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Abstract
Studies of Alzheimer’s disease (AD) often collect multiple longitudinal clinical
outcomes, which are correlated and predictive of AD progression. It is of great
scientific interest to investigate the association between the outcomes and time to
AD onset. We model the multiple longitudinal outcomes as multivariate sparse
functional data and propose a functional joint model linking multivariate func-
tional data to event time data. In particular, we propose amultivariate functional
mixed model to identify the shared progression pattern and outcome-specific
progression patterns of the outcomes, which enables more interpretable mod-
eling of associations between outcomes and AD onset. The proposed method is
applied to the Alzheimer’s Disease Neuroimaging Initiative study (ADNI) and
the functional joint model sheds new light on inference of five longitudinal out-
comes and their associations with AD onset. Simulation studies also confirm
the validity of the proposed model. Data used in preparation of this article were
obtained from the ADNI database.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neurode-
generative disorder, can often be characterized by accel-
erated metal degradation over time, and may ultimately
progress to dementia. In the year of 2017, AD was the
sixth leading cause of death in the United States with
121,494 recorded deaths (Alzheimer’s Association, 2019).
Great efforts have been dedicated to advancing early detec-
tion of AD.
The motivating data are from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) with the primary goal of
investigating whether multimodal data can be combined
to measure the progression of AD (Weiner et al., 2017). We
are interested in jointly modeling clinical variables, mul-
tiple longitudinal outcomes measured intermittently and
time to AD onset or drop-out. Throughout the paper, AD

onset refers to a clinical declaration of probable AD based
on cognitive symptoms. We consider five longitudinal
biomarkers commonly measured in AD studies. Among
the five biomarkers, high values of Disease Assessment
Scale-Cognitive 13 items (ADAS-Cog 13) and Functional
Assessment Questionnaire (FAQ) reflect severe cognitive
decline, whereas low values of Rey Auditory Verbal
Learning Test immediate recall (RAVLT-immediate), Rey
Auditory Verbal Learning Test learning curve (RAVLT-
learn) and Mini-Mental State Examination (MMSE)
indicate a high risk for developing AD.
Figure 1 presents spaghetti plots of the five longitudi-

nal biomarkers and highlights profiles and time to AD
onset for two subjects. Subject Ahas amore acute cognitive
decline compared to Subject B. Indeed, subject A has faster
increasing values of ADAS-Cog 13 and FAQ, faster decreas-
ing values of RAVLT-immediate, RAVLT-learn, andMMSE
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F IGURE 1 Five observed longitudinal biomarkers of two subjects. Vertical lines: time to AD onset; gray lines: longitudinal outcomes for
20 other subjects

as well as an earlier AD onset around month 40. The plots
motivate our research: (a) subjects with more severe cog-
nitive impairment seemmore likely to progress to AD; and
(b) the multiple longitudinal outcomes may be correlated.
In addition, the observations do not always show clear
linear trends and the trends across outcomes may not be
synchronized, suggesting of potentially heterogeneous pat-
terns.
Parametric models are often used in the joint modeling

literature (Tsiatis and Davidian, 2004). De Gruttola and Tu
(1994) introduced a shared random effects model, which
links longitudinal data to event time data via a set of time-
invariant random effects. Wulfsohn and Tsiatis (1997)
proposed a shared latent process model, which models
the instantaneous effect of longitudinal data to event time
data. Extensions of the univariate joint models to multiple
longitudinal outcomes include Henderson et al. (2000)
and Lin et al. (2002). However, limitations exist: (1) the
parametric models are incapable of modeling complex
nonlinear trends of longitudinal outcomes; (2) assuming
a specific structure of the correlation may be subject to
model misspecification. Recently, joint modeling of event
time data and functional data has drawn some attention.
Yao (2007) proposed a shared latent process model. Yan
et al. (2017) proposed a shared random effect model with a
two-step estimation, and Ye et al. (2015) proposed a model
for baseline longitudinal patterns and interval-censored
event time data. To clarify, joint modeling here refers to

the situation where the domain of function is longitudinal
time. By contrast, Cox regression models where functional
data are used as baseline covariates have been extensively
studied; see Kong et al. (2018) and references therein.
Nevertheless, none of the above works considered joint
modeling of multivariate functional data and event time
data.
To capture the heterogeneity of patterns in the outcomes

as well as correlations among them, a popular method
is multivariate functional principal component analysis
(Happ and Greven, 2018). Then a Cox regression model
may be adopted to link the outcomes and AD onset via
the functional principal component scores. However,
there exist serious computational issues for joint model
estimation. Multivariate functional principal component
analysis (MFPCA) models the mean functions, auto-
covariance functions for within-function correlations,
and cross-covariances for between-function correlations
nonparametrically. Thus, for 𝐽-dimensional functional
data, there are 𝐽 univariate functions and 𝐽2 bivariate
functions to estimate. If we use tensor product splines to
approximate the bivariate functions and each marginal
basis is of dimension 𝑐, then it leads to 𝐽2𝑐2 parameters
to estimate, which is computationally prohibitive for joint
model estimation if 𝐽 is more than 2 and infeasible for
large 𝐽. Moreover, MFPCA is mostly used for dimension
reduction and the resulting multivariate eigenfunctions
and associated scores are often difficult to interpret. In
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particular, MFPCA does not explicitly model the corre-
lation between outcomes as is often done in parametric
models for multivariate longitudinal data (Verbeke et al.,
2014).
We propose a new multivariate functional mixed model

(MFMM) for multivariate functional data and subse-
quently a new functional jointmodel for linkingmultivari-
ate functional data and event time data. The advantages of
the proposed methods include: (1) the MFMM retains the
flexibility of functional datamethods for capturing nonlin-
ear patterns in longitudinal outcomes and models the cor-
relation between outcomes via a shared latent process; (2)
compared to 𝐽2 bivariate covariance functions forMFPCA,
MFMM requires only two bivariate covariance functions,
which makes joint model estimation feasible; (3) MFMM
explicitly separates the shared latent process, common to
all outcomes, from the outcome-specific latent processes,
unique to each outcome, and thus greatly enhances model
interpretability; (4) MFMM enables a flexible Cox regres-
sion model, which not only evaluates the effects of the
shared latent process to survival risk but also identifies
the additional contribution of each outcome to survival
risk.
The remainder of the paper is organized as follows.

Section 2 introduces the proposed MFMM as well as the
joint model for disease progression and survival. Section 3
describes a two-step estimation method and the proposed
joint estimation method. Section 4 presents model selec-
tion for the proposedmodel. Section 5 applies the proposed
model to the ADNI data. Section 6 examines the numer-
ical properties of the proposed method through simula-
tions. Section 7 concludes this work with some discussion.
Technical details and extra results for numerical studies
are included in the Web Appendices.

2 MODEL

Let 𝑌𝑖𝑗𝑘 be the 𝑘th observation of the 𝑗th outcome
(biomarker) measured intermittently at time 𝑡𝑖𝑗𝑘 for sub-
ject 𝑖 with 1 ≤ 𝑘 ≤ 𝑚𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝐽, and 1 ≤ 𝑖 ≤ 𝑛. So there
are 𝑛 subjects and subject 𝑖 has 𝑚𝑖𝑗 observations for the
𝑗th outcome. In our data application, we model the five
longitudinal outcomes ADAS-Cog 13, RAVLT-immediate,
RAVLT-learn,MMSE, and FAQ (plotted in Figure 1) as𝑌𝑖𝑗𝑘
with 𝑗 = 1,… , 5, respectively. The survival time for the 𝑖th
subject is denoted by 𝑆𝑖 and is assumed to be subject to
independent right censoring with censoring time denoted
by 𝐶𝑖 . Let 𝑇𝑖 = min(𝑆𝑖, 𝐶𝑖) and Δ𝑖 = 1{𝑆𝑖≤𝐶𝑖}. Note that
𝑡𝑖𝑗𝑘 ∈ [0, 𝑇𝑖], meaning no observations after 𝑇𝑖 . Assume
𝑇𝑖 ≤ 𝜏 for all 𝑖, where 𝜏 is the length of study follow-
up. Denote by 𝐳𝑖 = (𝑍𝑖1, … , 𝑍𝑖𝑃) ∈ ℝ𝑃 the vector of base-
line covariates.

2.1 Multivariate functional mixed
model

We propose a MFMM for the multivariate latent process
{𝑋𝑖1(𝑡), … , 𝑋𝑖𝐽(𝑡)}. The MFMM is of the form

𝑌𝑖𝑗𝑘 = 𝑋𝑖𝑗(𝑡𝑖𝑗𝑘) + 𝜖𝑖𝑗𝑘, 𝑋𝑖𝑗(𝑡) = 𝜇𝑗(𝑡) + 𝛽𝑗
{
𝑈𝑖(𝑡) +𝑊𝑖𝑗(𝑡)

}
,

(1)

where 𝜖𝑖𝑗𝑘 are random noises so that the longitudinal
outcome 𝑌𝑖𝑗𝑘 is a proxy observation of the true latent
stochastic process𝑋𝑖𝑗(𝑡) evaluated at time 𝑡𝑖𝑗𝑘. The smooth
latent process𝑋𝑖𝑗(𝑡) is decomposed into three components.
First, 𝜇𝑗(𝑡) is the fixed mean function for outcome 𝑗. For
simplicity, we assume that themean function only depends
on the longitudinal time but it may depend on the base-
line covariates, which can be incorporated easily using,
for example, additive models. The continuous latent pro-
file 𝑈𝑖(𝑡), common to multiple outcomes, is a subject-
specific random deviation from the mean functions. 𝑈𝑖(𝑡)

captures the subject-specific disease progression pattern
and correlation among outcomes. It represents subject 𝑖’s
unique latent disease status at time 𝑡 manifested by multi-
ple outcomes and can be specified so that a higher value
indicates more severe status. The outcome-specific scal-
ing parameter 𝛽𝑗 is the expected increase in outcome 𝑗
for one unit increase in 𝑈𝑖(𝑡). If two outcomes are nega-
tively correlated, their 𝛽𝑗s have different signs.𝑊𝑖𝑗(𝑡) is the
subject- and outcome-specific random deviation from the
outcome-specific mean, and it characterizes subject 𝑖’s
outcome-specific progression pattern. By multiplying the
scaling parameters 𝛽𝑗 , 𝑊𝑖𝑗(𝑡) are comparable across out-
comes.
We model 𝑈𝑖(⋅) and 𝑊𝑖𝑗(⋅) via two zero-mean Gaus-

sian processes with covariance functions 0(𝑠, 𝑡) =
Cov{𝑈𝑖(𝑠), 𝑈𝑖(𝑡)} and 1(𝑠, 𝑡) = Cov{𝑊𝑖𝑗(𝑠),𝑊𝑖𝑗(𝑡)},
respectively. Consider the spectral decomposition of the
covariance functions, 0(𝑠, 𝑡) = ∑

𝓁 𝑑0𝓁𝜙𝓁(𝑠)𝜙𝓁(𝑡) and
1(𝑠, 𝑡) = ∑

𝓁 𝑑1𝓁𝜓𝓁(𝑠)𝜓𝓁(𝑡), where 𝑑01 ≥ 𝑑02 ≥⋯ and
𝑑11 ≥ 𝑑12 ≥⋯ are the ordered eigenvalues, and 𝜙𝓁(⋅) and
𝜓𝓁(⋅) are the associated orthonormal eigenfunctions satis-
fying ∫ 𝜏

0
𝜙𝓁(𝑡)𝜙𝓁′(𝑡)𝑑𝑡 = ∫ 𝜏

0
𝜓𝓁(𝑡)𝜓𝓁′(𝑡)𝑑𝑡 = 1{𝓁=𝓁′}. Then

the Karhunen–Loève representations of 𝑈𝑖(𝑡) and 𝑊𝑖𝑗(𝑡)

are 𝑈𝑖(𝑡) =
∑
𝓁≥1 𝜙𝓁(𝑡)𝜉𝑖𝓁, 𝑊𝑖𝑗(𝑡) =

∑
𝓁≥1 𝜓𝓁(𝑡)𝜁𝑖𝑗𝓁,

where 𝜉𝑖𝓁 ∼ (0, 𝑑0𝓁) are eigen scores and indepen-
dent over 𝓁, and 𝜁𝑖𝑗𝓁 ∼ (0, 𝑑1𝓁) are defined similarly
and independent over 𝑗 and 𝓁. The eigenfunctions
𝜙𝓁(𝑡) and 𝜓𝓁(𝑡) represent the changing patterns of the
latent disease profiles, and the random scores 𝜉𝑖𝓁 and
𝜁𝑖𝑗𝓁 determine how strongly subject 𝑖’s latent disease
profile follows those patterns. In practice, we assume
there are only a finite number of patterns so that
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F IGURE 2 Estimate of each component in model (1) for outcomes ADAS-Cog 13 (A–D) and RAVLT-immediate (E–H) for one subject
in the ADNI study. (A) and (E): observed ADAS-Cog 13 and RAVLT-immediate values (black dots) and the latent processes 𝑋𝑖𝑗(𝑡); (B) and
(F): mean functions 𝜇𝑗(𝑡); (C) and (G): shared latent disease profile 𝑈𝑖(𝑡) multiplied by 𝛽𝑗 ; (D) and (H): outcome-specific deviations𝑊𝑖𝑗(𝑡)

multiplied by 𝛽𝑗

𝑈𝑖(𝑡) =
∑𝐿0
𝓁=1 𝜙𝓁(𝑡)𝜉𝑖𝓁,𝑊𝑖𝑗(𝑡) =

∑𝐿1
𝓁=1 𝜓𝓁(𝑡)𝜁𝑖𝑗𝓁, where 𝐿0

and 𝐿1 are finite numbers. We shall treat 𝐿0 and 𝐿1 as
tuning parameters and select them through data adaptive
methods; see Section 4 for details. We assume that the ran-
dom noises 𝜖𝑖𝑗𝑘 are independent and normally distributed
with zero mean and variance 𝜎2

𝑗
. Finally, 𝑈𝑖(𝑡), 𝑊𝑖𝑗(𝑡),

and 𝜖𝑖𝑗𝑘 are assumed independent between subjects and
across each other.
We illustrate the proposed MFMM by fitting five

biomarkers in the ADNI study and present two out-
comes ADAS-Cog 13 and RAVLT-immediate in Figure 2;
see Section 5 for model fitting details. In Figure 2, the
estimate or prediction of each component in model (1)
is visualized for the two outcomes of one subject. To
make model identifiable, we set 𝛽1 = 1 for the outcome
ADAS-Cog 13. Figures 2(A) and 2(E) present the fitted
latent processes by MFMM for both outcomes. The sub-
ject shows steady worsening in cognitive function 𝑋𝑖1(𝑡)
(increasing ADAD-Cog 13 in Figure 2(A)), which can be
decomposed into increasingmean cognitive function 𝜇1(𝑡)
(Figure 2(B)), deteriorating (increasing) latent disease pro-
file𝑈𝑖(𝑡) (Figure 2(C)), and positive outcome-specific pro-
gression 𝑊𝑖1(𝑡) (Figure 2(D)). Similar interpretation can
be made to the outcome RAVLT-immediate and decreas-
ing patterns indicate AD progression.
Model (1) allows us to explicitly model the shared

latent disease profile 𝑈𝑖(𝑡) between the outcomes and
outcome-specific profile 𝑊𝑖𝑗(𝑡). While it has a similar

multilevel decomposition structure as in multilevel FPCA
(Di et al., 2009), there exist significant differences. The
proposed MFMM accommodates outcome heterogene-
ity: (1) The scaling parameters reduce heterogeneity of
the multiple functions, which may measure quantita-
tively very different features of subjects. For example, 𝛽2
for RAVLT-immediate is estimated as a negative num-
ber and it changes the direction of 𝑈𝑖(𝑡) so that it is
negatively correlated with ADAS-Cog 13; and (2) the
outcome-specific progression further accommodates data
heterogeneity, such as, 𝛽1𝑊𝑖1(𝑡) shows larger deviation
from zero toward AD onset as compared with 𝛽2𝑊𝑖2(𝑡),
suggesting more severe disease progression in ADAS-Cog
13 than in RAVLT-immediate of the subject. Compared
with multivariate FPCA, MFMM borrows its idea but fur-
ther accounts for outcome-specific patterns, which leads
to theoretical and practical advantages: (1) MFMM gives a
more interpretablemodel ofmultiple outcomes by separat-
ing the shared component, which models the correlation
between outcomes, from outcome-specific components,
which model the patterns of outcomes that are uncor-
related from other outcomes. By contrast, MFPCA only
considers the shared component by reducing the multi-
ple outcomes into a set of uncorrelated scores; and (2) by
imposing a parsimonious model, the number of auto- and
cross-covariance functions to be estimated is not increas-
ing with the number of outcomes. This is a reasonable
compromise between computability and medical fidelity,
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which greatly alleviates computational burden and thus
makes the joint estimation feasible. In addition, MFMM
may be regarded as a nonparametric extension of paramet-
ric multilevel decomposition model for multivariate longi-
tudinal data (Verbeke et al., 2014).
We derive from (1) that

𝑗𝑗′ (𝑠, 𝑡) ∶= Cov{𝑋𝑖𝑗(𝑠), 𝑋𝑖𝑗′ (𝑡)} = 𝛽𝑗𝛽𝑗′0(𝑠, 𝑡)
+ 𝛽2

𝑗
1{𝑗=𝑗′}1(𝑠, 𝑡). (2)

If 𝑗 ≠ 𝑗′, 𝑗𝑗′ (𝑠, 𝑡) = 𝛽𝑗𝛽𝑗′0(𝑠, 𝑡). Formodel identifiability,
we let 𝛽1 = 1. Then it can be shown that for 𝐽 ≥ 2, 𝛽𝑗 and0(⋅, ⋅) can be uniquely determined by (2) using the equa-
tions with 𝑗 ≠ 𝑗′. (SeeWebAppendix A for proofs andWeb
Appendix B for the covariance structure relatingMFMMto
MFPCA.)

2.2 Joint model for disease progression
and survival

To model the survival time, we use the proportional haz-
ards model

ℎ𝑖(𝑡) = ℎ0(𝑡) exp{𝐳
⊤
𝑖
𝜸𝑧 + (𝐱𝑖, 𝑡)}, (3)

where ℎ0(⋅) is the baseline hazard function, 𝜸𝑧 is the
coefficient vector corresponding to baseline covariates 𝐳𝑖 ,
𝐱𝑖 is the collection of all outcomes for subject 𝑖, and
(𝐱𝑖, 𝑡) is the regression term of multiple latent processes
at time 𝑡. We consider the framework of shared ran-
dom effects models (Wu and Carroll, 1988; De Gruttola
and Tu, 1994) as it takes into account the entire history
of the latent processes and let (𝐱𝑖, 𝑡) = ∑𝐿0

𝓁=1 𝜉𝑖𝓁𝛾0𝓁 +∑𝐽

𝑗=1

∑𝐿1
𝓁=1 𝜁𝑖𝑗𝓁𝛾1𝑗𝓁, where 𝛾0𝓁 and 𝛾1𝑗𝓁 are the coefficients

corresponding to the shared and outcome-specific latent
profiles, respectively. The hazardmodel extends themodel
in Yan et al. (2017) for univariate functional data to multi-
variate functional data.

2.3 Likelihood of joint model

For model estimation, we now derive the likelihood func-
tion of the multivariate longitudinal outcomes and the
event time data.
We shall introduce some notation, which will be used

throughout the rest of the paper. Let 𝝃𝑖 = (𝜉𝑖1, … , 𝜉𝑖𝐿0)
⊤

be the vector of scores for the shared latent profile
𝑈𝑖(𝑡). Then 𝝃𝑖 ∼ (𝟎,𝐃0), where 𝐃0 ∈ ℝ𝐿0×𝐿0 is a diag-
onal matrix with 𝑑0𝓁 the 𝓁th diagonal element. Let 𝜻𝑖𝑗 =
(𝜁𝑖𝑗1, … , 𝜁𝑖𝑗𝐿1)

⊤ be the vector of scores for the outcome-

specific latent profiles𝑊𝑖𝑗(𝑡). Then 𝜻𝑖𝑗 ∼ (𝟎,𝐃1), where
𝐃1 ∈ ℝ𝐿1×𝐿1 is a diagonalmatrix with 𝑑1𝓁 the 𝓁th diagonal
element. Similarly, let 𝐲𝑖𝑗 = (𝑌𝑖𝑗1, … , 𝑌𝑖𝑗𝑚𝑖

)⊤ be the vector
of observations for the 𝑗th outcome and 𝐲𝑖 = (𝐲⊤

𝑖1
, … , 𝐲⊤

𝑖𝐽
)⊤.

Let 𝝁𝑖𝑗 = {𝜇𝑖𝑗(𝑡𝑖1), … , 𝜇𝑖𝑗(𝑡𝑖𝑚𝑖
)}⊤ be the vector of the 𝑗th

mean function at the observed time points. Let 𝚽(𝑡) =
{𝜙1(𝑡), … , 𝜙𝐿0(𝑡)}

⊤ and𝚿(𝑡) = {𝜓1(𝑡), … , 𝜓𝐿1(𝑡)}
⊤. Then let

𝚽𝑖 = {𝚽(𝑡𝑖1), … ,𝚽(𝑡𝑖𝑚𝑖
)}⊤ and 𝚿𝑖 = {𝚿(𝑡𝑖1), … ,𝚿(𝑡𝑖𝑚𝑖

)}⊤

be thematrices of eigenfunctions evaluated at the observed
time points. Denote by 𝐱𝑖𝑗 = {𝑋𝑖𝑗(𝑡𝑖1), … , 𝑋𝑖𝑗(𝑡𝑖𝑚𝑖

)}⊤ the
vector of the 𝑗th outcome evaluated at the observed
time points without measurement errors, note that 𝐱𝑖𝑗 =
𝛽𝑗(𝚽𝑖𝝃𝑖 + 𝚿𝑖𝜻𝑖𝑗), and 𝐱𝑖 = (𝐱⊤

𝑖1
, … , 𝐱⊤

𝑖𝐽
)⊤. Finally, let 𝐭𝑖 =

(𝑡𝑖1, … , 𝑡𝑖𝑚𝑖
)⊤ be the vector of the observed time points, and

𝚺𝑖 = blockdiag(𝜎21𝐈𝑚𝑖
, … , 𝜎2𝐽𝐈𝑚𝑖

).
First, the conditional likelihood of multivariate longitu-

dinal data is

𝑓(𝐲𝑖|𝐱𝑖, 𝐭𝑖, 𝚺𝑖) = (|2𝜋𝚺𝑖|)− 1

2 exp

{
−
1

2
(𝐲𝑖 − 𝐱𝑖)

⊤𝚺−1𝑖 (𝐲𝑖 − 𝐱𝑖)

}
(4)

and 𝑓(𝝃𝑖|𝐃0) = (|2𝜋𝐃0|)− 1

2 exp(−
1

2
𝝃⊤
𝑖
𝐃−1
0 𝝃𝑖), 𝑓(𝜻𝑖𝑗|𝐃1) =

(|2𝜋𝐃1|)− 1

2 exp(−
1

2
𝜻 ⊤
𝑖𝑗
𝐃−1
1 𝜻𝑖𝑗). Next, the conditional likeli-

hood of time-to-event data is given by

𝑓(𝑇𝑖, Δ𝑖|ℎ0, 𝐳𝑖, 𝐱𝑖, 𝜸𝑧, 𝜸𝜂) = {
ℎ0(𝑇𝑖) exp(𝐳

⊤
𝑖
𝜸𝑧 + 𝜼⊤

𝑖
𝜸𝜂)

}Δ𝑖
exp

{
−∫

𝑇𝑖

0

ℎ0(𝑢) exp(𝐳
⊤
𝑖
𝜸𝑧 + 𝜼⊤

𝑖
𝜸𝜂)𝑑𝑢

}
, (5)

where 𝜼𝑖 = (𝝃⊤
𝑖
, 𝜻 ⊤
𝑖1
, … , 𝜻 ⊤

𝑖𝐽
)
⊤
, 𝜸𝜂 = (𝜸⊤0 , 𝜸

⊤
11, … , 𝜸

⊤
1𝐽)

⊤, 𝜸0 =
(𝛾01, … , 𝛾0𝐿0)

⊤, and 𝜸1𝑗 = (𝛾1𝑗1, … , 𝛾1𝑗𝐿1)
⊤ for all 𝑗. As the

multivariate longitudinal data and the time-to-event data
are conditionally independent given the latent process 𝐱𝑖 ,
the marginal likelihood is given by

𝑛∏
𝑖=1

[
∫ 𝑓(𝐲𝑖|𝐱𝑖, 𝐭𝑖, 𝚺𝑖)𝑓(𝝃𝑖|𝐃0)

{
𝐽∏
𝑗=1

𝑓(𝜻𝑖𝑗|𝐃1)

}

× 𝑓(𝑇𝑖, Δ𝑖|ℎ0, 𝐳𝑖, 𝐱𝑖, 𝜸𝑧, 𝜸𝜂)𝑑𝜼𝑖
]
. (6)

3 MODEL ESTIMATION

3.1 Two-Step method

A naive estimation method would be to use a two-step
method by first predicting the scores from the longitudinal
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data model (1) and then doing plug-in for the Cox regres-
sion model (3). The first step is nontrivial, so we shall pro-
vide some details.
First, for each longitudinal biomarker, the mean func-

tion is estimated by penalized splines (Eilers and Marx,
1996). Next, we adopt the fast covariance estimation
method for multivariate sparse functional data in Li et al.
(2020) to obtain estimates of the auto- and cross-covariance
functions, ̂𝑗𝑗′ , and error variances, 𝜎2𝑗 , via bivariate penal-
ized splines. Finally, we treat the estimates as true auto-
and cross-covariances and estimate 𝛽𝑗 as inWeb Appendix
A. Once 𝛽𝑗 are obtained, ̂0 can be solved by least squares
using Equation (2) with 𝑗 ≠ 𝑗′. Then, ̂1 can be solved sim-
ilarly using the same equation with 𝑗 = 𝑗′. The negative
eigenvalues will be discarded to ensure that the covari-
ances are positive semidefinite. We then use the condi-
tional expectation approach for predicting the scores, a
popular approach in traditional joint modeling (Wulfsohn
and Tsiatis, 1997) and sparse functional data analysis (Yao
et al., 2005); see Web Appendix C for details. Finally, the
predicted scores, 𝔼(𝜼𝑖|𝐲𝑖), where the estimates of fixed
quantities are plugged in, will be used in the Cox regres-
sion.
Despite its computational advantage, the two-step

method has some well-known drawbacks: (1) it is a
marginal approach that ignores the inherent correlation
between the longitudinal and survival process and often
leads to inferior statistical efficiency; (2) the predicted
scores in the first step are usually biased, and the estima-
tion error will propagate into the subsequent Cox regres-
sion. Nevertheless, we shall compare the two-step method
with the proposed estimation method below and demon-
strate the superiority of the latter one in the numeri-
cal study. In addition, the estimates from the two-step
method can be used as initial values for the joint estima-
tion method.

3.2 Monte Carlo EMmethod

3.2.1 Reduced rank splines

Following Yao (2007) and Huang et al. (2014), we
use reduced rank splines for modeling the smooth
mean functions and covariance functions. Let 𝐛(𝑡) =
{𝐵1(⋅), … , 𝐵𝑐(⋅)}

⊤ be the vector of B-spline basis functions
in the unit interval (de Boor, 1978), where 𝑐 is the num-
ber of equally spaced interior knots plus the order (degree
plus 1) of the B-splines. We model the mean function 𝜇𝑗(𝑡)
by 𝐛(𝑡)⊤𝜶𝑗 , where 𝜶𝑗 is the coefficient vector of the 𝑗th
mean function. Let 𝐆 = ∫ 𝐛(𝑡)𝐛(𝑡)⊤𝑑𝑡 ∈ ℝ𝑐×𝑐, which is

positive definite (Zhou et al., 1998). Then 𝐛̃(𝑡) = 𝐆
−
1

2 𝐛(𝑡)

are orthonormal B-spline bases. For the covariance func-
tions 0 and 1, we approximate their 𝓁th eigenfunc-
tions 𝜙𝓁(𝑡) and 𝜓𝓁(𝑡) by 𝐛̃(𝑡)⊤𝜽0𝓁 and 𝐛̃(𝑡)⊤𝜽1𝓁, respec-
tively, where 𝜽0𝓁 and 𝜽1𝓁 are coefficient vectors. Let 𝚯0 =

[𝜽01, … , 𝜽0𝐿0] and 𝚯1 = [𝜽11, … , 𝜽1𝐿1]. Then the orthonor-
mality of eigenfunctions gives the constraints, 𝚯⊤

0 𝚯0 =

𝐈𝐿0×𝐿0 and 𝚯
⊤
1 𝚯1 = 𝐈𝐿1×𝐿1 . These constraints are equiva-

lent to 𝜽⊤
0𝓁
𝜽0𝓁′ = 𝜽⊤

1𝓁
𝜽1𝓁′ = 1{𝓁=𝓁′}.

3.2.2 E-Step

Although nonparametric functions are components of the
proposed model, their spline representations allow a para-
metric estimation based on the EM algorithm. The full
data likelihood depends on the latent random variables 𝜼𝑖
and can be optimized via the EM method, which treats
𝜼𝑖 as missing values and iterates between E-steps and M-
steps until convergence. Such a strategy is often deployed
in parametric joint modeling (Wulfsohn and Tsiatis, 1997).
We shall use the Monte Carlo EM algorithm, an alterna-
tive to the Gaussian–Hermite quadrature, to approximate
the numerical integrals in the E-step.
Let 𝜶 = (𝜶⊤1 , … , 𝜶

⊤
𝐽 )

⊤ be the vector of spline coef-
ficients for the mean functions, 𝜷 = (𝛽1, … , 𝛽𝐽)

⊤ the
vector of scaling parameters and 𝝈2 = (𝜎21, … , 𝜎

2
𝐽 )
⊤

the vector of error variances. Denote by 𝛀 =
{ℎ0, 𝜷, 𝜸𝑧, 𝜸𝜂, 𝐃0,𝐃1, 𝜶,𝚯0,𝚯1, 𝝈

2} the set of param-
eters and 𝛀̂ = {ℎ̂0, 𝜷, 𝜸𝑧, 𝜸𝜂, 𝐃̂0, 𝐃̂1, 𝜶, 𝚯̂0, 𝚯̂1, 𝝈̂

2} the
estimate. Let 𝑔(⋅) be any smooth function of 𝜼𝑖 , then the
conditional expectation 𝔼{𝑔(𝜼𝑖)|𝑇𝑖, Δ𝑖, 𝐳𝑖, 𝐲𝑖, 𝐭𝑖, 𝛀̂} is given
by

∫ 𝑔(𝜼𝑖)𝑓(𝑇𝑖, Δ𝑖|ℎ̂0, 𝐳𝑖 , 𝜼𝑖 , 𝜸𝑧, 𝜸𝜂)𝑓(𝜼𝑖|𝐲𝑖, 𝐭𝑖 , 𝜶, 𝜷, 𝚯̂0, 𝚯̂1, 𝐃̂0, 𝐃̂1, 𝝈̂
2)𝑑𝜼𝑖

∫ 𝑓(𝑇𝑖, Δ𝑖|ℎ̂0, 𝐳𝑖 , 𝜼𝑖 , 𝜸𝑧, 𝜸𝜂)𝑓(𝜼𝑖|𝐲𝑖, 𝐭𝑖 , 𝜶, 𝜷, 𝚯̂0, 𝚯̂1, 𝐃̂0, 𝐃̂1, 𝝈̂2)𝑑𝜼𝑖
,

where 𝑓(𝑇𝑖, Δ𝑖|ℎ̂0, 𝐳𝑖, 𝜼𝑖, 𝜸𝑧, 𝜸𝜂) is the conditional likeli-
hood in (5), and the second part of the denominator can
be obtained from the joint normality of 𝜼𝑖 and 𝐲𝑖 , given
the data and parameter estimates; see Web Appendix C.
We nowuse𝔼𝑖{𝑔(𝜼𝑖)} to denote the conditional expectation
for convenience. In the E-step, because the integrals for the
conditional expectations have no closed form solution, we
use Monte Carlo approximation

𝔼𝑖{𝑔(𝜼𝑖)} ≈

∑𝑄

𝑞=1 𝑔(𝜼
(𝑞)
𝑖
)𝑓(𝑇𝑖, Δ𝑖|ℎ̂0, 𝐳𝑖, 𝜼(𝑞)𝑖 , 𝜸𝑧, 𝜸𝜂)∑𝑄

𝑞=1 𝑓(𝑇𝑖, Δ𝑖|ℎ̂0, 𝐳𝑖, 𝜼(𝑞)𝑖 , 𝜸𝑧, 𝜸𝜂)
,

where 𝜼(𝑞)
𝑖

is the 𝑞th sample from the normal distribution
𝑓(𝜼𝑖|𝐲𝑖, 𝐭𝑖, 𝜶, 𝜷, 𝚯̂0, 𝚯̂1, 𝐃̂0, 𝐃̂1, 𝝈̂

2), and𝑄 random samples
are drawn. To accelerate the convergence, we use the
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estimates from the two-step method as the initial values
of the parameters.

3.2.3 M-Step

Estimates of the current iteration can be obtained by opti-
mizing separate parts of the joint likelihood (6) in the M-
step, because each part only involves disjoint sets of param-
eters. Specifically, 𝜶, 𝜷, 𝚯0, 𝚯1, and 𝝈2 can be estimated
iteratively by minimizing the expected negative log likeli-
hood of the longitudinal process (4),

𝑛∑
𝑖=1

𝐽∑
𝑗=1

[
𝑚𝑖

2
log(2𝜋𝜎2𝑗 ) +

1

2𝜎2𝑗
𝔼𝑖
{
𝐲𝑖𝑗− 𝐁𝑖𝜶𝑗 − 𝛽𝑗

(
𝐁̃𝑖𝚯0𝝃𝑖 + 𝐁̃𝑖𝚯1𝜻𝑖𝑗

)}2]
.

We adopt an iterative algorithm to cyclically estimate the
columns of𝚯0 and𝚯1 and deploy an ad hoc step to satisfy
the orthonormality constraints on the parameter matrices.
The parameters in the diagonal matrices 𝐃0 and 𝐃1 are
estimated by minimizing the expected negative logarithm
of

∏𝑛

𝑖=1 𝑓(𝝃𝑖|𝐃0) and
∏𝑛

𝑖=1

∏𝐽

𝑗=1 𝑓(𝜻𝑖𝑗|𝐃1), respectively.
The baseline hazard function ℎ0 and the parameter vectors
𝜸𝑧 and 𝜸𝜂 in the Cox regression can be estimated accord-
ing to the expected negative log likelihood of the survival
process (5),

𝑛∑
𝑖=1

[
−Δ𝑖

{
log ℎ0(𝑇𝑖) + 𝐳⊤

𝑖
𝜸𝑧 + 𝔼𝑖(𝜼

⊤
𝑖
𝜸𝜂)

}
+ ∫

𝑇𝑖

0

ℎ0(𝑢)

× 𝔼𝑖
{
exp

(
𝐳⊤
𝑖
𝜸𝑧 + 𝜼⊤

𝑖
𝜸𝜂
)}
𝑑𝑢

]
.

In particular, the baseline hazard ℎ0 is estimated nonpara-
metrically by the Breslow estimator, and 𝜸𝑧 and 𝜸𝜂 are
updated by a one-step Newton–Raphson algorithm inside
the loop. The estimated standard errors of the Cox regres-
sion coefficients can be obtained by inverting the observed
information matrix. We defer the technical details to Web
Appendix D.

4 MODEL SELECTION

As described in Section 3.2, cubic B-splines are used for
approximatingmean functions and eigenfunctions.Weuse
equally spaced knots for constructing the splines and for
simplicity, we use the same number of knots for all spline
functions. FollowingHuang et al. (2014),weuse the asymp-
totic theory in Li and Hsing (2010) to determine the num-
ber of basis functions according to the sample size. For the
simulation and data application, we use nine spline bases
(𝑐 = 9) which is found to work well; see Web Appendix E
for implementation details.

The number of eigenfunctions is an important tuning
parameter since it determines the functional characteris-
tics of the latent stochastic process.We use information cri-
teria for model selection, which requires an evaluation of
themodel complexity, the degrees of freedomof themodel.
It can be shown that the negative log likelihood is given
by 𝓁𝑛 = −2

∑𝑛

𝑖=1[log 𝑓(𝐲𝑖|𝛀̂) + log𝔼{𝑓(𝑇𝑖, Δ𝑖|𝐳𝑖, 𝜼𝑖, 𝛀̂)}],
where 𝑓(𝐲𝑖|𝛀̂) is a normal density with the covariance
described in Web Appendix C, and the expectation can be
approximated by 𝑄−1

∑𝑄

𝑞=1 𝑓(𝑇𝑖, Δ𝑖|ℎ̂0, 𝐳𝑖, 𝜼(𝑞)𝑖 , 𝜸𝑧, 𝜸𝜂).
We approximate the degrees of freedom via the number

of effective parameters,

df ∶= 𝐽𝑐 + (𝐿0 + 𝐿1)(𝑐 + 1) + 𝑃 + 𝐿0 + 𝐽𝐿1 + 2𝐽 − 1

−
𝐿0(𝐿0 + 1)

2
−
𝐿1(𝐿1 + 1)

2
,

where 𝐽𝑐 is the number of parameters for estimating the
mean functions, (𝐿0 + 𝐿1)(𝑐 + 1) is corresponding to the
eigen pairs, 𝑃 + 𝐿0 + 𝐽𝐿1 is the number of coefficients in
Cox regression, 2𝐽 − 1 is corresponding to the error vari-
ance 𝜎2

𝑗
and the scaling factor 𝛽𝑗 , and the last two terms

are due to orthonormality constraints on 𝚯0 and 𝚯1, the
matrix of spline coefficients for eigenfunctions (see Sec-
tion 3.2.1). Therefore, we may calculate AIC = 𝓁𝑛 + 2 ⋅ df,
and BIC = 𝓁𝑛 + log 𝑛 ⋅ df. We shall use a two-dimensional
grid for selecting the two tuning parameters 𝐿0 and
𝐿1.

5 DATA ANALYSIS

We apply the proposed functional joint model (denoted
as FJM) to the ADNI data for jointly characterizing the
varying patterns of themultivariate longitudinal outcomes
and their association with time to diagnosis of AD. The
data are from the first two phases of ADNI, which contain
803 participants with amnestic mild cognitive impairment
(MCI, a transition risk state between normal state and AD
state) at baseline who had at least one follow-up visit. Par-
ticipants of the first phase were scheduled to be assessed
at baseline, 6, 12, 18, 24, and 36 months with additional
annual follow-ups included in the second phase. Note that
the exact follow-up times can actually vary. Thus, for the
combined data, the average number of visits is 4.72. For
the analysis, the following variables are used as baseline
covariates: baseline age (mean: 74.4, standard deviation:
7.3, range 55.1–89.3), gender (36.1% female), years of edu-
cation (mean: 15.6, standard deviation: 3.0, range 4–20),
and the number of apolipoprotein E 𝜖4 alleles (APOE4,
56% ≧ 1), given their potential effects on AD progression
(Fleisher et al., 2007).
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TABLE 1 Model comparison. The “best model” row gives selected number(s) of eigenfunctions by BIC

FJM Reduced A Reduced B Reduced C MJM
𝑋𝑖𝑗(𝑡) MFMM MFMM MFMM 𝜇𝑗(𝑡) + 𝛽𝑗𝑈𝑖(𝑡) 𝛽0𝑗 + 𝛽1𝑗𝑡 + 𝑏0𝑖𝑗 + 𝑏1𝑖𝑗𝑡

(𝐱𝑖, 𝑡) ∑𝐿0
𝓁=1

𝜉𝑖𝓁𝛾0𝓁 +
∑𝐽

𝑗=1

∑𝐿1
𝓁=1

𝜁𝑖𝑗𝓁𝛾1𝑗𝓁
∑𝐿0

𝓁=1
𝜉𝑖𝓁𝛾0𝓁

∑𝐽

𝑗=1

∑𝐿1
𝓁=1

𝜁𝑖𝑗𝓁𝛾1𝑗𝓁
∑𝐿0

𝓁=1
𝜉𝑖𝓁𝛾0𝓁

∑𝐽

𝑗=1
(𝑏0𝑖𝑗 + 𝑏1𝑖𝑗𝑡)𝛾𝑗

Best model (𝐿0, 𝐿1) = (2, 2) (𝐿0, 𝐿1) = (2, 2) (𝐿0, 𝐿1) = (2, 2) 𝐿0 = 2 NaN
log likelihood −37773.30 −37849.41 −37954.25 −39718.01 −47249.77
AIC 75754.60 75906.83 76116.50 79590.03 94657.54
BIC 76242.19 76394.42 76604.09 79951.03 95272.71
Concordance 0.86 0.85 0.77 0.84 0.85

We consider various models listed in Table 1, including
the proposed functional joint model and its variants. The
hazard model is specified as

ℎ𝑖(𝑡) = ℎ0(𝑡) exp
{
Age𝑖𝛾𝑎 + Gender𝑖𝛾𝑔 + Education𝑖𝛾𝑒

+ APOE4𝑖𝛾𝜖 + (𝐱𝑖, 𝑡)}
and the form of (𝐱𝑖, 𝑡) is given in Table 1. Reduced
models A and B share the same MFMM submodel (1)
as FJM. Reduced model A is a special case of the pro-
posed model with only shared components 𝝃𝑖 contribut-
ing to survival risk. Reduced model B is another special
case with only outcome-specific components 𝜻𝑖𝑗 contribut-
ing to survival risk. Compared to FJM, reduced model
C only has shared components 𝝃𝑖 in both submodels. To
fit FJM, we use the settings of splines described in Sec-
tion 4. The number of Monte Carlo samples and stop-
ping criteria are set as described in Web Appendix E. We
select the numbers of eigenfunctions according to BIC
as we shall show in Section 6 that it performs well for
model selection. The three reduced models can be esti-
mated similarly as the full FJM using the proposedMCEM
approach, andmodel selection can be similarly carried out
using BIC. In addition, we consider the parametric mul-
tivariate joint linear model (denoted as MJM) proposed
by Henderson et al. (2000) and implemented in R pack-
age joineRML (Hickey et al., 2018). With slight abuse of
notation, we denote by 𝛽0𝑗 and 𝛽1𝑗 the fixed effects, and
𝑏0𝑖𝑗 and 𝑏1𝑖𝑗 the random intercept and slope in a lin-
ear mixed effects model for the 𝑗th outcome. For MJM,
the corresponding Cox coefficient for the 𝑗th outcome is
𝛾𝑗 .
Table 1 presents the overall performance of the various

models. First, FJM has the highest likelihood and small-
est AIC and BIC, which compares favorably against the
other models. Second, Reduced model A is the closest to
FJM in terms of the three criteria, followed by Reduced
model B and Reduced model C. We shall see later that
the shared components play a major role in determin-
ing AD risk, and hence Reduced model A outperforms

Reduced model B. Reduced model C not only overlooks
the outcome-specific components in Cox regression, but
also ignores that heterogeneity in modeling longitudinal
outcomes, which explains why its performance is inferior
to Reduced models A and B. Furthermore, MJM is out-
performed by all other models, indicating that it gains to
model the longitudinal outcomes nonlinearly. Finally, we
include the concordance index (Harrell, 2015) for evalu-
ating the predictive ability of survival models as an addi-
tional criterion. Again, FJM has the highest concordance
index, while other models are slightly inferior to it. It is
not surprising to see that Reduced model B is ranked last
among the competitors since the shared components are
primary contributors to hazard risk.
As suggested by one reviewer, a partial functional lin-

ear model (PFL) might be adopted proposed if the sur-
vival part is the primary interest (Kong et al., 2016). PFL
treats the functional outcomes as cross-sectional covari-
ates and uses a linear combination of eigen scores of
each functional variable as the predictor in Cox regres-
sion. Despite the potential multicollinearity of the scores,
this model is similar to using 𝑊𝑖𝑗(𝑡) in MFMM but does
not separate the shared component from the outcome-
specific components. One primary objective of joint mod-
eling is to understand the associations between features
of the longitudinal outcomes and time to disease pro-
gression (Tsiatis and Davidian, 2004), and it is known
that multicollinearity may be an issue for this objective.
Nonetheless, we have compared MFMM, MFPCA, and
PFL for survival prediction and found that MFMM per-
forms best in terms of the concordance index and PFL
is outperformed by MFPCA. The above models are also
compared for fitting the longitudinal outcomes further
showing advantages of MFMM; see Web Appendix F for
details.
Table 2 summarizes the estimated Cox coefficients from

the functional jointmodel.We have the following remarks.
(1) The results show that APOE4 is significantly associated
with AD risk at level 0.05, which is consistent with existing
AD studies. In particular, the presence of APOE4 allele
increases the hazard of AD diagnosis by 39.10% while
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TABLE 2 Estimates (standard errors) of Cox regression coefficients from functional joint model. An asterisks indicates significance at
level 0.05

FJM Coefficient
Estimate
(standard error) p-value

Age 𝛾𝑎 −0.01 (0.01) 0.06
Gender (female) 𝛾𝑔 0.27 (0.23) 0.25
Education 𝛾𝑒 0.03 (0.03) 0.29
APOE4 𝛾𝜖 0.33 (0.15)∗ 0.03
Shared latent progression 𝛾01 0.33 (0.02)∗ 3𝑒 − 51

𝛾02 0.29 (0.09)∗ 0.01
ADAS-Cog 13 progression 𝛾11 0.00 (0.08) 0.97

𝛾12 −0.24 (0.22) 0.28
RAVLT-immediate progression 𝛾21 0.20 (0.08)∗ 0.01

𝛾22 0.73 (0.19)∗ 9𝑒 − 5

RAVLT-learn progression 𝛾31 0.03 (0.08) 0.74
𝛾32 −0.06 (0.29) 0.83

MMSE progression 𝛾41 −0.04 (0.06) 0.51
𝛾42 −0.26 (0.28) 0.35

FAQ progression 𝛾51 0.09 (0.07) 0.16
𝛾52 −0.21 (0.20) 0.29

adjusting for other covariates. (2) The parameters 𝛾01,
𝛾02 capture the effects of the latent disease process 𝑈𝑖(𝑡)

manifested by the five biomarkers. The significance of
these effects indicates the contribution of the latent profile
shared among the longitudinal outcomes to the hazard
of AD conversion, after adjusting for baseline clinical
covariates. The result agrees with the excellent predictive
performance of the five biomarker reported in Li et al.
(2017). (3) The proposed functional joint model sheds
new insight on the AD study by successfully identifying
important associations between individual longitudinal
outcomes and the survival. In Table 2, the individual
effects of RAVLT-immediate 𝛾21, 𝛾22 are significant, while
others are not. These results suggest that the progression
patterns of the longitudinal outcomes (ADAS-Cog 13,
RAVLT-learn, MMSE, and FAQ) contribute to AD diagno-
sis mainly through the shared latent profile, not through
their outcome-specific progression. By contrast, RAVLT-
immediate contributes through the outcome-specific
progression in addition to the shared latent progression.
Our findings are again supported by an independent
study (Li et al., 2019), which applied a penalized method
and consistently selected RAVLT-immediate as the only
significant risk factor of AD conversion.
Figure 3 presents the estimated mean functions of

longitudinal outcomes by three methods. Both FJM and
MJM are based on joint estimation and show a similar
trend: the mean curves are progressing toward mental
deterioration over the months, suggesting an increased

risk of developing AD. These findings confirm the intu-
ition since the participants in the study suffer from MCI,
which causes cognitive decline toward dementia. More-
over, FJM can further characterize the nonlinear pattern
of the biomarkers. Although MJM only provides linear
estimates, it correctly identifies the deteriorating trend.
The two-step method (denoted as 2-step) fails in capturing
such a degenerate trend since the curves are relatively
stable during the study period; this might be because the
estimates are biased due to its marginal nature.
Additional results for the ADNI data are presented in

Web Appendix F.

6 SIMULATIONS

6.1 Simulation settings

In this section, we compare the performance of the joint
estimation, and the two-step method, of the proposed
model. We consider two cases of data generation and repli-
cate each for 100 times. Here, we focus on case 1, which is
a realistic setting with data generated according to the fit-
ted model of the ADNI study inWeb Appendix G; see Web
Appendix H for case 2 which is an alternative setting, but
its results show a similar pattern as case 1.
The longitudinal data are generated according to

MFMM(1)with two outcomes 𝐽 = 2. The outcome-specific
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F IGURE 3 Estimated mean functions. Gray lines: longitudinal outcomes

mean functions, scaling parameters, and error variances
are derived from the estimates of ADAS-Cog 13 and
RAVLT-immediate. We set two principal components for
both two covariances, and the eigenfunctions are specified
as the estimates of 0(𝑠, 𝑡) and 1(𝑠, 𝑡). The eigen scores
𝜉𝑖𝓁s are generated from a normal distribution  (0, 𝑑0𝓁)

with 𝑑01 = 95.41 and 𝑑02 = 5.04. The outcome-specific
eigen scores 𝜁𝑖𝑗𝓁s are generated similarly with 𝑑11 = 21.90

and 𝑑12 = 2.05. We set the scaling parameters 𝛽1 = 1 and
𝛽2 = −1.44. The white noise 𝜖𝑖𝑗𝑘s are sampled from a
normal distribution  (0, 𝜎2

𝑗
), where 𝜎21 = 9.49 and 𝜎22 =

21.98. The observed time points 𝑡𝑖𝑗𝑘 = 𝑡𝑖𝑘 are 11 fixed
time points of the ADNI study mapped to the interval
[0,1].
The time-to-event data are generated according to Cox

regression (3) with the coefficients set as the estimates of
the common components and outcome-specific compo-
nents of ADAS-Cog 13 and RAVLT-immediate. We use the
baseline hazard function ℎ0(𝑡) = 1 and specify the linear
hazard rate function as

∑2

𝓁=1 𝜉𝑖𝓁𝛾0𝓁 +
∑2

𝑗=1

∑2

𝓁=1 𝜁𝑖𝑗𝓁𝛾1𝑗𝓁,
where the Cox coefficients are 𝜸0 = (0.33, 0.31)⊤, 𝜸11 =
(0.01, −0.27)⊤, and 𝜸12 = (0.25, 0.80)⊤. Then failure times
are drawn independently from a standard exponential
distribution. Censoring times 𝐶𝑖s are generated indepen-
dently from a uniform distribution on [0, 𝑐0], where 𝑐0 is a
constant and the final truncation time 𝜏 = 1 is used so that
the censoring rate is around 65%. For each subject, only
measurements at 𝑡𝑖𝑘 ≤ 𝑇𝑖 are retained. We generate data
with 803 subjects, and the average number of observations

per subject is around 5.5. All of these settings are close to
the real case of the ADNI study.

6.2 Simulation results

We use the settings of model fitting described in Web
Appendix E. First, we fix the number of principal compo-
nents as the truth 𝐿0 = 𝐿1 = 2 and estimate model compo-
nents. In most of the replications, FJM converges within
200 iterations. The first two rows of Figure 4 present the
estimatedmean functions and eigenfunctions for𝜙2(𝑡) and
𝜓2(𝑡). While the medians of FJM are close to the truth,
the two-step method has significant bias over the time.
Furthermore, we obtain the point-wise confidence bands
based on the quantiles of all the replications. The 95% con-
fidence bands of FJM are able to cover the truth, but this is
not the case for the two-step method since the true means
lie outside its 95% confidence bands. The last two rows
of Figure 4 summarize the estimates of the Cox coeffi-
cients. FJM is reasonably close to the truth, but the two-
step method shows significant bias.
Finally, we use AIC and BIC to select the number of

eigenfunctions in the covariances and evaluate the perfor-
mance of the proposed approaches. One may define the
candidate ranks of the covariance by the proportion of vari-
ance explained in the marginal MFMM stage since the
two-step method is used for providing initial values. For
the two-stepmethod, the number of principal components
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ans of estimates; dashed purple lines: 95% point-wise confidence bands

can be selected by using either AIC or BIC solely based on
Cox regression as in Kong et al. (2018). For the two-step
method, the rates of correctly selecting two principal com-
ponents for the covariances are 0.40 and 0.38 using BIC,
respectively. By contrast, the proposed approach for FJM
achieves excellence in practice, the correct selection rates
are 1.00 for all using BIC. For both the two methods, the
rates of AIC are slightly lower than those of BIC, so we use
BIC for rank selection in the data application.
In summary, FJM shows very competitive performance

and is superior to the two-step method in terms of estima-
tion and rank selection in all scenarios. Additional simula-
tion results are included in Web Appendix H.

7 DISCUSSION

Our work can be extended in several directions. First,
the MFMM framework is flexible to further account for

heterogeneity across multiple longitudinal outcomes. For
example, one might use two different scaling parameters
multiplying 𝑈𝑖(𝑡) and 𝑊𝑖𝑗(𝑡) in model (1). Moreover,
one might model 𝑊𝑖𝑗(𝑡) with heterogeneous covariances
to incorporate any prior information. We have adopted
model (1) with homogeneous covariances in this paper
as it is found to better fit the ADNI data. Second, it is
worth developing a joint integrative modeling frame-
work to incorporate imaging, genetic, and longitudinal
biomarkers into the Cox regression (3) and comparing it
with a predictive model proposed by Kong et al. (2015),
which treats time to AD as the survival outcomes and
uses multimodal data to predict AD progression. Finally,
the theoretic properties of the proposed joint model are
unclear, which warrant avenues for future research.

ACKNOWLEDGEMENTS
The authors thank the editor, the associate editor, and
the three reviewers for their constructive and helpful



12 LI et al.

comments, which greatly improved the article. This work
was partially supported by the NIH grants R56 AG064803
(CL, LX, and SL), R01 AG064803 (LX and SL), and R01
NS112303 (LX). Data used in preparation of this article
were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.usc.edu).
As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of
this report. A complete listing of ADNI investigators
can be found at http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.
pdf.

DATA AVAILAB IL ITY STATEMENT
TheAlzheimer’s DiseaseNeuroimaging Initiative data that
support the findings in this paper are openly available at
http://adni.loni.usc.edu.

ORCID
Cai Li https://orcid.org/0000-0002-5624-3031
LuoXiao https://orcid.org/0000-0001-8707-0914
ShengLuo https://orcid.org/0000-0003-4214-5809

REFERENCES
Alzheimer’s Association, (2019) 2019 Alzheimer’s disease facts and
figures. Alzheimer’s & Dementia, 15, 321–387.

de Boor, C. (1978) A Practical Guide to Splines. Berlin, Germany:
Springer.

De Gruttola, V. and Tu, X.M. (1994) Modelling progression of CD4-
lymphocyte count and its relationship to survival time. Biometrics,
50, 1003–1014.

Di, C.-Z., Crainiceanu, C.M., Caffo, B.S. and Punjabi, N.M. (2009)
Multilevel functional principal component analysis. The Annals
of Applied Statistics, 3, 458–488.

Eilers, P. and Marx, B. (1996) Flexible smoothing with B-splines and
penalties (with discussion). Statistical Science, 11, 89–121.

Fleisher, A., Sowell, B., Taylor, C., Gamst, A., Petersen, R.C., Thal, L.
et al. (2007) Clinical predictors of progression to Alzheimer dis-
ease in amnestic mild cognitive impairment. Neurology, 68, 1588–
1595.

Happ, C. and Greven, S. (2018) Multivariate functional principal
component analysis for data observed on different (dimensional)
domains. Journal of the American Statistical Association, 113, 649–
659.

Harrell Jr, F.E. (2015) Regression Modeling Strategies: with Applica-
tions to Linear Models, Logistic and Ordinal Regression, and Sur-
vival Analysis. Berlin, Germany: Springer.

Henderson, R., Diggle, P. and Dobson, A. (2000) Joint modelling of
longitudinal measurements and event time data. Biostatistics, 1,
465–480.

Hickey, G.L., Philipson, P., Jorgensen, A. and Kolamunnage-Dona,
R. (2018) joineRML: a joint model and software package for
time-to-event and multivariate longitudinal outcomes. BMCMed-
ical Research Methodology, 18, 50.

Huang, H., Li, Y., and Guan, Y. (2014) Joint modeling and cluster-
ing paired generalized longitudinal trajectories with application to
cocaine abuse treatment data. Journal of the American Statistical
Association, 109, 1412–1424.

Kong, D., Giovanello, K. S., Wang, Y., Lin, W., Lee, E., Fan, Y., et al.
(2015) Predicting Alzheimer’s disease using combined imaging-
whole genome SNP data. Journal of Alzheimer’s Disease, 46, 695–
702.

Kong, D., Ibrahim, J.G., Lee, E. and Zhu, H. (2018) FLCRM: func-
tional linear Cox regression model. Biometrics, 74, 109–117.

Kong, D., Xue, K., Yao, F. and Zhang, H.H. (2016) Partially functional
linear regression in high dimensions. Biometrika, 103, 147–159.

Li, C., Xiao, L. and Luo, S. (2020) Fast covariance estimation for mul-
tivariate sparse functional data. Stat, 9, e245.

Li, K., Chan, W., Doody, R.S., Quinn, J. and Luo, S. (2017) Prediction
of conversion to Alzheimer’s disease with longitudinal measures
and time-to-event data. Journal of Alzheimer’s Disease, 58, 361–
371.

Li, S., Wu, Q. and Sun, J. (2019) Penalized estimation of semipara-
metric transformation models with interval-censored data and
application to Alzheimer’s disease. Statistical Methods in Medical
Research, 29, 2151–2166.

Li, Y. and Hsing, T. (2010) Uniform convergence rates for non-
parametric regression and principal component analysis in func-
tional/longitudinal data. The Annals of Statistics, 38, 3321–3351.

Lin, H., McCulloch, C.E. and Mayne, S.T. (2002) Maximum likeli-
hood estimation in the joint analysis of time-to-event andmultiple
longitudinal variables. Statistics in Medicine, 21, 2369–2382.

Tsiatis, A.A. and Davidian, M. (2004) Joint modeling of longitudinal
and time-to-event data: An overview. Statistica Sinica, 14, 809–834.

Verbeke, G., Fieuws, S., Molenberghs, G. and Davidian, M. (2014)
The analysis ofmultivariate longitudinal data: A review. Statistical
Methods in Medical Research, 23, 42–59.

Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns,
N.J., Green, R.C. et al. (2017) Recent publications from the
Alzheimer’s disease neuroimaging initiative: reviewing progress
toward improved ad clinical trials.Alzheimer’s & Dementia, 13, e1–
e85.

Wu, M.C. and Carroll, R.J. (1988) Estimation and comparison of
changes in the presence of informative right censoring by mod-
eling the censoring process. Biometrics, 44, 175–188.

Wulfsohn, M.S. and Tsiatis, A.A. (1997) A joint model for survival
and longitudinal data measured with error. Biometrics, 53, 330–
339.

Yan, F., Lin, X. and Huang, X. (2017) Dynamic prediction of disease
progression for leukemia patients by functional principal compo-
nent analysis of longitudinal expression levels of an oncogene.The
Annals of Applied Statistics, 11, 1649–1670.

Yao, F. (2007) Functional principal component analysis for longitu-
dinal and survival data. Statistica Sinica, 17, 965–983.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005) Functional data analy-
sis for sparse longitudinal data. Journal of the American Statistical
Association, 100, 577–590.

Ye, J., Li, Y. and Guan, Y. (2015) Joint modeling of longitudinal drug
using pattern and time to first relapse in cocaine dependence treat-
ment data. The Annals of Applied Statistics, 9, 1621–1642.

Zhou, S., Shen, X. and Wolfe, D. (1998) Local asymptotics for regres-
sion splines and confidence regions. The Annals of Statistics, 26,
1760–1782.

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu
https://orcid.org/0000-0002-5624-3031
https://orcid.org/0000-0002-5624-3031
https://orcid.org/0000-0001-8707-0914
https://orcid.org/0000-0001-8707-0914
https://orcid.org/0000-0003-4214-5809
https://orcid.org/0000-0003-4214-5809


LI et al. 13

SUPPORT ING INFORMATION
Web Appendices A, B, C, D, E, F, G, and H referenced in
Section 2, 3, 4, 5, and 6 and code implementing the pro-
posed method are available with this paper at the Biomet-
rics website on Wiley Online Library.

How to cite this article: Li C, Xiao L, Luo S. Joint
model for survival and multivariate sparse
functional data with application to a study of
Alzheimer’s Disease. Biometrics. 2021;1–13.
https://doi.org/10.1111/biom.13427

https://doi.org/10.1111/biom.13427

	Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer’s Disease
	Abstract
	1 | INTRODUCTION
	2 | MODEL
	2.1 | Multivariate functional mixed model
	2.2 | Joint model for disease progression and survival
	2.3 | Likelihood of joint model

	3 | MODEL ESTIMATION
	3.1 | Two-Step method
	3.2 | Monte Carlo EM method
	3.2.1 | Reduced rank splines
	3.2.2 | E-Step
	3.2.3 | M-Step


	4 | MODEL SELECTION
	5 | DATA ANALYSIS
	6 | SIMULATIONS
	6.1 | Simulation settings
	6.2 | Simulation results

	7 | DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


