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The reliable change index (RCI) is a commonly used method for interpreting change in
neuropsychological test scores over time. However, the RCl is a psychometric method
that, to date, has not been validated against neuroanatomical changes. Longitudinal
neuroimaging and neuropsychological data from baseline and one-year follow-up visits
were retrieved from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
The RCI was used to identify participants showing reliable decline on memory (ADNI-
Mem; N = 450) and executive functioning (ADNI-EF; N = 456) factor scores. For each
factor score, two groups (reliable change vs. no reliable change) were matched on
potential baseline confounding variables. Longitudinal neuroanatomical data were
analysed using tensor-based morphometry. Analysis revealed that reliable change on
ADNI-Mem was associated with atrophy in the medial temporal cortex, limbic cortex,
temporal lobe and some regions of the parietal lobe. Similar atrophy patterns were found
for reliable change on ADNI-EF, except that atrophy extended to the frontal lobe and the
atrophy was more extensive and of higher magnitude. The current study not only validates
clinical usage of the RCI with neuroanatomical evidence of associated underlying brain
change but also suggests patterns of likely brain atrophy when reliable cognitive decline is
detected.

Dementia is a prevalent disorder permeating the older adult population throughout the
world. Over 35 million older adults are affected by dementia, and this number is estimated
to surge to 65 million in 2030 and 115 million in 2050 (Prince et al., 2013). The most
common cause of dementia is Alzheimer’s disease (AD), affecting approximately 33.9
million people worldwide and 5.3 million people in the United States (Brookmeyer,
Johnson, Ziegler-Graham, & Arrighi, 2007). AD is described as causing an insidious decline
in cognition, as it gradually affects the brain and, consequently, cognitive functioning. In
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particular, AD has demonstrated associations with patterns of brain atrophy that
correspond to predictable changes in cognitive ability. The literature has found solid
evidence to link episodic memory to circuitry involving the medial temporal lobes (e.g.,
hippocampus, entorhinal cortex), limbic system, thalamus and white matter pathways
connecting these structures (e.g., Burianova, McIntosh, & Grady, 2010; Cummings,
Tomiyasu, Read, & Benson, 1984; Danet et al., 2015; Hamani et al., 2008; Maddock,
Garrett, & Buonocore, 2001; Rodrigue & Raz, 2004; Tsivilis et al., 2008). Executive
functions, on the other hand, have been more closely linked to frontal lobe functioning
(Konishi et al., 1998; Mentzel et al., 1998; Volz et al., 1997), prefrontal grey matter volume
(Gunning-Dixon & Raz, 2003) and underlying white matter integrity (Kerchner et al.,
2012).

An essential clinical diagnostic feature of all neurodegenerative dementias, including
AD, is the presence of documented cognitive change from a previous level (American
Psychiatric Association, 2013; McKhann et al., 2011). When neuropsychological test
score changes are used to make inferences about underlying brain changes, test scores
must demonstrate criterion validity for this purpose. Although numerous studies have
demonstrated associations between brain change and cognitive change in group data
(e.g., Fletcher et al., 2018), there are a number of practical and conceptual issues that can
complicate detection of cognitive change in individual patients.

Challenges in idiographic detection of cognitive change include, but are not limited to,
low test-retest reliability, practice effects, floor and ceiling effects, and regression to the
mean. In serial assessment, a test should produce consistent results between two time
points. Since no test possesses perfect test-retest reliability — that is, a total lack of
measurement error — score fluctuations over time might not reflect true changes but
merely error of the test itself (Bowden & Finch, 2017). Tests with lower reliability are thus
more susceptible to measurement error, which can either mask or exaggerate true change
in the ability being measured.

Although in some cases it may be inadvisable to dichotomize continuous variables such
as the magnitude of change in a test score, for individual clinical applications, questions
often must be answered about whether the observed change is ’reliable’; that is, large
enough to be reasonably certain that it is not due to measurement error. One of the
methods commonly used in clinical settings to make decisions about the absence or
presence of reliable change is the reliable change index (RCD). In its early form, the RCI
considered only the initial test score and standard error when predicting the retest score
(Christensen & Mendoza, 1986). Nevertheless, the formulae to compute RCI have evolved
throughout the years, adding more information to account for confounding factors, such
as the reliability of a measurement (Jacobson & Truax, 1991) and practice effects
(Chelune, Naugle, Luders, Sedlak, & Awad, 1993). A more advanced version of the RCI,
known as the standardized regression-based formula, was formulated using linear
regression, which accounts for regression to the mean (McSweeny, Naugle, Chelune, &
Luders, 1993).

Based on an examinee’s baseline test score and the psychometric properties of
the test, the RCI generates a confidence interval representing the range of retest
scores that would be expected to occur with a given probability (here, 90%) simply
due to measurement error (i.e., when no true change in ability occurs). Therefore,
when an individual’s retest score falls outside the range of the RCI interval, they are
considered as having shown reliable (i.e., statistically significant) change. Such a
psychometric approach offers clinicians an objective and quantifiable method to
make clinical decisions about whether an observed test score change was or was not
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produced simply due to chance under a certain level of confidence. Because this
method is essentially equivalent to null hypothesis significance testing, however, it
suffers from the same issue of statistical versus clinical significance that is often
discussed in the clinical literature (Millis, 2003). Therefore, validation of the RCI
against a meaningful criterion standard, such as documented brain change, is
essential to demonstrating its criterion validity and clinical significance.

In one of the only studies known to examine the criterion validity of RCI
methods against neuroimaging data, Duff, Suhrie, Dalley, Anderson and Hoffman
(2019) evaluated reliable change on neuropsychological tests in a sample of 25 older
adults over a one-week retest interval. Their results showed that a regression-based
approach to calculating RCIs was associated with neuroimaging measures of
hippocampal volume and amyloid deposition at baseline. This gave validation to
regression-based formulas for RCI; however, their results were based on a small
sample of one-time neuroimaging measurements and follow-up cognitive assessment
over a relatively short retest interval. We propose here to extend that work by
testing the associations of RCI to longitudinal brain tissue volume change, using an
exploratory voxel-based signature region approach (Bakkour et al., 2009; Dickerson
et al., 2009; Fletcher et al., 2013; Hua et al., 2008) for computations of local one-
year brain atrophy rates. To build on the work of Duff et al. (2019) and further
validate the regression-based RCI against neuroanatomical evidence, the current
study used comprehensive and longitudinal brain structural measures, a one-year
retest interval, a large and cognitively heterogeneous sample, and a matching
procedure to control for the influence of numerous potential confounding variables.

The present study

To summarize, the present study aimed to examine the criterion validity of the RCI,
applied to two composite cognitive scores from ADNI — ADNI-Mem (memory) and
ADNI-EF (executive function) — for its associations with longitudinal brain atrophy
across a period of one year. To mirror the dichotomous decisions about change vs.
no change often faced by clinicians, the RCI was used for each factor score
separately to identify one group of participants showing reliable change (RC) and a
matched group of participants showing no reliable change (NC). We hypothesized
that, compared to the NC groups, the RC groups would show greater brain atrophy
in a manner that corresponds to the neuroanatomical regions thought to underlie
performance on tests of episodic memory and executive functioning. That is, reliable
change on ADNI-Mem is expected to correspond to greater atrophy in temporolim-
bic regions, whereas reliable change on ADNI-EF is expected to correspond to
greater atrophy in frontal-striatal regions.

Method

Participants

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial Magnetic Resonance Imaging (MRI), Positron Emission Tomography
(PET), other biological markers, and clinical and neuropsychological assessment can be
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combined to measure the progression of mild cognitive impairment (MCI) and early AD.
(For up-to-date information, see www.adni-info.org.) Therefore, all data used were
archival. The current research protocol was evaluated by The University of Colorado
Colorado Springs Institutional Review Board, who determined that the current research
was exempt from review because it was not human subjects research. Inclusion criteria
for the present study were that participants should complete both neuropsychological
assessment and MRI scanning at two time points approximately one year apart.

Materials

ADNI-Mem and ADNI-EF

ADNI-Mem (Crane et al., 2012) and ADNI-EF (Gibbons et al., 2012), which are
psychometrically sophisticated composite scores of memory and executive functioning,
respectively, were used to identify individuals who experienced reliable change in
cognition. Using confirmatory factor analysis, ADNI-Mem factor scores are derived from
observed scores on the Mini-Mental State Examination (Folstein, Folstein, & McHugh,
1975), AD Assessment Schedule — Cognition (Rosen, Mohs, & Davis, 1984), Auditory
Verbal Learning Test (Rey, 1941) and Logical Memory (Wechsler, 1987). Similarly, ADNI-
EF factor scores are derived from observed scores on Digit Symbol Coding and Digit Span
(Wechsler, 1981), Trail Making Test A and B (Reitan and Wolfson, 1993; Strauss, Sherman,
& Spreen, 20006), category fluency (Animal and Vegetable; Thurstone, 1938) and the clock
drawing test (Kaplan, 1988). Both ADNI-Mem and ADNI-EF factor scores were scaled as z-
scores (M = 0, SD = 1). The psychometric properties (i.e., test—retest reliability, means
and standard deviations) of these factor scores used in the construction of reliable change
indices were derived from the cognitively normal group in ADNI and are reported below.

MRI measures

Brain volume measurements were based on T1-weighted MRI scans acquired with 1.5- or
3-Tesla scanners. The data collected in the current study spans from ADNI1 to ADNI3 and
the MRI protocol has changed throughout the years. As described below, we used
matched samples to ensure that groups did not differ in MRI collection protocols. Baseline
MRI scans and longitudinal data were processed with the University of California (UC) at
Davis IDeA (Imaging of Dementia and Aging) laboratory’s in-house pipeline (Fletcher
et al., 2013; Fletcher, Singh, Harvey, Carmichael, & DeCarli, 2012). Tensor-based
morphometry (TBM) was conducted to analyse the MRI change data (Fletcher et al.,
2013). Briefly, for each individual subject, sequential scans were first linearly aligned to a
common ’halfway’ space. Then, a nonlinear deformation using TBM was calculated to
capture local nonlinear variations between the two scans (Fletcher et al., 2018). The
determinant of the 3 X 3 Jacobian matrix of the deformation field yielded a local volume
change factor at each voxel, which was then log-transformed (the log-Jacobian) to
produce a symmetric distribution about zero, with negative values indicating tissue
atrophy and positive values indicating volume expansion. The log-Jacobian provides
approximate percentage volume change at each voxel. Both voxelwise and region of
interest (ROD analyses were performed using the log-Jacobian atrophy estimates;
predefined ROIs were determined using the Mindboggle atlas of cortical parcellations
(https://mindboggle.info/; Klein et al., 2017).
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Procedure

The present research includes two studies, the first for ADNI-Mem and the second for
ADNI-EF. The procedures for these two studies were identical, with the exception of the
cognitive test score used to identify reliable change. Participants who showed reliable
cognitive decline on ADNI-Mem or ADNI-EF, using the methods described below, were
selected from the data set and assigned to the RC group. Participants who did not show
reliable change and who were matched on a number of background variables, described
below, were assigned to the NC group.

Reliable change

To divide participants into RC and NC groups, McSweeny et al. (1993) RCI formula was
implemented, which uses a simple regression-based approach. For each participant, a 90%
RCI confidence interval for a predicted follow-up score was calculated based on the tests’
psychometric and statistical properties and participants’ baseline cognitive test scores. If
the difference between the participants’ observed and predicted follow-up scores fell
below the 90% reliable change interval, the participant was assigned to the RC group.
Because we predicted a directional effect (i.e., decline), we used a 1-tailed reliable change
interval; as such, all participants not meeting our criteria for reliable change — even those
who may have showed reliable improvement in their cognitive test scores over time —
were considered to have experienced 'no change’.

Participant matching

To ensure that participants from the RC group and the NC group were equivalent on
relevant confounding variables, a genetic matching procedure was applied to create two
equivalent groups of equal sample size. Genetic matching is a statistical procedure that is
used to generate groups of individuals that are comparable across a number of variables
(Diamond & Sekhon, 2013). The confounding variables that were matched included
baseline clinical diagnosis (cognitively normal, MCI or AD); demographic variables,
including age, gender, years of education, race and ethnicity; baseline cognitive
performance (explicated in the following sections); study-specific variables, including
participants’ baseline and follow-up data collection protocols (ADNI-1, ADNI-2, ADNI-GO,
ADNI-3); the duration of the test—retest interval; and baseline whole brain volume,
adjusted for intracranial volume.

Because the number of RC participants was smaller than the number of NC
participants for both ADNI-Mem and ADNI-EF, the size of the RC group was used as the
default sample size for matching purposes. The matching procedure used in the current
research comes from the Matching package version 4.9-3 (Sekhon, 2011), an R (R Core
Team, 2019) library that performs matching using a genetic algorithm. Details about this
package have been explicated in Diamond and Sekhon (2013).

Data analysis

Neuroanatomical data were analysed with two techniques: voxelwise whole brain
analysis and ROI analysis. In order to perform voxelwise analysis, all log-Jacobian atrophy
maps in subject native space were nonlinearly warped to a common age-appropriate
template brain (Kochunov et al., 2001) using a cubic B-spline diffeomorphism (Rueckert,
Aljabar, Heckemann, Hajnal, & Hammers, 2006). In each group, we performed an



6 Shayne S.-H. Lin et al.

exploratory, voxelwise test of the entire brain parenchyma, leading to a ’signature ROT’
depiction of areas of the brain most strongly associated to cognitive outcome (Bakkour
et al., 2009; Dickerson et al., 2009; Fletcher et al., 2013; Hua et al., 2008). These could
then be compared for RC and NC groups to reveal differing patterns of brain atrophy most
associated with each group. The signature ROIs were created by nonparametric
superthreshold cluster testing, which has been found to produce similar results to the
familywise error methods used by Statistical Parametric Mapping (SPM) software (Nichols
& Holmes, 2002). This analysis was aimed at examining different patterns of brain atrophy
for RC and NC groups relative to each of the cognitive domains. An alpha level of .001 was
adopted with 1000 iterations of random permutations. For ROI analysis, mean log-
Jacobian atrophy rates were compared between the RC and NC groups for brain grey
matter regions parcellated by the Mindboggle atlas (Klein et al., 2017).

Results

Study | - ADNI-Mem

As described above, we used the performance of participants clinically diagnosed as
cognitively normal by ADNI at both baseline and follow-up (7 = 450) to determine the
psychometric properties of ADNI-Mem scores, so we could construct the RCI for this
measure. The formulas used to determine reliable change are shown below.

TxyS _ _TxS
Y =, 22 (5 g
Sx Sy

SEE:syq/l—rfy

where x; is an individual participant’s baseline ADNI-Mem score, 7, is the test-retest
reliability (ry, = .79, 95% CI [.75, .82]), X and s, are the mean (X = 1.04) and standard
deviation (s, = 0.57) of ADNI-Mem scores at baseline, y and s, are the mean (y = 1.1 2)and
standard deviation (s, = 0.62) of ADNI-Mem scores at follow-up, )’ is the predicted follow-
up ADNI-Mem score, and SEg is the standard error of the estimate. If the difference
between an individual participant’s observed follow-up ADNI-Mem score and their
predicted follow-up ADNI-Mem score (y; —)") was lower than —1.645 X SEg, then the
participant was classified as having shown reliable change (decline) on ADNI-Mem. This
approach generates a unique )’ value for each participant — depending on their observed
score at baseline — and a single SEy value for all participants. For ADNI-Mem, SEj was .38,
meaning that an individual’s follow-up score needed to be more than .625 points lower
than predicted to be considered ’reliable’ change with 90% confidence.

Participant matching

From a total of 1412 ADNI participants with at least 2 visits and no missing data on the
variables needed for matching, 225 participants were identified as exhibiting reliable
change over one year on the ADNI-Mem factor score, using the McSweeney method
(McSweeny et al., 1993) for identifying reliable decline applied to the psychometric data
described above. A second sample of 225 participants was matched to this sample, with
the exception that the second sample did not show reliable change on ADNI-Mem scores.
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The success of the matching procedure in selecting 225 matched NC participants was
judged using bootstrap p-values and effect sizes (e.g., standardized mean difference).
Results from the genetic matching procedure revealed that the two groups were not
statistically different from each other on any of the confounding variables (Table 1). Of
these 450 participants, 44 (ngc = 20, nnc = 24) were in the sample of 450 individuals
described in the previous section whose data were used to generate the sample means,
standard deviations and test-retest reliability data used to identify reliable change.

Voxelwise exploratory brain analysis

After matching, whole brain analysis was done to understand voxelwise patterns of
atrophy that differed between the two groups. Longitudinally, voxelwise whole brain
analysis revealed that, whereas the RC group showed extensive bilateral atrophy,
principally in the medial and lateral temporal lobes, the NC group displayed only a
negligible amount of atrophy (Figure 1).

ROI analysis

Group ROI comparisons are shown in Table 2. These results show that the RC group
experienced more atrophy than the NC group in supramarginal gyrus (219% more
atrophy), inferior parietal lobule (135% more atrophy), superior temporal gyrus (56%
more atrophy), inferior temporal gyrus (45% more atrophy), rostral anterior cingulate
(44% more atrophy), entorhinal cortex (43% more atrophy), lateral temporal cortex (43%
more atrophy), middle temporal gyrus (40% more atrophy), fusiform gyrus (33% more
atrophy) and parahippocampal gyrus (20% more atrophy).

Study 2 — ADNI-EF

The performance of participants clinically diagnosed as cognitively normal by ADNI at
both baseline and follow-up was used for the purposes of determining the psychometric
properties of ADNI-EF scores. In this sample (z = 421), the test—retest reliability of ADNI-
EF was ry, = .71, 95% CI [.66, .76], average performance at baseline was X = 0.81
(sx = 0.78), and average performance at follow-up was y = 0.90 (s, = 0.79). The
equations described in the ADNI-Mem section above were also applied to the ADNI-EF
data to determine reliable change (decline) on this scale. For ADNI-EF, SE; was 0.50,
meaning that an individual’s follow-up score needed to be more than 0.915 points below
predicted to be considered ’reliable’ change with 90% confidence.

Participant matching

From a total of 1412 ADNI participants with at least two visits and no missing data on the
variables needed for matching, 228 participants were identified as exhibiting reliable
decline over one year on the ADNI-EF factor scores. A second sample of 228 participants
was matched to this sample, with the exception that the second sample did not show
reliable change on ADNI-EF scores. Results from the genetic matching procedure revealed
that the two groups were not statistically different from each other on any of the
confounding variables, except for age (Table 3). Although the NC group was older than
the RC group, the difference was small (1.56 years; d = .213). Of these 456 participants,
35 (nrc = 15, nyc = 20) were in the sample of 421 individuals described in the previous
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4.500 6.000

Figure 1. Significant clusters (p < .001) of tissue atrophy over one-year period for the RC group (top)
and the NC group (bottom) in the ADNI-Mem study. Colour bar shows approximate percentage of
volume loss at each voxel (corresponding to the log-Jacobian values from Table 2 multiplied by 100). Left
column: axial views; right column: coronal views. Left side of each image (axial and coronal) = left
hemisphere.

section whose data were used to generate the sample means, standard deviations and
test—retest reliability data used to identify reliable change.

Voxelwise exploratory brain analysis

After matching, whole brain analysis was done to understand voxelwise patterns of
atrophy that differed between the two groups. Longitudinally, voxelwise whole brain
analysis revealed that, whereas the RC group showed extensive bilateral atrophy,
principally in medial and lateral portions of the temporal lobes, the thalamus, corpus
callosum, posterior cingulate and the medial orbitofrontal portions of the frontal lobe, the
NC group displayed a smaller extent of atrophy with lower £ magnitudes of significance
(Figure 2). The atrophy pattern in the temporal lobe and the limbic cortex was similar in
both ADNI-Mem and ADNI-EF. However, the atrophy pattern in the RC group in the ADNI-
EF study was more extensive, and of overall higher signal magnitude than for the ADNI-
Mem RC.
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Figure 2. Significant clusters (p < .001) of tissue atrophy over one-year period for the RC group (top)
and the NC group (bottom) in the ADNI-EF study. Colour bar shows approximate percentage of volume
loss at each voxel (corresponding to the log-Jacobian values from Table 4 multiplied by 100). Left column:
axial views; middle column: sagittal views; right column: coronal views. Left sides of the axial and coronal
images = left hemisphere.

ROI analysis

Group ROI comparisons are shown in Table 4. These results show that the RC group
experienced more atrophy than the NC group in precentral gyrus (>1000% more
atrophy), rostral middle frontal gyrus (>1000% more atrophy), pars orbitalis (458% more
atrophy), superior frontal gyrus (330% more atrophy), lateral orbitofrontal cortex (187%
more atrophy), pars triangularis (179% more atrophy), pars opercularis (95% more
atrophy), supramarginal gyrus (89% more atrophy), medial orbitofrontal sulcus (85%
more atrophy), precuneus (62% more atrophy), superior temporal gyrus (60% more
atrophy), hippocampus (59% less enlargement), entorhinal cortex (56% more atrophy),
lateral temporal cortex (55% more atrophy), middle temporal cortex (50% more atrophy),
inferior temporal lobule (47% more atrophy), posterior cingulate (42% more atrophy),
fusiform gyrus (34% more atrophy), caudal anterior cingulate cortex (34% more atrophy),
medial temporal cortex (33% more atrophy) and isthmus of the cingulate (25% more
atrophy). It should also be noted that some of these extremely high values for percent
change in atrophy were largely driven by very small values in the denominator, which
represent the amount of atrophy (often not statistically different from 0) in the NC group.
Therefore, the Cohen’s d values reported in Tables 2 and 4 likely provide a more realistic
measure of effect size than per cent change in atrophy rates. According to a common
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convention for qualitatively labelling effect sizes (Cohen, 1988), these are considered
’small’, even those for which the percent atrophy rate appears to be quite large.

Discussion

The goal of this project was to determine the criterion validity of the RCI when applied to
composite cognitive measures of memory and executive functioning, using neuroimaging
evidence of brain atrophy over a one-year follow-up period as the criterion standard. The
current study built upon a previous pioneering study (Duff et al., 2019) and employed a
larger sample size, a longer retest period, matched samples and comprehensive
longitudinal brain measurements. We were thus able to validate the RCI against actual
brain volume change as opposed to baseline cross-sectional measures. In both the ADNI-
Mem and the ADNI-EF studies, voxelwise whole brain analysis and ROI analysis revealed
greater brain atrophy in the RC groups compared to the NC groups, which were matched
on key confounding variables. Overall, the brain regions that demonstrated the greatest
atrophy, evident in both studies, included the medial temporal cortex, the temporal lobe
and some parts of the parietal lobe. The RC group in the ADNI-EF study demonstrated
more extensive atrophy in the frontal and temporal lobes and posterior cingulate cortex
compared to the RC group in the ADNI-Mem study. These findings demonstrate that the
presence of reliable change on neuropsychological test scores can be valuable in making
inferences about the underlying brain regions that are likely to have experienced atrophy
over a given time interval.

Our results suggest that patterns of atrophy underlying reliable change on ADNI-Mem
include the medial temporal cortex, the temporal lobe and some parts of the parietal lobe.
In fact, the evidence showing the relationship between the medial temporal lobes and
episodic memory functioning is abundant: the hippocampus, the parahippocampal gyrus
and the entorhinal cortex are three brain regions that tend to be most highly correlated
with episodic memory functioning. For example, a longitudinal study revealed that
atrophy of the entorhinal cortex was predictive of worse memory performance five years
later (Rodrigue & Raz, 2004). More broadly, there is abundant evidence in the literature
showing that subcomponents of the limbic system, such as the fornix (Aggleton et al.,
2000), the mammillary bodies (Tsivilis et al., 2008) and the cingulate gyrus (Burianova,
Mclntosh, & Grady, 2010; Maddock, Garrett, & Buonocore, 2001) are associated with new
learning and retention. However, in the current study, when groups were defined on the
basis of reliable change in ADNI-Mem scores, no group differences were detected in the
hippocampus, a medial temporal lobe structure believed to be of primary importance for
episodic memory ability. This unexpected finding is discussed in more detail below.

Results from the ADNI-EF study were different from, but overlapping with, patterns of
atrophy in the ADNI-Mem study. Brain regions whose atrophy differed depending on the
absence or presence of reliable change in ADNI-EF scores were the medial temporal
cortex, portions of the lateral temporal lobe, portions of the frontal lobe and some regions
of the parietal lobe. Compared to the ADNI-Mem results, reliable change in ADNI-EF
scores was predictive of more atrophy in general, but especially in the temporal lobe,
corpus callosum, medial orbitofrontal, thalamus and posterior cingulate cortex (Fig-
ure 2). Evidence of greater frontal lobe involvement is also seen in Table 4. The atrophy
associated with reliable change in ADNI-EF is consistent with existing literature
documenting the important role of the frontal lobes in promoting executive functions,
both from lesion studies (Barcelé6 & Knight, 2002; Eslinger & Grattan, 1993; van den
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Broek, Bradshaw, & Szabadi, 1993) and from neuroimaging studies (Konishi et al., 1998;
Mentzel et al., 1998; Volz et al., 1997). However, it is also worth mentioning that recent
studies have focused more on neural connectivity integrating the frontal lobe to other
regions of the brain in performing executive function tasks (Braun et al., 2015). Regions
that connect with the frontal lobe for executive functioning include the parietal lobe,
limbic system, basal ganglia, and other cortical and subcortical regions (for a compre-
hensive meta-analytic review, see Niendam et al., 2012). The fact that the current study
also found concurrent atrophy in parietal lobe, temporal lobe and limbic system
structures, in addition to the frontal lobe, supports the importance of neural connectivity
in executive functions and Braun et al’s view, 2015 on frontal network integration.

The finding that the hippocampus did not show a meaningful difference in atrophy
between the two groups in the ADNI-Mem and the ADNI-EF study was unanticipated. The
results seem to indicate that both the RC (in ADNI-Mem: M = .034, SD = .050; in ADNI-
EF: M = .043, SD = .051) and the NC groups (in ADNI-Mem: M = .029, SD = .049; in
ADNI-EF: M = .027, SD = .047) showed increased hippocampal volumes at one-year
follow-up compared to baseline. We believe that this finding is inaccurate. Because of
varying degrees of hippocampal atrophy and the resulting morphological variability of the
hippocampus in older populations, the B-spline deformation to template space is noisier
in this region than in other brain regions. A primary contributor to this increased noise is
the proximity of ventricles, which expand at a rate proportional to the atrophic changes in
surrounding tissue; the resulting positive log-Jacobians of the ventricles mix with
hippocampal tissue in the template space in cases of poor B-spline matches (Nestor et al.,
2008). A way around this ROI analysis is to examine log-Jacobian means on carefully
segmented hippocampal masks in native space. For the current study, these data were
available only on a small number of our subjects. However, we were able to verify that
hippocampal atrophy measured in this way was greater for change than no-change
subjects in this small subset (data not shown). This result on a partial subset of our data is
consistent with the Duff et al. (2019) study, which reported that reliable change on a
battery of cognitive tests was associated with smaller hippocampal volumes (measured
cross-sectionally). Still, further replication is warranted with regard to our unexpected
findings regarding change in hippocampal volumes.

Our results make a unique contribution to the literature by providing criterion
validation for the RCI as a clinical indicator of underlying brain volume changes. The
current results are highly applicable to clinical situations where the underlying brain
change is not known to the clinician, as is typical for many neuropsychological
evaluations. In fact, many neuropsychologists perform longitudinal cognitive assessment
for the purpose of making inferences about potential changes to the brain in the absence
of serial MRI scans. The approach to documenting reliable change is based on the need to
identify whether an observed change is larger than would be expected on the basis of
measurement error; such a clinical decision is usually dichotomous. In this regard, the
current study can contribute to clinical practice by validating reliable test score changes
against parallel neuroanatomical outcomes. Thus, in the absence of patient neuroimaging
data, these results may allow neuropsychologists to make inferences about expected
patterns of brain atrophy when reliable decline is found on cognitive test scores.

Another contribution of the present research is that it demonstrates the clinical
relevance of the RCI. The statistical procedures used to generate RCIs are based on the
same approach used to perform null hypothesis significance testing. In essence, 'reliable’
changes are changes that would be unlikely to occur simply as a result of measurement
error. However, as with null hypothesis significance testing, these methods are purely



statistical; in and of themselves, they do not provide meaningful data about practical utility
or clinical meaning (Millis, 2003). The current study moves beyond statistical significance
and into the realm of clinical significance. Here, we demonstrate that a likely mechanism
underlying reliable change in neuropsychological test scores is regional brain atrophy.

Finally, by our focus on categorical classifications of reliable change, we are validating
not only the RCI formula against neuroanatomical outcomes, but the confidence
threshold of this approach used to separate reliable change from no change (i.e., the one-
tailed 90% confidence limit). Since all such thresholds necessarily include a level of
arbitrary characterization, our work provides validation that in the current usage this
thresholding corresponds to real differences in brain change over a one-year period.
Nevertheless, evaluating brain associations to the continuous z-scores also generated by
the simple regression-based approach to reliable change is another interesting and
important topic that should be explored in future work.

The current research project has several limitations. We have already discussed the
anomalous results for hippocampal atrophy, which resulted from limitations in the B-
spline deformation of the template-space voxelwise approach. Among other limitations, a
primary one is our demographic makeup. The majority of the participants in the current
research were highly educated Caucasian Americans. This limitation is relatively common
in dementia research in the United States, where racial and ethnic minorities are often
underrepresented in ageing and dementia studies. What makes such limitations vexing is
the accumulating evidence that race and ethnicity are important factors influencing the
prevalence, aetiology and onset of dementia (Gavett et al., 2018; O’Bryant et al., 2013).
For instance, African Americans are at a higher risk of developing dementia, almost two to
four times higher than their Caucasian counterparts (Steenland, Goldstein, Levey, &
Wharton, 2016). Despite the scarcity of racial and ethnical minorities in the current
sample, the genetic matching procedure (Sekhon, 2011) ensured that racial and ethnical
differences did not come into play as a confounding variable when comparing the RC and
NC groups. Nevertheless, averaging participants’ brain volume data can potentially
obscure the influence of race and ethnicity for two obvious reasons. For one, by averaging
all participants’ data in aggregate, the disparity between racial and ethnic groups is
obscured, meaning that variability due to race and ethnicity cannot be explored. For the
other, it is questionable how much the current findings can be generalized to minority
races and ethnicities when less than 10% of the participants in each study were non-
Hispanic Whites.

The problem with averaging participants’ brain volume data despite their disparity on
key characteristics can also be discussed in terms of the diagnosis of dementia. Even
though the genetic matching procedure ensured equivalence of diagnostic membership
across groups, the representation of clinical disease severity within groups was
disproportionate when comparing the participants in the ADNI-Mem study to those in
the ADNI-EF study. In other words, the participants in the ADNI-EF study were more likely
to be diagnosed with late MCI or AD than those in the ADNI-Mem study. This difference
between the two study samples could explain why the patterns of atrophy appeared more
extensive in the context of reliable change in ADNI-EF compared to reliable change in
ADNI-Mem. The impact of this potential confound across studies is dampened, however,
by the fact that dementia severity measures (e.g., MMSE, CDR) were very similar in both
study samples despite differences in diagnostic frequencies. It should be noted that in
ADNI, diagnosis is determined by clinical application of standard diagnostic criteria
(Petersen et al., 2010). Levels of MCI (early and late) were differentiated by scores on the
delayed Logical Memory subtest from the Wechsler Memory Scale-Revised; in ADNI-1, all
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participants with MCI had late MCI (Aisen et al., 2010). In addition, reliable change
occurring in cognitively normal older adults or those with early MCI at baseline may have
different clinical implications than reliable change in those diagnosed with baseline
diagnoses of AD or late MCI, which is a potentially intriguing topic yet to be explored.

One further limitation relates to the fact that slightly less than 10% of the participants in
our main analyses provided data for the preliminary analyses needed to derive test—retest
reliability, sample means and sample standard deviations at baseline and follow-up. The
data derived from these preliminary analyses were used to assign participants into the RC
or NC groups. Therefore, for a subset of our sample, there may have been a small amount
of criterion contamination that could have affected our results. However, because such a
small proportion of our sample was affected, we do not believe that this alters the data or
our interpretation in a meaningful way.

Despite the lack of experimental manipulation in this observational research, the use
of the genetic matching procedure strengthens the ability to attribute group differences in
brain atrophy to the cognitive manifestations of reliable change, rather than to other
possible confounding variables (e.g., differences in age or baseline brain volume). Despite
the fact that, in the ADNIL-EF study, a match on age was not achieved, it should not
represent a major limitation, as the difference between groups was small (1.56 years) and
the NC group was slightly older.

The data used in the current research were obtained from ADNI; therefore, the results
came primarily from an older adult sample enriched for likely AD pathology and not other
dementia aetiologies. The fact that the sample consists of mostly older adults with AD or at
risk for AD is both a weakness and a strength of the current project. It is a weakness
because the findings cannot be generalized to other types of dementia, such as
frontotemporal dementia. Yet, it is also a strength of the current project; because AD is the
most prevalent cause of dementia (Brookmeyer, Johnson, Ziegler-Graham, & Arrighi,
2007), the current findings can be generalized to alarge number of patients with known or
suspected AD.

As the neuropsychological test data used here to identify reliable change came from
research-based factor scores of memory and executive functioning, future research
should extend these findings to apply the same construct validation approach to observed
test scores obtained from standard neuropsychological instruments. For example,
examining the criterion validity of RCIs derived from common clinical test scores, and
perhaps comparing these to factor scores is an obvious first step. In fact, our group is
currently pursuing this as a follow-up study; still, additional research is needed.

Conclusion

The current results demonstrate the criterion validity of the RCI for corresponding to
meaningful patterns of brain change in older adults over the span of one year of follow-up.
Reliable change on ADNI-Mem was associated with greater atrophy in the medial temporal
cortex, temporal lobe and some regions of the parietal lobe compared to the NC group.
Reliable change on ADNI-EF was associated with greater atrophy in the medial temporal
cortex, posterior corpus callosum and cingulate cortex, temporal lobe, some regions of
the parietal lobe and the frontal lobe compared to the NC group. The current results
suggest that reliable change in these factor scores has criterion validity for mapping onto
expected changes in the underlying brain structure. More research using this approach
can have clinical value for making inferences about the possible brain changes underlying
reliable test score changes.
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