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A B S T R A C T   

Recent studies have confirmed that white matter hyperintensities (WMHs) accumulated in strategic brain regions 
can predict cognitive impairments associated with Alzheimer’s disease (AD). The knowledge of white matter 
anatomy facilitates lesion-symptom mapping associated with cognition, and provides important spatial infor-
mation for lesion segmentation algorithms. However, deep learning-based methods in the white matter hyper-
intensity (WMH) segmentation realm do not take full advantage of anatomical knowledge in decision-making 
and lesion localization processes. In this paper, we proposed an anatomical knowledge-based MRI deep learning 
pipeline (AU-Net), handcrafted anatomical-based spatial features developed from brain atlas were integrated 
with a well-designed U-Net configuration to simultaneously segment and locate WMHs. Manually annotated data 
from WMH segmentation challenge were used for the evaluation. We then applied this pipeline to investigate the 
association between WMH burden and cognition within another publicly available database. The results showed 
that AU-Net significantly improved segmentation performance compared with methods that did not incorporate 
anatomical knowledge (p < 0.05), and achieved a 14–17% increase based on area under the curve (AUC) in the 
cohort with mild WMH burden. Different configurations for incorporating anatomical knowledge were evalu-
ated, the proposed stage-wise AU-Net-two-step method achieved the best performance (Dice: 0.86, modified 
Hausdorff distance: 3.06 mm), which was comparable with the state-of-the-art method (Dice: 0.87, modified 
Hausdorff distance: 3.62 mm). We observed different WMH accumulation patterns associated with normal aging 
and cognitive impairments. Furthermore, the characteristics of individual WMH lesions located in strategic re-
gions (frontal and parietal subcortical white matter, as well as corpus callosum) were significantly correlated 
with cognition after adjusting for total lesion volumes. Our findings suggest that AU-Net is a reliable method to 
segment and quantify brain WMHs in elderly cohorts, and is valuable in individual cognition evaluation.   

1. Introduction 

White matter hyperintensities (WMHs), defined as hyperintensities 
on T2-weighted magnetic resonance (MR) images, are located in cere-
bral white matter tissues and of varying sizes (Wardlaw et al., 2013b). 
Although the pathogenesis of WMHs are not well understood (Prins and 
Scheltens, 2015; Wallin et al., 2018), mounting evidence has confirmed 
that regional WMHs predict cognitive impairments associated with 
Alzheimer’s disease (AD) (Brickman et al., 2018; Dadar et al., 2019; 

Damulina et al., 2019; Habes et al., 2018; Lee et al., 2016). Mild 
cognitive impairment (MCI) subjects with higher regional white matter 
hyperintensity (WMH) volumes have an increased chance of undergoing 
conversion to AD (Dadar et al., 2019; Li et al., 2016). Additionally, 
increased WMH burden in MCI cohorts has been detected in regions of 
inferior deep white matter and occipital subcortical white matter, when 
compared with cognitive normal controls, by a multi-atlas based method 
(Wu et al., 2019). Poor processing speed, executive functioning, and 
episodic memory are correlated with regional WMH lesions (Biesbroek 
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et al., 2017). As the brain is well structured for functioning, the locali-
zation of WMHs within strategic regions should be important for eval-
uating lesion-symptom mapping associated with cognition. However, 
the literature is heterogeneous and lacks standards in describing the 
regional accumulation of WMHs, which highlights the importance of 
developing atlas-based quantitative methods to characterize the 
anatomical distribution of WMHs. 

Deep learning-based methods have become state-of-the-art in many 
brain lesion segmentation tasks based on MR imaging. Recently, a 
challenge was held aiming to compare methods for the automated seg-
mentation of WMHs in Medical Image Computing and Computer- 
Assisted Intervention (MICCAI) 2017 (https://wmh.isi.uu.nl/). In this 
realm, most convolutional neural network (CNN) based methods use the 
intensities of T1 and T2-weighted fluid attenuated inversion recovery 
(T2-FLAIR) as the input features; however, the inclusion of spatial in-
formation has also been confirmed to improve the performance of seg-
mentation algorithms (Ghafoorian et al., 2017; Griffanti et al., 2016; 
Rachmadi et al., 2018). The spatial coordinates in MNI space and 
voxel-based prior probability templates of WMH are commonly used 
approaches for incorporating spatial information. Although CNN-based 
methods have made considerable progress in the task of WMH seg-
mentation, the literature still lacks enough studies to explore the stra-
tegies of 1) the incorporation of anatomical-based knowledge in the 
decision-making process of deep learning and 2) the identification of 
anatomical locations for detected individual lesions immediately after 
deep learning-based segmentation. 

In this paper, we described an anatomical knowledge-based MRI 
deep learning pipeline (AU-Net) to simultaneously segment and locate 
WMHs. Anatomical knowledge was defined in brain atlas that was 
specifically developed for WMH segmentation and quantification. Two 
configurations were designed for AU-Net to combine anatomical 
knowledge with intensity information in the segmentation procedure. 
We evaluated the performance of AU-Net by comparing it to other 
methods that did not integrate anatomical knowledge, including the 
state-of-the-art method in MICCAI 2017. Finally, we used this pipeline to 
investigate the associations among WMH burden, normal aging and 
cognitive impairments. 

2. Materials and methods 

2.1. Data preparation 

Two publicly available datasets were employed in this study. The 
first one is from WMH segmentation challenge in MICCAI 2017. Sixty 
cases were enrolled in publicly available training set. For each subject, a 
3D T1 weighted image and a 2D T2-FLAIR image were provided. WMHs 
on T2-FLAIR were annotated manually according to Standards for 
Reporting Vascular changes on nEuroimaging (STRIVE) (Wardlaw et al., 
2013b), these annotations were golden standard for evaluation of WMH 
segmentation in this study. The second is from Alzheimer’s Disease 
Neuroimaging Initiative database (ADNI) (http://adni.loni.usc.edu). We 
enrolled 111 MCI, 80 AD and 94 cognitive normal (CN) subjects from 
ADNI database in this study. Inclusion criteria are as follow: 1) acqui-
sitions from ADNI2 project with good quality of T1 and T2-FLAIR, 2) age 
between 60–85 years, 3) neurological assessment batteries are available, 
including: Alzheimer’s Disease Assessment Scale (ADAS), Mini Mental 
State Examination (MMSE) and Functional Assessment Questionnaire 
(FAQ), and 4) neurological assessments should be in the same year as 
MRI acquisitions. The demographic statistics are listed in Table 1. All 
participants in ADNI had provided informed written consents before 
recruitment and filled out questionnaires approved by the respective 
Institutional Review Board (IRB). 

For preprocessing, we first performed intra-subject coregistration 
between T2-FLAIR and T1 using FSL FLIRT affine transformation (Jen-
kinson et al., 2002; Jenkinson and Smith, 2001). After coregistration, 
global inhomogeneity corrections of T1 and T2-FLAIR were performed 

using N4 bias field correction (Tustison et al., 2010), which is built in 
advanced normalization tools (ANTs). Gaussian normalization was 
employed to normalize the voxel intensities of each subject with mean 
zero and standard deviation of one. Intracranial brain tissue masks were 
generated using FSL BET function (Smith, 2002). 

2.2. Atlas generation 

A T1 image in Montreal Neurological Institute (MNI) space was 
segmented using Brain Label (http://brainlabel.org), which provides 
automated cloud service for brain parcellation of T1 image based on 
multiple atlas likelihood fusion algorithm and pre-selection strategy 
(Tang et al., 2013; Wu et al., 2016). Brain Label segments the whole 
brain into different anatomical structures, with the finest segmentation 
including 283 regions. 

We regrouped the finest 283 ROIs and defined 29 brain regions for 
intracranial brain tissue, thus generated a brain atlas in MNI space 
specifically designed for the segmentation and localization of WMHs. 
The hierarchical definition of 29 brain regions are shown in Fig. 1. 
Intracranial brain tissue was first divided into 5 regions, which were 
cortex, nuclei, white matter, ventricle and brain stem. The reason of 
distinguishing cortex, nuclei, ventricle and brain stem from white matter 
is that hyperintensities located in these regions are generally not 
included in the category of WMHs as suggested by STRIVE (Wardlaw 
et al., 2013b). We further segmented white matter into 25 sub-regions 
based on their ontological relationships (Glasser et al., 2016; Puelles 
et al., 2013; Wu et al., 2019, 2016) and the location of major white 
matter tracts (Hua et al., 2008; Zhang et al., 2010). 

2.3. AU-Net for WMH segmentation 

The pipeline of AU-Net framework is shown in Fig. 2. For a target 
subject, the brain atlas was transformed to the native space by cor-
egistration between T1 images using symmetric diffeomorphic image 
registration algorithm (Avants et al., 2008), which is built in Advanced 
Normalized Tools (ANTs). Since intra-subject coregistration had been 
performed between T1 and T2-FLAIR, all 29 ROIs were immediately 
defined on T2-FLAIR. 

For the calculation of anatomical-based spatial features, we merged 
bilateral white matter regions as one ROI, resulted in 14 symmetric 
white matter regions. Modified prior probabilities of WMH occurrence 
(prob_m) were calculated and assigned to 18 brain regions (anterior 
deep white matter, posterior deep white matter, inferior deep white 
matter, body of corpus callosum, splenium of corpus callosum, genu of 
corpus callosum, anterior limb of internal capsule, posterior limb of 
internal capsule, frontal subcortical white matter, temporal subcortical 

Table 1 
Demographic statistics for ADNI subjects enrolled in this study.   

CN MCI AD P-value 

Number of subjects 94 111 80 – 
Gender (Male / 

Female) 
43 / 51 64 / 47 41 / 39 0.23 * 

Age (years) 74.00 ± 7.11 74.25 ± 7.51 75.10 ± 7.66 0.57 # 

Education (years) 16.32 ± 2.46 16.16 ± 2.66 16.34 ± 2.68 0.85 # 

ADAS 9.00 ± 4.58 18.87 ± 7.31 31.03 ± 7.64 < 0.0001 
# 

MMSE 28.78 ± 1.42 27.19 ± 1.82 22.70 ± 2.22 < 0.0001 
# 

FAQ 0.19 ± 1.02 4.25 ± 4.55 14.22 ± 7.08 < 0.0001 
# 

Data are number or mean ± standard deviation. 
* : Chi-square test was used. 
# : Non-parametric Kruskal-Wallis test was used. Bold font indicates signifi-

cance after correcting for multiple comparisons. Abbreviations: ADAS: Alz-
heimer’s Disease Assessment Scale, MMSE: Mini Mental State Examination, 
FAQ: Functional Assessment Questionnaire. 
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Fig. 1. Hierarchical definition of brain regions 
in atlas. Labels (1-29) were assigned to each 
brain regions for identification. 1: ventricle, 2: 
nuclei, 3: cortex, 4: brain stem. Hyperintensities 
located in regions 1-4 are not considered as 
WMHs suggested by (Wardlaw et al., 2013b). 
5-6: Anterior dWM, 7-8: posterior dWM, 9-10: 
inferior dWM, 11: body of corpus callosum, 
12: splenium of corpus callosum, 13: genu of 
corpus callosum, 14-15: anterior limb of inter-
nal capsule, 16-17: posterior limb of internal 
capsule, 18-19: frontal sWM, 20-21: temporal 
sWM, 22-23: parietal sWM, 24-25: occipital 
sWM, 26-27: limbic white matter, 28-29: cere-
bellum WM. Abbreviations: dWM: deep white 
matter, sWM: subcortical white matter.   

Fig. 2. Flowchart of anatomical knowledge-based MRI deep learning pipeline (AU-Net).  
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white matter, parietal subcortical white matter, occipital subcortical 
white matter, limbic white matter, cerebellum white mater, ventricle, 
nuclei, cortex and brain stem) using Eq. (1). 

prob m =
I(VWMH > threshold)

NS
(1) 

In this equation, VWMH is the normalized WMH volume in each of the 
18 brain regions, which was calculated by Eq. (2). Indication function I 
(.) returns one if VWMH is larger than the threshold. NS is the number of 
subjects used in the training set. We used leave-one-out cross-validation 
in the evaluation process, so for each iteration, 59 subjects were used to 
calculate the modified prior probabilities (NS = 59). In the scenario of 
final modal training, the whole MICCAI 2017 data set was split into 
training set and validation set, 50 subjects were used in training process, 
so NS should be set to 50. 

VWMH =
volume of WMH in specific brain region

volume of this specific brain region
(2) 

In our study, the modified prior probabilities were used for spatial 
encoding of 18 brain regions. In order to separate different regions as far 
as possible through encoding, we should maximize the code distance 
denoted by D in Eq. (3). For optimization, we traversed through set of 
possible threshold values range from 0 to 1 with step: 0.0001 to find the 
maximum D. 

D =

∑

i

∑

j∕=i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(prob mi − prob mj)
2

√

C2
N

(3) 

In Eq. (3), prob_mi, jdenote the modified prior probabilities associ-
ated with brain region i and j. The denominator is to calculate how many 
combinations we could have if we chose 2 elements from a set with size 
N (N represents the total number of predefined brain regions: 18), as 
shown in Eq. (4), where N, M are both integers and N should be larger 
than M. 

CM
N =

N!

M!(N − M)!
(4) 

Anatomical based spatial features were generated after modified 
prior probabilities were assigned to 18 brain regions, then we saved 
them as images with the same dimension as T2-FLAIR and T1 after 
coregistration (as shown in Fig. 2). 

The basic U-Net architectures (Ronneberger et al., 2015) used for 
segmentation are shown in supplementary Fig. S1 along with detail 
parameters for training. Two configurations for AU-Net were evaluated 
to investigate the optimal approach of including anatomical-based 
spatial features. The first approach is to use two connective U-Net 
(represents as AU-Net-two-step) with T1 and T2-FLAIR intensities fed 
into the first U-Net for rough segmentation, then the output lesion 
probabilistic maps were concatenated with anatomical-based spatial 
features and fed into the second U-Net for refine segmentation. For the 
second approach, we simply concatenated anatomical-based spatial 
features with intensities and fed them into the first U-Net for lesion 
segmentation (represents by AU-Net-Spatial). Probabilistic thresholds 
for generating binary lesion maps were determined using leave-one-out 
cross-validation by optimizing Dice similarity coefficient (DSC). 

2.4. Evaluation, ablation study and final model training 

Two independent human observers with more than 2 years of 
research experience in the realm of WMH segmentation manually an-
notated 60 subjects in MICCAI 2017 dataset. The lesions were fully 
manually traced using the interactive software package Display (https:// 
github.com/BIC-MNI), which was developed at the McConnell Brain 
Imaging Center of the Montreal Neurological Institute. 

We evaluated the following methods for WMH segmentation on 

MICCAI 2017 dataset: 1) two independent human observers, 2) AU-Net- 
two-step, and 3) the top ranked method (sysu_media) in WMH seg-
mentation challenge MICCAI 2017 (state-of-the-art) (Kuijf et al., 2019; 
Li et al., 2018). Leave-one-out cross-validation was used based on 
following criteria: 1) DSC, 2) Modified Hausdorff distance (95th 
percentile) (H95), 3) Sensitivity for detecting individual lesions (recall), 
4) F1-score for detecting individual lesions (F1), 5) precision-recall 
curve and area under the curve (AUC). Calculation of these criteria 
were based on definitions in (Kuijf et al., 2019). Paired t-test was used to 
detect significant differences between performances of WMH segmen-
tation methods. False discovery rate (FDR) correction was used to cor-
rect for multiple comparison. 

We performed an ablation study to show the importance of each 
elements in our AU-Net pipeline. Leave-one-out cross-validation was 
used. Four configurations were evaluated: 1) typical U-Net configura-
tion (Fig. S1 A)) with T1 and T2-FLAIR intensities as input features, 
denoted by U-Net-Intens, 2) AU-Net-Spatial, 3) Stage-wise configura-
tions: AU-Net-two-step, and 4) the same network architecture as AU-Net- 
two-step, but spatial features were concatenated with intensities in the 
input layer of the first U-Net, denoted by AU-Net-Spatial + refine. 

The training dataset was further divided into three groups: small 
WMH group with total WMH volume <5 mL (mL) (22 subjects), medium 
WMH group with total WMH volume between 5–15 mL (8 subjects), and 
large WMH group with total WMH volume larger than 15 mL (30 sub-
jects). Methods were also evaluated in groups with different WMH 
burden. Computational efficiency of AU-Net-two-step, AU-Net and U- 
Net-Intens configurations were evaluated by time cost for preprocessing, 
training an epoch and segmenting a new subject. 

The whole MICCAI 2017 dataset consists of 60 subjects, which was 
split into training set and validation set for final model training. Ten 
subjects were randomly chosen to form a validation set (small WMH 
group: 4 subjects, medium WMH group: 2 subjects and large WMH 
group: 4 subjects). The loss function is defined in Eq. (5), both training 
loss and validation loss were monitored during final model training 
procedure. 

Loss = 1 −

2
∑N

i=1
|pi∘gi| + s

∑N

i=1
(|pi| + |gi|) + s

(5)  

Where G = {g1, …, gN} are the ground-truth lesion maps (golden stan-
dard), and P = {p1, …, pN} are the predicted probabilistic maps over N 
patches, ◦ represents the element-wise product of two matrices, |.| 
represents the sum of every elements in the matrix. The s term is used to 
ensure the stability of loss function by avoiding division by 0, and it is set 
to 1e-6 in our models. 

2.5. Investigate relationships between WMH burden and cognition 

We segmented WMHs in ADNI dataset using the optimal method 
evaluated by cross-validation. Then we detected connected components 
found in the binary lesion map. For each individual WMH lesion, voxel 
by voxel labels were identified, the statistical mode of voxel-based labels 
was used to denote the location of this lesion. Following measurements 
were calculated for each subject: number of individual WMH lesions, 
effective diameters of individual lesions (calculated by cubic root of 
individual lesion volumes, in mm), and WMH volumes (in mL). Given 
that measurements for WMHs tend to have a positive skewed distribu-
tion (Habes et al., 2016; Kuijf et al., 2019; Wu et al., 2019), we per-
formed log transformation to achieve approximate normal distribution. 

We used partial correlation to evaluate: 
1) Associations between age and regional WMH volumes (log- 

transformed), adjusted for gender and education years. 
2) Associations between regional WMH volumes (log-transformed) 

and neuropsychological scores (MMSE, FAQ and ADAS), adjusted for 
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gender, education years and age. 
3) Associations between number of regional individual WMH lesions 

and neuropsychological scores (MMSE, FAQ and ADAS), adjusted for 
gender, education years, age and total WMH volume. 

4) Associations between mean effective diameters of regional indi-
vidual WMH lesions and neuropsychological scores (MMSE, FAQ and 
ADAS), adjusted for gender, education years, age and total WMH 
volume. 

p < 0.05 was considered significant after correcting for multiple 
comparison (FDR correction). All statistical analysis was performed 
using R version 3.6.2. 

3. Results 

3.1. Anatomical-based spatial features 

In the final model training procedure, as shown in Fig. 3 A), we 
traversed through set of possible threshold values (Eq. (1)) range from 
0 to 1 with step: 0.0001 to find the maximum distance D in Eq. (3). The 
threshold values in Fig. 3 A) are log transformed, maximum distance D 
was found when threshold equals to 10− 2.51 (0.0031). Modified prior 
probabilities for 18 brain regions are shown in Fig. 3 B), anterior deep 
white matter and splenium of corpus callosum suffered from the highest 
WMH burdens and were both assigned to number of 0.92. Modified prior 
probabilities for brain stem, ventricle and cortex are rather small (0.02, 
0.03 and 0.02), which is consistent with the definition of WMHs sug-
gested by STRIVE (Wardlaw et al., 2013b). Modified prior probability 
for cerebellum white matter was zero, we assigned 0.01 to this region 
instead. The relatively large modified prior probabilities associated with 
nuclei (0.53) might be due to mismatch in coregistration or large WMH 
burdens within periventricular areas. 

3.2. AU-Net segmentation 

3.2.1. Comparison with human observers and state-of-the-art 
Table 2 shows the evaluation of WMH segmentation using leave-one- 

out cross-validation. The performance of state-of-the-art method 
(sysu_media) was directly quoted from supplementary materials of (Li 
et al., 2018). Our method (AU-Net-two-step) achieved best performance 
in terms of H95, and comparable good performance when compared 
with state-of-the-art method based on DSC and F1. No significant dif-
ference exists between our proposed method and sysu_media detected 
by paired t-test. Both our method and sysu_media outperformed 

independent human observers based on DSC, H95 and F1. 
State-of-the-art method and human observer 1 achieved best perfor-
mance in terms of recall for detecting individual WMH lesions. 

3.2.2. Ablation study 
As shown in Table 3, the incorporation of anatomical-based spatial 

features largely increased the segmentation performance (AU-Net- 
Spatial compared with U-Net-Intens), significant improvements were 
detected based on DSC and F1. The performance of AU-Net-Spa-
tial + refine achieved better performance compared with U-Net-Intens 
based on DSC, H95 and F1, however, no significant difference was 
detected. AU-Net-Spatial + refine had worse performance compared 
with AU-Net-Spatial, which might be due to overfitting problem. At last, 
AU-Net-two-step achieved best performance among all configurations, 

Fig. 3. Generate anatomical-based spatial features in final model training. A) Relationship between distance and the threshold of normalized WMH volume (log- 
transformed). B) Modified prior probabilities of WMH occurrence for 18 brain regions. Abbreviations: sWM: subcortcal whit matter, dWM: deep white matter, ALIC: 
anterior limb of internal capsule, PLIC: posterior limb of internal capsule, BCC: body of corpus callosum, SCC: splenium of corpus callosum, and GCC: genu of 
corpus callosum. 

Table 2 
Performance of our CNN models, compare with MICCAI-2017 top ranked 
method and independent human observers.  

Algorithm DSC H95 (mm) Recall F1 

Sysu_media 0.87 ± 0.10 3.62 ± 5.88 0.85 
± 0.08 

0.83 
± 0.09 

AU-Net-two-step 0.86 ± 0.09 3.06 
± 4.11 

0.83 ± 0.10 0.82 ± 0.11 

Human Observer 1 0.82 ± 0.08 
* 

4.17 ± 3.18 0.85 
± 0.12 

0.81 ± 0.13 

Human Observer 2 0.82 ± 0.12 
* 

4.25 ± 4.07 0.83 ± 0.09 0.81 ± 0.10  

* : p < 0.05, compared with sysu_media. Boldface indicates the best 
performance. 

Table 3 
Ablation study for AU-Net structure.  

Algorithm DSC H95 (mm) Recall F1 
AU-Net-two-step 0.86 ± 0.09 

*,^ 
3.06 ± 4.11 
*,^ 

0.83 ± 0.10 
*,^ 

0.82 ± 0.11 
*,^ 

AU-Net- 
Spatial + refine 

0.81 ± 0.14 4.70 ± 5.32 0.75 ± 0.16 0.77 ± 0.17 

AU-Net-Spatial 0.84 ± 0.08 
* 

4.26 ± 5.23 0.80 ± 0.12 0.79 ± 0.13 
* 

U-Net-Intens 0.78 ± 0.16 5.57 ± 6.67 0.76 ± 0.15 0.73 ± 0.19  

* : p < 0.05, compared with U-Net-Intens. 
^ : p < 0.05, compared with AU-Net-Spatial + refine. Boldface indicates the 

best performance. 
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significant improvements were detected based on DSC, H95, recall and 
F1, when compared with U-Net-Intens and AU-Net-Spatial + refine. 

3.2.3. Performance in cohorts with different WMH burden 
We calculated precision-recall curves of AU-Net-two-step, AU-Net- 

Spatial and U-Net-Intens during cross-validation procedure. Fig. 4 A) 
shows the results on small and medium WMH group, AUC are 0.82, 0.80, 
and 0.70 respectively. Fig. 4 B) shows results on large WMH group, AUC 
are 0.88, 0.89, and 0.80 respectively. AU-Net largely improved WMH 
segmentation compared to U-Net-Intens with 14 (AU-Net-Spatial 
compared with U-Net-Intens) to 17% (AU-Net-two-step compared with 
U-Net-Intens) increase based on AUC in small and medium WMH burden 
group. AU-Net-two-step achieved the best performance in small and 
medium WMH burden group, whereas AU-Net-Spatial outperformed 
others in cohort with large WMH burden. 

Fig. 5 shows some examples of WMH segmentation using proposed 
AU-Net-two-step and U-Net-Intens configuration, compared with golden 
standard. Hyperintensities located in cerebellum gray matter are not 
considered as WMHs in manually delineation as shown in the first row, 
proposed AU-Net-two-step successfully excluded them from WMHs 
whereas U-Net-Intens over-segmented these regions. The second row in 
Fig. 5 shows a slice with small WMH burden. Proposed AU-Net-two-step 
detected all individual WMH lesions with one false positive happened in 
the region of left parietal subcortical white matter (identified by region 
1), however, U-Net-Intens had more trouble detecting small individual 
lesions, such as false negatives in regions of left parietal subcortical 
white matter (region 2) and left anterior deep white matter (region 3). 
The third row shows a slice with medium WMH burden. AU-Net-two-step 
achieved almost perfect segmentation. U-net-Intens architecture suc-
cessfully detected individual lesion in region 1, however, false positives 
appeared in regions of insular cortex (region 2) and caudate nucleus 
(region 3). 

3.2.4. Computational efficiency 
Preprocessing, training, and testing were performed on workstation 

in a Linux server with 32 Intel Core i7− 6700 @ 3.4 GHz and NVIDIA 
GeForce RTX 2080 Ti 11GB. In the training set, over 100,000 patches 
with size 64 * 64 were generated. Time cost of training each epoch for 
AU-Net-two-step were calculated by adding the time duration in rough 
segmentation and refine segmentation. As shown in Table 4, the incor-
poration of anatomical-based spatial features caused only 2.31% in-
crease for training one epoch (AU-Net-Spatial compared with U-Net- 
Intens). However, using stage-wise CNN to include spatial features 
largely increased the mean time cost for training one epoch, our pro-
posed model AU-Net-two-step spent 61.76% more time in training pro-
cess compared with U-Net-Intens configuration. When segmenting a 

new instance, AU-Net-two-step took slightly longer time compared with 
U-Net-Intens (increased from 7.61 s to 9.18 s). In order to generate 
anatomical-based spatial features for new instance, we used symmetric 
diffeomorphic image registration algorithm (Avants et al., 2008), which 
is built in Advanced Normalized Tools (ANTs). For an image with size of: 
(240, 240, 83), the coregistration process took about 78.16 s. 

3.2.5. Training final CNN model 
Proposed AU-Net-two-step method achieved the best performance in 

cross-validation procedure, and was selected as our final model in this 
study. Loss on training set and validation set were calculated associated 
with each epoch. As shown in Fig. 6 A), after 40 epoches, we achieved 
minimal loss on validation set for rough segmentation. Then the output 
probabilistic maps were fed into a second U-Net combined with 
anatomical-based spatial features for refine segmentation. As shown in 
panel B), parameters in the 42th epoch were chosen. 

The final performance of AU-Net-two-step on validation set were: 
DSC: 0.83 ± 0.18, H95: 4.16 ± 4.11, Recall: 0.81 ± 0.15, and F1: 
0.79 ± 0.12. 

3.3. Patterns of WMH burden associated with cognition 

As shown in Table 1, no group difference existed based on gender, 
age and education years among CN, MCI and AD. Significant group 
differences were detected based on neuropsychological sores (MMSE, 
ADAS and FAQ scales) (p < 0.0001). 

As shown in Table 5, different WMH accumulating patterns 
(measured by WMH volumes) were detected associated with normal 
aging and cognitive impairments. Age-associated WMH volumes were 
located in deep white matter regions (splenium of corpus callosum, left 
anterior and posterior deep white matter). Whereas, regional WMH 
volumes significantly correlated with cognitive impairments measured 
by ADAS, MMSE or FAQ were detected in: bilateral anterior deep white 
matter, left posterior deep white matter, bilateral inferior deep white 
matter, splenium of corpus callosum, bilateral parietal subcortical white 
matter, and bilateral occipital subcortical white matter. 

As shown in Fig. 7 A)-C), after adjustment for gender, age, education 
and total WMH volume, number of individual WMH lesions located in 
right frontal subcortical white matter, right parietal subcortical white 
matter, and corpus callosum were positively correlated with ADAS and 
FAQ. Lesion number in right frontal subcortical white matter was 
negatively correlated with MMSE. 

Mean effective diameters of individual lesions located in right pari-
etal subcortical white matter and genu of corpus callosum presented 
significant positive correlation with cognitive impairments measured by 
ADAS or FAQ (adjusted for gender, age, education and total WMH 

Fig. 4. Precision-recall curves of WMH segmentation methods evaluated on A) small and medium WMH group, and B) large WMH group.  
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volume), as shown in Fig. 7 D)-E). 

4. Discussion 

4.1. Performance of AU-Net 

In this paper, we proposed an anatomical knowledge-based MRI deep 
learning pipeline (AU-Net) by integrating handcrafted anatomical-based 
features with well-designed U-Net configurations to simultaneously 
segment and locate WMHs. AU-Net largely improved WMH segmenta-
tion (compared with the U-Net-Intens configuration), with a 14–17% 
increase based on AUC in small and medium WMH burden group. This is 

preferable because WMHs at early stage of neurodegeneration tend to 
have sparse distributions and small volumes (Habes et al., 2018; Rach-
madi et al., 2018; Wardlaw et al., 2013a). Our method achieved the best 
performance in terms of H95, and a comparable good performance 
based on DSC and F1-score, when compared with state-of-the-art 
method in MICCAI 2017 (Kuijf et al., 2019; Li et al., 2018). We used 
paired t-test to detect significant differences between performances of 
WMH segmentation methods. No significant difference existed between 
our proposed method and state-of-the-art method. However, our method 
was able to simultaneously locate WMHs within predefined anatomical 
brain regions after segmentation, whereas most methods in 
MICCAI-2017 are not capable of quantification for anatomical-based 
lesion spatial distributions (Kuijf et al., 2019). Our method out-
performed independent human observers based on DSC, H95 and F1 
score.Areas for improvement should be focused on the recall metrics for 
detecting individual lesions, of which human observers and 
state-of-the-art method had better performance. Moreover, the proposed 
AU-Net pipeline can be applied to other deep learning-based methods 
with the expectation of improving WMH segmentation performance. 

4.2. Anatomical-based spatial features 

The inclusion of spatial features in WMH segmentation tasks has 
been previously proposed by several studies (Ghafoorian et al., 2017; 

Fig. 5. Examples of WMH segmentation results. Each row shows the same slice. The first row: slice with none WMH burden, the second row: slice with small WMH 
burden, and the third row: slice with medium WMH burden. Left column shows manual delineation of WMHs overlaid on T2-FLAIR, middle column shows results of 
proposed AU-Net-two-step configuration, and right column shows results of U-Net-Intens. 

Table 4 
Computational efficiency of WMH segmentation methods.  

Algorithm Nonlinear 
coregistration 
[seconds] 

Training for one 
epoch [seconds] 

Segmenting new 
instance [seconds] 

AU-Net- 
two-step 

78.16 585.03 ± 7.50 9.18 

AU-Net- 
Spatial 

78.16 370.03 ± 8.20 7.90 

U-Net- 
Intens 

– 361.67 ± 4.40 7.61  
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Griffanti et al., 2016; Rachmadi et al., 2018). Spatial coordinates in the 
MNI space and voxel-based prior probabilistic templates of WMHs are 
commonly used approaches for incorporating spatial features. Several 
studies have conformed that significant improvement would achieve in 
segmenting WMH after incorporating spatial features into CNN (Gha-
foorian et al., 2017; Rachmadi et al., 2018). The inclusion of spatial 
features is based on the idea that some regions of the brain are more 
likely to suffer from a higher WMH burden than others. However, this 
assumption might be biased because the prior probabilities are mainly 
determined by large continuous WMHs. Due to the fact that large WMHs 
are typically located in the periventricular and deep white matter re-
gions, it may be difficult for location-sensitive methods to segment small 
individual lesions that are located in subcortical areas (Kuijf et al., 
2019). The use of coordinates and voxel-based prior probabilities may 
also suffer from missed coregistration problems and high computational 

burdens. In our study, we introduced anatomical-based spatial features, 
modified prior probabilities of WMH occurrence were assigned to 18 
brain regions by setting a threshold for normalized WMH volumes. This 
approach makes our network less sensitive to specific locations while 
still benefitting from additional anatomical knowledge. This approach is 
also less sensitive to missed coregistration. Anatomical-based spatial 
features have the same dimension as the intensities that are extracted 
from T1 and T2-FLAIR image, which, as shown in our results, did not 
dramatically increase the computational burden in either training or 
testing procedures. However, when stage-wise network configuration is 
used for incorporating spatial features, a large increase in time cost 
would occur during model training. Furthermore, as the spatial features 
are handcrafted, a nonlinear coregistration procedure is needed for 
preprocessing, which leads to a major increase in the computational 
burden when segmenting a new instance. New methods for nonlinear 
coregistration have been developed in recent years, such as diffeomor-
phic Demons algorithm and deep learning-based methods (Dalca et al., 
2018). The time cost for running these algorithms on a GPU can be 
reduced to less than 30 swithout strongly compromising the accuracy. 
These methods should be used to improve the performance of our 
method in the future. 

4.3. Stage-wise network configuration 

Recently, several deep learning-based frameworks were specifically 
designed for fusing the features from multimodality data and were 
successfully applied to dementia diagnosis and MR image synthesis 
(Zhou et al., 2020, 2019). In these frameworks, stage-wise configura-
tions were designed to solve the problems of heterogeneous data and 
sample limitations. In each stage, a deep neural network was designed to 
learn the latent data representations for different combinations of mo-
dalities by using the maximum number of available samples. Through 
stage-wise configuration, the network should be able to exploit the un-
derlying correlations among multiple modalities, while also capturing 
modality specific information (Zhou et al., 2020). Our proposed 
AU-Net-two-step configuration presents similar idea for dealing with 
heterogeneous features. For WMH segmentation in this paper, two 
heterogeneous features were involved: intensities extracted from MRI 
images and handcrafted anatomical-based spatial features. Intensities 
are voxel-based features whereas spatial features are ROI-based, they 
have different ranges (the intensity of a voxel labeled as WMH can be 
larger than 4 after normalization, whereas spatial features have a range 
of [0, 1]) and distributions. Moreover, these two features have different 
levels of discriminative ability for lesion segmentation: intensity fea-
tures play a major role in identifying WMHs, whereas spatial features 

Fig. 6. Loss associated with each epoch in the final model training procedure: A) for the first step: rough segmentation and B) for the second step: refine 
segmentation. 

Table 5 
Correlation coefficients (r) between regional WMH volumes (in mL), age and 
neuropsychological sores, only regions with significant correlation are listed.  

White 
matter 
regions 

r between 
WMH 
volumes and 
age 

r between 
WMH 
volumes and 
ADAS 

r between 
WMH 
volumes and 
MMSE 

r between 
WMH 
volumes and 
FAQ 

Anterior 
dWM (L) 

0.26* 0.18* − 0.18** 0.16* 

Anterior 
dWM (R) 

0.17 0.20* − 0.18** 0.21** 

Posterior 
dWM (L) 

0.21* 0.14 − 0.17* 0.16* 

Inferior 
dWM (L) 

0.15 0.20* − 0.23** 0.17* 

Inferior 
dWM (R) 

0.20 0.15* − 0.16* 0.13 

SCC 0.22* 0.19* − 0.23** 0.21** 
Parietal 

sWM (L) 
0.18 0.13 − 0.19** 0.16* 

Parietal 
sWM (R) 

0.06 0.11 − 0.16* 0.18* 

Occipital 
sWM (L) 

0.16 0.17* − 0.21** 0.19* 

Occipital 
sWM (R) 

0.23 0.15* − 0.20** 0.16 

Abbreviations: dWM: deep white matter, sWM: subcortical white matter, SCC: 
splenium of corpus callosum, ADAS: Alzheimer’s Disease Assessment Scale, 
MMSE: Mini Mental State Examination, FAQ: Functional Assessment 
Questionnaire. 

* : p < 0.05. 
** : p < 0.01. 
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should provide complementary information for difficult decisions such 
as detecting subcortical small lesions and avoiding false positives in 
typical areas (gray matter, periventricular areas and corpus callosum). 
To resolve the heterogeneity problem, we designed a two-step U-Net 
framework. In the first stage, our network was trained by using in-
tensities that were extracted from T1 and T2-FLAIR patches, after which 
the high-level features were combined with anatomical-based spatial 
features for the training of a second U-Net in stage 2. As shown by our 
results, the AU-Net-two-step configuration achieved much better results, 
when compared with direct concatenation of intensities and spatial 
features in the input layer (such as AU-Net-Spatial, and AU-Net-Spa-
tial + refine), which indicates that the stage-wise deep neural network 
configuration may be a powerful framework for resolving problems of 
multimodality data fusion. 

4.4. Cognition associated WMH burden 

In this study, we found different WMH accumulation patterns 
(measured by WMH volumes) that were associated with normal aging 
and cognitive impairments. Age-associated WMH accumulation was 
mainly located in regions of deep white matter, whereas cognition- 
associated WMH burdens infected more functional regions (ranging 
from deep white matter to subcortical white matter). These results are 
consistent with results from previous studies (Frey et al., 2019; Habes 
et al., 2016, 2018). Recent studies have also shown that WMH burden in 
strategic white matter tracts, such as the forceps minor, forceps major, 
superior longitudinal fasciculus or anterior thalamic radiation (ATR), is 
more relevant in explaining the variance in cognitive functioning, when 
compared to global WMH volume (Biesbroek et al., 2017). As these fiber 
tracts are typically distributed in regions of anterior deep white matter, 
and corpus callosum, as well as frontal, occipital and parietal subcortical 
white matter, the significant correlation between lesion distributions 
and cognition that was detected by our methods may be explained by the 
injury of the specific fiber connectivity. An epidemiological study 
confirmed that, within elderly and neurodegenerative cohorts, the ma-
jority of WMHs are individual small lesions with effective diameters 
<=3 mm (Ghafoorian et al., 2015). Moreover, in longitudinal research, 
individual small WMH lesions have been observed to grow over time 
(Frey et al., 2019; Ghafoorian et al., 2015), thus, individual WMH 
located in strategic white matter tracts should be an important risk 
factor for future cognitive impairments. Using our methods, the growth 

of individual WMH lesions within important brain regions can be 
automatically traced by measuring the number and effective diameters 
of lesions, which should be important for the further exploration of 
lesion-symptom mapping relationships in neurodegeneration. 

Regional WMH accumulation may be a relatively severe conse-
quence of the continuous and chronic pathological progress of white 
matter tract injury (Prins and Scheltens, 2015). A longitudinal study in 
2018 concluded that white matter damage can be detected by diffusion 
tensor imaging (DTI) before the appearance of WMH lesions (van Leijsen 
et al., 2018). By providing finer spatial resolution utilizing multi-
modality MR imaging technique, researchers have also explored the 
spatial relationship between diffusion characteristics along white matter 
tracts and the distance from WMHs (Reginold et al., 2018). Several 
clinical neuroimaging biomarkers were found to be associated with 
neurodegeneration, including: small subcortical infarctions, lacunes of 
presumed vascular origins, WMHs of presumed vascular origins, peri-
vascular spaces, cerebral microbleeds, and brain atrophy (Wardlaw 
et al., 2013b). These biomarkers may be interrelated in their develop-
ment because they share similar risk factors and etiologies; additionally, 
they may have both combined and independent impacts on cognitive 
functioning (Prins and Scheltens, 2015). For example, WMH accumu-
lation in certain strategic regions can cause the aggravation of cortical 
neurodegeneration over time, as was proposed by a study in 2018 
(Habes et al., 2018). These results suggest that an AD-related neuro-
degeneration spectrum may exist that combines the interrelation and 
coupling of pathologies that are observed in multimodality neuro-
imaging. Subtle impairments of white matter tracts caused by chronic 
ischemia or other risk factors may be present in the early phase. 
Regional WMH lesions may reflect the accumulation effect of impair-
ments in fiber connectivity, and are further involved in neuro-
degeneration by triggering or aggravating other related cerebral 
pathologies. 

4.5. Limitations and future directions 

Several limitations of this study should be noted. First, the manually 
annotated training set only consisted of 60 subjects, which is rather 
small for the deep learning-based method. Transfer learning can be used 
to resolve this problem in the future. Second, we only used the U-Net 
based architecture for the design of segmentation framework. Although 
we confirmed that anatomical knowledge can improve WMH 

Fig. 7. Associations between the characteristics of individual 
WMH lesions and cognitive impairments. Regional lesion numbers 
were significantly correlated with A) ADAS in regions of: right 
frontal (label 19), right parietal subcortical white matter (label 23) 
and splenium of corpus callosum (label 12), B) MMSE in regions of 
right frontal subcortical white matter, C) FAQ in regions of: right 
frontal, right parietal subcortical white matter, body of corpus 
callosum (label 11) and splenium of corpus callosum. Mean effec-
tive diameters of WMH lesions were significantly correlated with 
D) ADAS in genu of corpus callosum (label 13), E) FAQ in right 
parietal subcortical white matter. +: positive correlation with 
p < 0.05, ++: positive correlation with p < 0.01, -: negative cor-
relation with p < 0.05. Abbreviations: ADAS: Alzheimer’s Disease 
Assessment Scale, MMSE: Mini Mental State Examination, FAQ: 
Functional Assessment Questionnaire.   
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segmentation, the optimal network configurations should be further 
developed. Third, for the investigation of cognition-associated WMH 
burden, novel and multiple neuroimaging techniques should be used to 
characterize the location of WMHs within white matter network. 
Finally, as the majority of subjects present a small to medium WMH 
burden, especially in the stage of prodromal neurodegeneration (Bies-
broek et al., 2017; Prins and Scheltens, 2015), in order to assess the 
associations between lesion locations and cognitive impairments of 
specific domains, large multicenter studies that include thousands of 
individuals are needed to provide coverage in rarely affected brain re-
gions and to provide powerful generalizations. Longitudinal studies are 
also important for relating new incident lesions in strategic regions with 
cognitive decline, as well as for exploring their interactions with other 
pathologies in neurodegeneration, such as brain atrophy. 

5. Conclusion 

In this study, we proposed AU-Net framework to simultaneously 
segment and quantify WMH burden. This method significantly improved 
WMH segmentation performance, especially in cohorts with small and 
medium WMH burdens, and achieved comparable good performance 
when compared with the state-of-the-art method. Different network 
architectures for incorporating anatomical-based spatial features were 
evaluated, a stage-wise configuration achieved the best performance. 
After segmentation, anatomical-based descriptions of WMH burdens can 
be immediately quantified. By applying AU-Net to ADNI dataset, we 
detected different patterns of WMH accumulation that were associated 
with normal aging and cognitive impairments. Our findings also suggest 
that the characteristics of individual WMH lesions were still significantly 
correlated with cognition after controlling for total lesion volumes. AU- 
Net can be applied to other deep learning-based methods with the 
expectation of improving WMH segmentation; more importantly, it may 
facilitate the identification of lesions in cognition evaluation studies, 
based on anatomical knowledge. 
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