human samples of AD and differential expres-
sion of PM20D1 in mouse models and human samples of 
AD were reported [47]. PM20D1 expression is upregu-
lated by AD-related stressors, amyloid-β and reactive 
oxygen species, and overexpression of PM20D1 was neu-
roprotective in cell and primary cultures [46]. DUSP22 
promoter hypermethylation and mRNA downregulation 
in the hippocampus of AD patients were reported pre-
viously [48]. Further, functional experiments demon-
strated that shRNA silencing of DUSP22 caused the loss 
of tau phosphorylation at Thr231, while overexpression 
of DUSP22 increased Thr231 tau phosphorylation via a 
mechanism mediated by PKA and p38 [48]. Phosphoryla-
tion at Thr231 is one of the first phosphorylation events 
of tau protein in the AD disease process [49]. The hypo-
methylation of probes in the DMRs annotated to DUSP22 
was associated with CN to MCI conversion status. 
DUSP22 also affects CREB activity via PKA; CREB activ-
ity, which has been shown to be important for neuronal 
survival, axonal growth, and synaptic function [50, 51], is 
altered in AD. A DMR annotated to CREB5 and NTRK2 
was also associated with the slope of mPACC trailsB (Addi-
tional file 2: Table 4A). These genes and PTH2R, SALL3, 
and HOXA4 (DMRs annotated to these genes were also 
identified in the slope of mPACC trailsB analysis) all har-
bor CCAAT/enhancer-binding protein (C/EBP) gamma 
binding motif, and genes with one or more occurrence of 
the transcription factor binding site V$CEBPGAMMA_
Q6 [52] are enriched (Additional file 2: Table 6A). PTH2R 
was identified as a hub gene in a weighted co-expression 
network analysis using transcriptomic data from the 

frontal lobe and temporal cortex in patients with vascu-
lar dementia or AD [53]. A decrease in dendritic spine 
numbers and an imbalance between long-term poten-
tiation and depression caused by oligomeric Aβ, can 
lead to impaired synaptic transmission [51]. Further-
more, through its binding to p75 neurotrophin receptor 
 (p75NTR) and brain-derived neurotrophic factor recep-
tor (encoded by NTRK2), Aβ can further worsen the 
situation [51]. Levels of N-cadherin, a synaptic adhesion 
molecule, are elevated in the plasma, brain, and CSF of 
patients with AD [54]. Interestingly, the DMRs annotated 
to N-cadherin–like gene cluster were associated with rate 
of cognitive decline (Additional file 2: Tables 4A and B). 
Taken together, the DMRs uncovered in this study appear 
to implicate genes involved in synaptic plasticity, Aβ/tau 
pathology, and pathways mediated by DUSP22 and PKA/
MAPK kinase that affect CREB and C/EBPγ activities. 
Even though the same DMRs were identified in brain and 
blood, the change of methylation pattern appears com-
plex, and the directionality of methylation change was 
often contradictory between brain and blood.

Interestingly, the DMR annotated to ACY3 was associ-
ated with both the slope of mPACC trailsB and MCI to AD 
conversion status (called by both comb-p and DMRcate); 
it was also associated with the slope of mPACC digit and 
CN to MCI conversion status (called by comb-p alone), 
together representing a mechanism relevant to disease 
progression in both stages (CN and MCI). ACY3 was 
identified as a gene associated with a microglial gene 
expression profile [55], which was differentially expressed 
in P301L-tau transgene model [56]. The single cell RNA-
Seq profile confirmed the microglia expression specific-
ity (Additional file  1: Fig.  9A). The role of microglia in 
AD was recently underscored in a recent meta-analysis 
of genome-wide association studies [57, 58]. DUSP22 
(Additional file 1: Fig. 9B) and RPL37 (Additional file 2: 
Tables 4A, 4B; Additional file 1: Fig. 9C) associated with 
rate of cognitive decline as measured by the slope of 
mPACC, and AMPD3 (Additional file  2: Tables  4C, 4E; 
Additional file  1: Fig.  9D) associated with the slope of 
CDR-SB and MCI to AD conversion status are also abun-
dantly expressed in microglia. Astrocytes play important 
roles in CNS, including defense against oxidative stress, 
mitochondria biogenesis, tissue repair and neurogen-
esis [59]. GABBR1 (Additional file 1: Fig. 9E), ATP6V0E2 
(Additional file 2: Tables 1, 4A; Additional file 1: Fig. 9F), 
NWD1 (Additional file  2: Table  4D; Additional file  1: 
Fig.  9G), and FGFR2 (Additional file  2: Table  4E; Addi-
tional file 1: Fig. 9H) are abundantly expressed in astro-
cytes. Both GABBR1 and FGFR2 are implicated in 
neurogenesis, learning, and memory [60, 61].

Multiple other DMRs, including FGFR2 for conver-
sion status in patients with MCI, were detected. The 



Page 11 of 16Li et al. Clin Epigenet          (2021) 13:191  

FGF7/FGFR2/PI3K/Akt pathway has been implicated in 
microRNA-107-induced increased cell proliferation and 
reduced cell inflammation and apoptosis in an in  vitro 
model of AD [62]. A DMR annotated to LMTK3 was 
associated with the rate of cognitive decline as measured 
by the slope of CDR-SB in patients with MCI, and hypo-
methylation was associated with faster rate of cognitive 
decline. Probes annotated to LMTK3 have been reported 
to be differentially methylated in the cortex in patients 
with Down syndrome [63] and in both the dorsal motor 
nucleus of the vagus and the substantia nigra in patients 
with Parkinson disease [64]. In Tg4-42 mouse, which 
expresses N-truncated Aβ4–42 and exhibits neuronal 
loss and behavioral deficits but no plaque formation, 
the LMTK3 transcript was reported to be differentially 
downregulated in aged animals [65]. A related fam-
ily member, LMTK2, which is considered to play a role 
in neurodegeneration possibly via mechanisms such as 
tau hyperphosphorylation, enhanced apoptosis, and dis-
rupted axonal transport, was similarly downregulated in 
an AD animal model [66].

This study has some limitations. Although we rep-
licated the GABBR1 DMR association with cognitive 
change from the AddNeuroMed study [33], the overall 
effect size correlation was weak. This may be related to 
a relatively small sample size in the compared study (38 
MCI to AD converters and 67 nonconverters). In addi-
tion, the phenotype of conversion in this study was not 
limited to a one-year follow-up period, although the 
converters and nonconverters had generally similar 
follow-up periods, with a slightly longer follow-up for 
nonconverters. Comparison with the MADT study was 
limited to 12 reported DMPs with P < 1 ×  10−5. In addi-
tion, the study designs were different (monozygotic twin 
vs. population study), and the samples were different (the 
follow-up sample in the MADT study associated with 
the cognitive change in the preceding 10 years vs. base-
line sample in this study associated with the subsequent 
cognitive change in approximately 5 years). In the present 
study, the rate of cognitive decline was computed using a 
linear model (robust regression), which is different from 
the nonlinear trajectory of cognitive decline previously 
proposed in a hypothetical model [67]. Even though the 
motivation for this study was to identify biomarkers for 
disease progression, we did not find any individual CpG 
that crossed study-wide significance threshold and had 
effect size large enough to potentially serve as a prog-
nostic biomarker. A panel of CpGs predictive of disease 
progression at the individual level cannot be ruled out 
completely; however, building a generalizable predic-
tive model based on a biosignature would require iden-
tification of a set of reliable CpGs associated with disease 
progression. The sample size in this study for each group 

was modest after applying the patient population selec-
tion criteria, which limits the statistical power for the 
analysis. The study was conducted on bulk tissue using 
whole blood or buffy coat. Cell type-specific methylation 
difference could be obscured in this assay. Replication is 
needed to confirm the results presented here.

In conclusion, this study replicated multiple DMPs and 
DMRs and identified additional candidate DMPs and 
DMRs in peripheral blood that were associated with the 
rate of cognitive decline in participants in the longitu-
dinal ADNI cohort. The DMRs uncovered in this study 
implicated genes involved in synaptic plasticity and Aβ/
tau pathology and pathways mediated by DUSP22 and 
PKA/MAPK kinase and impacting CREB and C/EBPγ 
activities. Future meta-analysis with additional study 
datasets will be helpful in prioritizing the reliable find-
ings that can be generalized across studies.

Methods
Alzheimer’s disease neuroimaging initiative
Data analyzed in this study were obtained from the ADNI 
database [68]. The ADNI was launched in 2003 by the 
National Institute on Aging, the National Institute of Bio-
medical Imaging and Bioengineering, the United States 
Food and Drug Administration, private pharmaceutical 
companies, and nonprofit organizations as a $60 million, 
5-year public–private partnership. The primary goal of 
the ADNI study has been to test whether serial magnetic 
resonance imaging, positron emission tomography, other 
biological markers, and clinical and neuropsychological 
assessments can be combined to measure the progres-
sion of MCI and early AD. The data from ADNIMERGE 
R package, dated September 14, 2018, together with epi-
genetic data and REGISTRY.csv file (http:// adni. loni. 
usc. edu) were used for the analyses reported here. The 
ADNIMERGE table merges several key variables from 
various case report forms and biomarker lab summa-
ries across the ADNI protocols (ADNI1, ADNIGO, and 
ADNI2).

DNA methylation profile
DNA methylation profiles were generated at AbbVie, 
Inc. from blood samples of ADNI participants using 
Infinium® MethylationEPIC BeadChip (Illumina, Inc., 
San Diego, CA, USA). Genomic DNA samples obtained 
from National Cell Repository for Alzheimer’s Disease 
were bisulfite-converted using the EZ-DNA Methylation 
Kits (Zymo Research, Irvine, CA, USA) and subsequently 
analyzed using the Illumina Infinium® HD methylation 
protocol on the HiScan™ system (Illumina, Inc). Detailed 
sample-level quality control was described previously 
[20]. A probe-level quality control was performed as well; 
probes that did not perform well (probes with detection 

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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P value ≥ 0.05 in ≥ 1% samples [n = 3047] and probes 
with bead count < 3 in ≥ 5% of samples [n = 1011]) were 
filtered out. A total of 863,718 probes were used in the 
downstream analysis. Methylation profiles from 653 
baseline DNA samples were used in this study. Partici-
pants with reverse conversion (e.g., from CN to MCI and 
back to CN) or conversion from CN to AD, those with a 
diagnosis of AD at baseline, and those without post-base-
line measurements were excluded, leaving a total of 519 
samples reported in the study.

Disease progression phenotype definition
The DNA samples were not necessarily collected at the 
same time point as the baseline visit for the main ADNI 
clinical study. Considering that the ADNI epigenetic 
dataset is a longitudinal analysis of DNA samples, up to 
5 samples per participant were available, and the sample 
from the earliest time point was considered the baseline 
data. Participants were required to have a follow-up clini-
cal assessment from at least one post-baseline visit.

Disease progression from the baseline of this study 
was defined using two continuous endpoints for CN 
participants and one continuous endpoint for patients 
with MCI; both groups also had a dichotomized end-
point (presence or absence of conversion). The original 
PACC, which was designed to capture 3 key domains of 
episodic memory, executive function, and orientation, 
is a composite of 4 component scores: total recall score, 
delayed recall score, Digit Symbol Substitution Test 
(DSST) score, and MMSE total score [26]. The ADNI-
MERGE database includes a modified PACC (mPACC 
trailsB; a standardized Z-score composite of MMSE, logi-
cal memory delayed recall, Alzheimer Disease Assess-
ment Scale-Cognitive Subscale delayed word recall, and 
Trail-Making Test B [27, 69]) and an additional variant 
of the modified PACC that uses the original component 
score for DSST (mPACC digit) [70]; both mPACC trailsB and 
mPACC digit were used in this study. For the continuous 
endpoints, the rate of cognitive decline was measured by 
the slopes of mPACC digit [26, 71] and mPACC trailsB [72] in 
CN participants and by the slope of CDR-SB in patients 
with MCI [73]. For the dichotomized endpoint, a con-
verter status was assigned if there was a conversion of 
clinical diagnosis (from CN to MCI or from MCI to AD) 
at a post-baseline visit. If the diagnosis was undefined at 
the DNA sampling visit, but the clinical diagnosis had 
been consistent before and after the DNA sampling visit, 
the diagnosis at DNA sampling was assumed to be the 
same as that at the adjacent visits.

Identification of DMPs
M-value, which provides higher detection rates and 
true positive rates for both highly methylated and 

unmethylated CpG sites and is considered statisti-
cally more valid than beta-value [74], was used to iden-
tify DMPs using R package limma [75]. The statistical 
model, adjusted for age at DNA sampling, sex, cell com-
position, DNA source (buffy coat vs. whole blood), was 
used to analyze rate of cognitive decline or conversion 
status. Since the study was prone to significant inflation 
and bias of test statistics, we applied a Bayesian method 
in R package BACON v1.10.1 to control for inflation of 
test statistics and for lambda inflation factors before and 
after correction were reported; the Bayesian method is 
based on estimation of the empirical null distribution 
[31]. A stringent threshold using Bonferroni correction 
was used to declare study-wide significance. The discov-
ered DMPs for each endpoint were assessed for consist-
ency in 2 ways: (1) the effect size and directionality were 
compared between the continuous and dichotomized 
endpoints, and (2) the effect sizes from this study were 
compared with those reported in a recent meta-analysis 
in brain [35] and several EWAS studies in blood [20, 34], 
recognizing that the phenotype in the two studies was 
different.

Identification and annotation of DMRs and genomic 
feature enrichment
DMRs were identified using comb-p [76] with a dis-
tance of 500 bp and a seeded P value of 1.0 ×  10−4. The 
DMR analyses were carried out for all probes, irrespec-
tive of the directionality of the differential methylation, 
and DMRs with at least 3 probes and Sidak corrected 
P < 0.05 were considered significant and are reported. 
Comb-p identifies regions enriched for probes with low 
P values using the Stouffer-Liptak method to correct for 
autocorrelation and adjusts for multiple testing using the 
Sidak correction. The identified DMRs were annotated 
by HOMER software [77]. HOMER first determines the 
distance of a DMR to the nearest transcription start site 
and assigns the DMR to that gene, and it determines the 
genomic annotation of the region occupied by the center 
of the DMR.

To provide additional evidence for the DMR analy-
sis, a secondary DMR calling algorithm DMRcate was 
employed [78]. The algorithm used the default param-
eters, except for the following: the robust regression for 
limma was used to be consistent with the DMP analysis, 
the test statistics after BACON statistics were used with 
a pcutoff at 1.0 ×  10−4, and a minimum of 3 CpG probes 
were applied for DMR calling. DMRcate calculates two 
smoothed estimates (one based on the square of moder-
ated limma t statistic and the other null model) using a 
Satterthwaite approximation to compare these estimates 
and adjusts for multiple testing using the FDR method. 
Both sets of DMR results are reported and compared for 
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consistency, but the comb-p analysis was considered as 
the primary analysis.

The identified DMRs were also compared to 2 lists of 
DMRs reported previously to be associated with conver-
sion to AD [25, 33].

Gene set enrichment and overrepresentation analyses
Using R package, methylGSA, GSEA analysis was con-
ducted that used Robust Rank Aggregation to adjust for 
multiple P values of each gene and applied pre-ranked 
version of GSEA in gene set testing [79, 80]. The follow-
ing gene ontology databases were used: subsets of Molec-
ular Signatures Database, KEGG database, and c2.cp v7.0 
(includes a superset of c2.cp.biocarta, c2.cp.kegg, and 
c2.cp.reactome among others) [81–83]. Over-representa-
tion analysis was performed using R package missMethyl 
[84] to test for pathway enrichment using a hypergeo-
metric test, taking into account the number of CpG sites 
per gene on the EPIC array.

Co-occurrence of biological concepts and genes using 
Euretos AI Platform
Since the database gene assignment to ontology terms 
could be incomplete, we also applied co-occurrence 
analysis of genes and key biological concepts, such as 
neurogenesis, amyloid, tau proteins, and cognition, 
to identify key genes annotated by DMRs (using the 
comb-p approach) with prior evidence associated with 
these terms using Euretos AI Platform (Netherlands). 
Synonyms were also used in the search; therefore, such 
analysis could result in false positive findings. With the 
relationship pairs with 5 or more references, we followed 
up with a human curation of abstracts, and false positives 
were flagged.‘
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