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� Developed an accurate prediction system for the progression of mild cognitive impairment to AD.
� Used longitudinal structural MRI data without the segmentation of regions of interest.
� Applied dictionary learning to exploit the nuances between mild cognitive impairment patients.

a b s t r a c t

Objective: Efficient prediction of the progression of mild cognitive impairment (MCI) to Alzheimer’s dis-
ease (AD) is important for the early intervention and management of AD. The aim of our study was to
develop a longitudinal structural magnetic resonance imaging-based prediction system for MCI progres-
sion.
Methods: A total of 164 MCI patients with longitudinal data were collected from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). After preprocessing, a discriminative dictionary learning framework was
applied to differentiate MCI patches, avoiding the segmentation of regions of interest. Then, the propor-
tion of patches classified as more severe atrophy patches in a patient was calculated as his or her feature
to be input into a simple support vector machine. Finally, a new subject was predicted with fourfold
cross-validation (CV), and the area under the receiver operating characteristic curve (AUC) was deter-
mined.
Results: The average accuracy and AUC values after fourfold CV were 0.973 and 0.984, respectively. The
effects of the data from one or two time points were also investigated.
Conclusion: The proposed prediction system achieves desirable and reliable performance in predicting
progression for MCI patients. Additionally, the prediction of MCI progression with longitudinal data
was more effective and accurate.
Significance: The developed scheme is expected to advance the clinical research and treatment of MCI
patients.

� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Alzheimer’s disease (AD), an irreversible neurodegenerative dis-
order characterized by a chronic, progressive degeneration of cog-
nitive functions, is the most common cause of dementia in older
populations, affecting millions of people worldwide(Brookmeyer
et al., 2007; Barnes and Yaffe, 2011). Mild cognitive impairment
(MCI) is the prodromal, clinically detectable phase of the trajectory
toward dementia and AD. It has been found that the rates of MCI
progressing to AD range from 10 to 30% annually and 20 to 66%
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over 3 to 4 years(Luis et al., 2003; Petersen, 2004). Thus, it is vital
to accurately predict the possibility of progression to AD in MCI
patients for the early intervention and management of AD.

Due to the importance of MCI in the early diagnosis of AD,
numerous studies have been published that have examined the
prediction of MCI progression using noninvasive neuroimaging
techniques(Duchesne et al., 2009; Misra et al., 2009; Leung et al.,
2010; Stonnington et al., 2010; Huang et al., 2020). To facilitate
the prediction of the risk of MCI progressing to AD, MCI patients
have been further classified into those who progress to AD (pMCI)
and those who remain stable (sMCI) after a few years. Among the
various neuroimaging techniques, structural magnetic resonance
imaging (MRI) is a powerful technique used to visualize brain
structures and detect anatomic abnormalities, lesions and damage
and provides measures of the inevitable atrophy related to AD
(Frisoni et al., 2010; Vemuri and Jack, 2010; Arbabshirani et al.,
2017). Since accelerated tissue loss is an indicator of neurodegen-
erative diseases, a series of structural MRI scans are often analyzed
to evaluate disease progression to avoid cross-sectional measure-
ments that are insensitive to early pathological changes (Zhang
and Shen, 2012; Yau et al., 2015; Chincarini et al., 2016; Mubeen
et al., 2017).

Some longitudinal studies have focused on the atrophy of well-
known regions of interest (ROIs). Devanand et al. used logistic
regression to predict MCI patients at a 3-year follow-up using hip-
pocampus volume, entorhinal cortex volume and the combination
of both, and accuracies of 78.9%, 79.6% and 86.7%, respectively,
were achieved(Devanand et al., 2007). Mubeen et al. used features
based on the hippocampus and corpus callosum of MCI patients
with 6-month longitudinal data and built a longitudinal random
forest model with an accuracy of 80.2% (Mubeen et al., 2017). Mos-
coso et al. used hippocampus volume, entorhinal volume and a
combination of both from 5-year follow-up MCI patients to predict
pMCI and sMCI classes with AUCs of 80%, 80% and 84%, respectively
(Moscoso et al., 2019). These findings indicate that using an ROI
alone, such as the hippocampus, to predict the progression of pMCI
to AD will result in prediction errors because the ROI method may
not be sensitive enough to detect small and more diffuse changes
in the MRI structure. The segmentation of ROIs is also observer-
and algorithm-dependent and relies on a priori assumptions
regarding the target structures between pMCI and sMCI(Chetelat
and Baron, 2003), which may result in inconsistent results(Kaye
et al., 1997; Jack et al., 2000; 2004). Determining the structural fea-
tures of the entire image directly is an effective way to address the
issue of preselected ROIs (Arbabshirani et al., 2017; Rathore et al.,
2017).

Dictionary learning is a topic in signal processing aimed at dis-
covering a framework for the sparse representation or approxima-
tion of signals (Tosic and Frossard, 2011; Wong et al., 2011).
Dictionary learning-based techniques have been successfully
applied to several tasks such as image restoration (Dong et al.,
2011), image denoising(Knaus and Zwicker, 2013) and image clas-
sification (Nguyen et al., 2012; Vu and Monga, 2017). By using the
label information available in the training set, supervised dic-
tionary learning methods exploit the discriminating information
for classification and deliver good classification performance in
natural scene classification(Wang and Kong, 2014) and face recog-
nition(Yang et al., 2014) tasks. Recently, dictionary learning
schemes have also been utilized in medical applications and can
be used to directly extract features from a sparse matrix without
the segmentation of ROIs(Vu et al., 2016; Diamant et al., 2017; Li
et al., 2017).

In this paper, we developed an objective and automated predic-
tion system using patch-based dictionary learning on a longitudi-
nal structural MRI to automatically obtain the subtle gray matter
(GM) density differences between patients with pMCI and sMCI.
The inevitable atrophy caused by neurodegeneration can be mea-
sured by structural MRI, which can also be utilized to compute
the maps of GM density. Since GM density reduction is a proxy
for atrophy in AD (Frisoni, 2002; Tondelli et al., 2012), and GM
atrophy progression is different in patients with pMCI and sMCI
(Chételat et al., 2005), GM density has the potential to be used
for differentiating between patients with pMCI and sMCI(Rathore
et al., 2017). Since the atrophy patterns between pMCI and sMCI
overlap, and the whole brain atrophy rate of pMCI patients is
higher than that of sMCI patients one or two years later(Jack
et al., 2004, 2005), we assume that the regions with more severe
brain atrophy in pMCI patients account for a larger proportion of
the whole brain. As follow-up scanning is an effective method for
the identification of AD progression, longitudinal structural MRI
was employed in our prediction system to improve the accuracy
and efficiency of diagnosis and reduce unnecessary variability
due to the inherent noise associated with each individual measure-
ment. In addition, the system performance depends on the accu-
rate segmentation of ROIs in most conventional classification or
prediction systems, and our prediction system circumvented the
segmentation of ROIs by using the dictionary learning technique.
2. Methods and materials

We applied a novel spatiotemporal discriminative dictionary
learning method to obtain the difference in GM density between
patients with pMCI and sMCI. As shown in Fig. 1, there were four
phases in our study: image preprocessing, spatiotemporal dic-
tionary learning, proportion calculation and prediction. The longi-
tudinal images were registered, and GM segmentation was
performed in the first step. In the spatiotemporal dictionary learn-
ing phase, dictionary bases were learned for pMCI and sMCI cate-
gories. Then, each patch in the training set was classified as a
more severe atrophy patch (SAP) or a common atrophy patch
(CAP). Next, the proportion of patches classified as SAP in each
patient of the training set was calculated as a feature, which was
input into a simple support vector machine (SVM) to train the pre-
diction model(Vu et al., 2016). Finally, a new subject was predicted
using a system trained with cross-validation (CV), and a corre-
sponding area under the receiver operating characteristic curve
(AUC) analysis was also performed.

2.1. Data acquisition

The data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership led by principal investigator Michael
W. Weiner, MD. The primary goal of the ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and
neuropsychological assessments can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzhei-
mer’s disease (AD). Detailed MRI protocols are reported on the
ADNI protocol website: (http://adni.loni.usc.edu/methods/docu-
ments/mri-protocols/).

2.2. Subjects

In this study, we obtained 3 T-MRI data from ADNI patients
with MCI. After excluding patients with incomplete demographics
or cognitive information, inability to match longitudinal images
and poor image quality, 164 patients remained for which baseline
and follow-up examinations were all available. According to their
Clinical Dementia Rating (CDR) scores during the follow-up period,
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Fig. 1. Schematic for the prediction of patients who progress to Alzheimer’s disease (pMCI) and those who remain stable (sMCI) after a few years based on spatiotemporal
dictionary learning without ROI segmentation. GM: gray matter; h: the proportion of patches classified as more severe atrophy patches in a patient; SVM: support vector
machine.

Table 1
Characteristics of MCI patients in the pMCI and sMCI Cohorts (baseline).

Characteristics pMCI sMCI P

Demographic information
Mean (SD), years
Age 71.64 (7.56) 70.81 (7.52) 0.549
Gender (M/F) 21/19 69/55 —
Education level 16.10 (3.05) 16.47 (2.69) 0.468
Neuropsychological scales
Mean (SD)
ADAS11 score 12.76 (3.62) 8.14 (3.39) 0.000
ADAS13 score 20.40 (5.31) 12.83 (5.30) 0.000
CDR score 0.5 0.5 —
FAQ score 6.25 (5.11) 1.76 (2.96) 0.000
GDS score 1.83 (1.36) 1.69 (1.43) 0.610
MMSE score 26.75 (5.11) 28.53 (1.41) 0.000
NPI-Q score 2.775 (2.83) 1.71 (2.63) 0.031
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the MCI patients were divided into pMCI (as having changes in CDR
from 0.5 to 1) and sMCI (as CDR score maintaining at 0.5) cohorts
(40 pMCI and 124 sMCI); the demographics and clinical character-
istics of these patients are shown in Table 1. For each patient, we
retrospectively selected serial structural MRI scans at three time
points. In the case of pMCI, the last image when they confirmed
AD diagnosis and two images proceed the AD diagnose were used.
For sMCI, the last three images were selected. Hence, the diagnoses
for each of the images were MCI-MCI-AD and MCI-MCI-MCI for
pMCI patients and sMCI patients, respectively. Whole brain atro-
phy over 1 to 2 years is associated with the progression of MCI
(Jack et al., 2005). Therefore, each image for a patient in this study
was taken at an interval of 12 months. The ADNI image-IDs corre-
sponding to time points in the pMCI and sMCI cohorts are shown in
Supplementary Tables 1 and 2.
pMCI: MCI patients who progress to AD; sMCI: MCI patients who remain stable
after a few years; SD: standard deviation; ADAS: Alzheimer’s Disease Assessment
Scale (with 11 and 13 questionnaires, respectively); CDR: Clinical Dementia Rating;
FAQ: Functional Activities Questionnaire; GDS: Geriatric Depression Scale; MMSE:
Mini-Mental State Examination; NPI-Q: Neuropsychiatric Inventory Questionnaire.
2.3. Image preprocessing

MRI scans from 3-T scanners using the ADNI-specified 3-
dimensional T1-weighted magnetization-prepared rapid
gradient-echo (MP-RAGE) sequence were used in this study. The
structural images at the three time points for all patients had iden-
tical resolution and the same number of slices; then, all the
patients’ anterior commissures were coregistered to the central
point of space, and the skull was extracted. After registering all
image data to the standard Montreal Neurologic Institute (MNI)
space, the same voxels across the longitudinal images were prop-
erly registered to one another. Brain GM density maps were seg-
mented using the ‘‘New Segment + DARTEL” module of the Data
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Processing & Analysis of Brain Imaging (DPABI) toolbox(Yan et al.,
2016) running on MATLAB R2013b (MathWorks Inc., Natick, MA,
USA). The resulting GM density maps were 121 � 145 � 121
voxels.
2.4. Construction of spatiotemporal patches

The longitudinal structural MRI for MCI patients provided the
dynamic changes in GM atrophy. Since the amount of longitudinal
data was large, it was difficult to learn a dictionary directly over
the entire dataset. Thus, we adopted a patch-based dictionary
learning approach from the spatiotemporal volumes (Qian et al.,
2016). First, a slice with an axial coordinate of 10 in the standard
Montreal Neurologic Institute (MNI) space (as shown in Fig. 2(a))
was selected from each longitudinal structural MRI. Let the size
of an image patch over time be l� l� t, where l is the spatial size
of the patch, and t represents the time point. Then, the patch was

converted to a column vector denoted as x 2 Rm, where m ¼ l2t, as
shown in Fig. 2(b). As a result, the labeled longitudinal images
were divided into labeled 3D patches without overlapping, and a
matrix X ¼ x1; � � � ; xN½ � 2 Rm�N (from two categories) was obtained,
where N is the size of the training set.
2.5. Dictionary learning and proportion computation

Studies have shown that the GM density of pMCI and sMCI is
different in some regions and similar in other areas (Chételat
et al., 2005; Jack et al., 2005; Karas et al., 2008). To capture the
essential distinctions between these two categories and improve
prediction performance, the dictionary learning algorithm was
adopted. The overall learning process proposed in this work has
two phases. In phase one, 2-D images at three time points were
provided to DL-COPAR, and a dictionary and its corresponding
coefficient matrix were learned. With dictionary learning, we can
assign each patch a value representing its closeness to either the
pMCI or sMCI class. In phase two, SVM was employed for
prediction.

The goal of dictionary learning is to find a dictionary D 2 Rm�K

and its corresponding coefficient matrix A ¼ a1; � � � ; aN½ � 2 RK�N

from the training data so that each training data can be sparsely
represented by the columns of the dictionary D. In our study, there
were two classes, i.e., pMCI and sMCI. X1 2 Rm�N1 and X2 2 Rm�N2

represent the data from the pMCI and sMCI classes in the training
set, respectively. Then, through dictionary learning, two class-
specific dictionaries (D1 and D2) were learned that contained the
information that can best discriminate between the pMCI and sMCI
patients. Moreover, the common characteristics shared by both
pMCI and sMCI were also learned and represented in the dictionary
D3. Then, the overall dictionary can be denoted as
D ¼ D1;D2;D3½ � 2 Rm�K , where K ¼ K1 þ K2 þ K3. To find the dic-
tionary D and its corresponding coefficient matrix A, the following
objective function was solved:

f �
X2
c¼1

k Xc � DAc k2F þ
X2
j ¼ 1
j–c

k Aj k2F þ k Xc � DcAc � D3A3 k2F þ k/ Acð Þ
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9>>=
>>;
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where / Acð Þ ¼ PNc
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i k1 for Ac ¼ ac
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Nc

� �
, k and g are

constants. The subscript F denotes the Frobenius norm.
The objective function was solved using the DL-COPAR method
((Kong and Wang, 2012, Zuo et al., 2015). Once the dictionary
phase was completed, pMCI- and sMCI-specific dictionaries and a
shared dictionary were obtained.

After the training phase of dictionary learning was completed, a
dictionary D and its corresponding coefficient matrix A were
obtained. Then, for each image patch in the training data, we can
compute the reconstruction error ec as follows:

ec ¼ min
a
�
c
k x� D

�
ca
�
c k

2

2 þ kk a
�
c k1 c ¼ 1;2ð Þ

where c 2 1;2f g represents pMCI and sMCI, respectively. k is a

constant and D
�
c ¼ Dc;D3½ � 2 Rm� KcþK3ð Þ, and a

�
c 2 R KcþK3ð Þ derives

from A
�
c ¼ Ac þ A3½ � 2 R KcþK3ð Þ�N . The final identity of x is

bc ¼ argmincec(Kong and Wang, 2012). Following the above proce-
dure, all patches of a patient can be assigned to either SAP or
CAP. For each patient, we computed the proportion value h of
patches classified as SAP,

h ¼ the number of SAP
the number of tatal patches in the patient 2 0;1ð Þ(Vu et al., 2016).

The proportion value h is the feature of the patient to be put into
the SVM to train a prediction model.

2.6. Prediction

For an unseen patient with scans of three time points, after pre-
processing the images, we constructed a set of patches, converted
them to column vectors, and then determined the identity of all
these vectors of this patient by calculating the reconstruction error
ec according to the learned dictionary D and its corresponding coef-
ficient matrix A. Next, the proportion h of vectors classified to SAP
was computed with the method described above as his or her fea-
ture to be put into the trained SVM predictor. Finally, the SVM pre-
dictor was used to predict the category of this patient.
3. Results

We chose a total of 164 MCI patients from the ADNI dataset,
consisting of 40 pMCI patients and 124 sMCI patients. A longitudi-
nal analysis with three time points was registered to the MNI
space, and the GM density images were computed (Fig. 3). The nor-
malized images (size: 145 � 121 pixels) were cropped to 116 � 90
pixels for computational efficiency. The parameters employed in
our prediction system were empirical: the size of the specific dic-
tionaries of pMCI and sMCI was 350, and the size of the shared dic-
tionary was fixed at 5. The size of the patches was fixed at 12 � 12
pixels. Since the overall sample size is relatively small, a fourfold
cross-validation scheme was employed in this work to ensure that
sufficient data were retained in the testing dataset. Specifically, the
patients in the pMCI group were randomly divided into four por-
tions with 10 patients in each portion. Then, for each validation
run, image data from the three portions were selected for training
the model, and one portion was retained for testing. At each valida-
tion run, we randomly selected 30 sMCI patients to match the
number of pMCI patients so that the number of samples per group
was balanced in the training set. Importantly, the testing data of
each fold had no overlap with the training data. The final accuracy
was a fourfold average (and the SD was also calculated). Addition-
ally, the corresponding AUC was calculated to validate the overall
robustness of our prediction system.

3.1. Dictionary learning

In the dictionary learning phase, class-specific dictionaries for
pMCI and sMCI were obtained separately to describe the class-
specific characteristics, and a shared dictionary was obtained to



Fig. 2. Construction of spatiotemporal patches using selected slices. (a) A demonstration of the axial slice selected (z = 10) in the standard Montreal Neurological Institute
(MNI) coordinates; (b) Construction of spatiotemporal patches for one patient. t: time point.

Fig. 3. Preprocessing performance. Preprocessing performance of structural MRI. Registered longitudinal GM images of patients (a) who progress to Alzheimer’s disease
(pMCI) and (b) those who remain stable (sMCI) after a few years at three time points.
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Fig. 4. The results during the dictionary learning phase. (a) The specific dictionaries of patients who progress to Alzheimer’s disease (pMCI) at three time points (an example).
(b) The coefficients corresponding to the specific dictionaries for pMCI and patients who remain stable (sMCI) after a few years, which indicated the dimensions of coefficients
with coefficients on the left of blue line corresponding to the bases of dictionary related to pMCI and those on the right corresponding to the bases of dictionary related to
sMCI (an example).
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describe the common features of pMCI and sMCI via the DL-COPAR
method. An example of the pMCI-specific dictionaries trained at
three time points is shown in Fig. 4(a). With the DL-COPAR tech-
nique, the coefficients corresponding to the shared dictionary were
excluded, and the average coefficients corresponding to the col-
umns in specific dictionaries for pMCI and sMCI are shown in
Fig. 4(b) to visually view the discriminating ability of learned col-
umns. Note that the red squares in Fig. 4(b) correspond to pMCI,
and most of the coefficients shown in red are to the left of the ver-
tical line with values greater than those on the right, which meant
that the specific dictionary for pMCI contributed more to recon-
structing the pMCI patches than the specific dictionary for sMCI.
Similarly, the black dots correspond to sMCI, and most of the active
coefficients shown in black are located to the right of the blue line.
These results agreed with our expectations and demonstrated that
the dictionary we learned had a strong discriminative ability.
3.2. Performance of the prediction system

The performance of our prediction system in terms of the accu-
racy and AUC is shown in Fig. 5(a). The accuracy was
0.9736	0.0048 (mean	SD), indicating that the system has a
promising prediction capability. The AUC for the performance
was 0.9841	0.012. Our prediction system was developed based
on clinical longitudinal scans at three time points. We also investi-
gated whether the data from one or two time points could achieve
a similar performance using the same parameters. The results are
shown in Fig. 5(b) and (c). Our results indicated that the longitudi-
nal data improved the prediction performance.

We also analyzed the cognitive functions of pMCI patients and
sMCI patients at baseline. We included five cognitive scales in
the revised manuscript, including the Alzheimer’s Disease Assess-
ment Scale with 11 questionnaires (ADAS11), the Alzheimer’s Dis-
ease Assessment Scale with 13 questionnaires (ADAS13), the
Functional Activities Questionnaire (FAQ), the Mini-Mental State
Examination (MMSE) and the Neuropsychiatric Inventory Ques-
tionnaire (NPI-Q). The score of the five cognition scales was avail-
able for all selected patients at baseline. The statistical results are
reported in Table 1. We observed that the mean value of these five
scales differed significantly between the two groups. To verify
whether the abovementioned cognitive scales can distinguish
pMCI and sMCI patients, we conducted the following two experi-
ments. In the case that the distribution of all patients did not
change, the scores of the five scales were entered as features into
SVM. First, we verified whether the scores of the five cognitive
scales alone can predict the progression of MCI patients. Subse-
quently, we tested whether augmenting the image features with
the baseline cognitive scores can improve the prediction perfor-
mance. All results are shown as the mean accuracy and mean AUC.

The accuracy and AUC of 0.8101	0.0346 (mean	SD) and
0.8599	0.0533 were obtained when only employing baseline cog-
nitive scores as features. When image features and baseline cogni-



Fig. 5. Performance of the prediction system under different data. (a) Mean and standard deviation (SD) values for accuracy and the area under receiver operating
characteristic curve (AUC) of the prediction system developed; (b) and (c) show the accuracy and AUC results using different datasets separately. t3: using data from t3 time
point only. t2 + t3: using data from t2 and t3 time points. t1 + t2 + t3: using data from t1 to t3 time points totally; (d) and (e) show the accuracy and AUC results using
cognitive scales or structure MRI alone and structure MRI with cognitive scales together; (f) Performance as a function of axial slices with the various standard Montreal
Neurological Institute (MNI) coordinates. The slice corresponding to the red dot was selected in our prediction system.
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tive scores were combined, the obtained accuracy and AUC were
0.9664	0.0299 and 0.9926	0.0058, respectively. When only
image features were used to train the model, the accuracy and
AUC were 0.9736	0.0048 and 0.9842	0.0119, respectively, as
shown in Fig. 5(d) and (e). The results indicated that the prediction
performance of using structural MRI alone was statistically higher
than that of using the cognitive scales alone. Furthermore, we
showed that combining baseline cognitive score and image fea-
tures only marginally improved the prediction performance.
Although screening neuropsychological testing is necessary to
identify and monitor these high-risk subjects, to date, no fully
accurate early AD cognitive markers have been identified (Chen
et al., 2000). Moreover, cognitive performance depends not only
on age and educational level but also on emotions and attention
during the test, so it lacks extensive promotion(Chetelat and
Baron, 2003).

Moreover, we estimated the prediction performance by varying
the axial plane for extracting the 2-D image and repeated the same
training and testing procedure as described. The results are shown
in Fig. 5(f). The highest prediction performance between pMCI and
sMCI was found at the axial MNI coordinate of 10.
4. Discussion

Because AD is a major cause of dementia and an important
health and socioeconomic problem, how to intervene to delay
the progression of AD and develop new remission treatments for
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AD patients has become an urgent issue, which is especially impor-
tant in patients with MCI. However, the effective differential tech-
nique of MCI patient progression remains a challenge for
physicians due to the subtle differences between sMCI and pMCI.
It has been suggested that pathological brain changes related to
AD can be measured using in vivo neuroimaging techniques, and
structural MRI scans are necessary for patients with suspected
AD. Structural MRI measures the morphometry of the brain and
thus can detect GM atrophy associated with AD at a microscopic
level, and progressive cerebral atrophy associated with AD can be
seen on high-resolution MRI scans, which makes MRI a powerful
biomarker in differentiating the stages of AD in individuals.

Over the past few decades, prediction frameworks studying the
progression of MCI patients have been used successfully in struc-
tural MRI data. In a prediction framework, accurate feature extrac-
tion is often more important than the selection of a prediction
algorithm. The ROI-based method is a common approach used
for feature extraction and can obtain discriminative AD-related
information based on prior knowledge. However, the segmentation
of ROIs is an essential and critical step in many traditional classifi-
cation systems, and a priori knowledge of atrophy regions is not
always available and comprehensive; therefore, some atrophy cor-
relative details may be missed. In addition, the features finally
obtained are not captured from the image directly but are obtained
from the information included in the MRI image using statistical
methods. Moreover, longitudinal changes in brain atrophy should
also be considered; since AD is a progressive disease, cross-
sectional studies have the limitations of interindividual variations
in brain size and structure, and atrophy progression is inferred only
from a single scan.

In this work, a dictionary learning technique that could capture
the subtle difference between pMCI and sMCI directly from the
sparse coefficient matrix to avoid ROI segmentation was utilized.
The dictionary learning algorithm adopted in this paper has the
ability to exclude features shared between pMCI and sMCI to
exploit the nuances between these two phenotypes.

The effects of the specific dictionary size and the shared dic-
tionary size on the performance of the dictionary learning algo-
rithm were also investigated. As shown in Fig. 6(a), most
dictionary sizes achieved good results, with accuracies and AUCs
higher than 0.9. The best performance was observed with approx-
imately 350 specific dictionary bases, which indicated that in our
data, a larger dictionary size did not lead to a better prediction
effect. Moreover, a larger dictionary size could lead to a longer
runtime. This result indicates that the discriminative capability
of coefficients would be weakened if the number of dictionary
bases was too small, but if it was too large, too much redundant
Fig. 6. Performance as a function of (a) the size of the speci
information would result in difficulties in matching identical cat-
egories. The effects of the shared dictionary sizes are shown in
Fig. 6(b), which indicate that the exclusion of shared features
between the two categories could significantly improve the per-
formance of our system. Nevertheless, as the size of the shared
dictionary increased, the results did not improve. The reason
may be that when the size of the shared dictionary increased,
DL-COPAR tended to absorb class-specific features into the shared
dictionary.

From the DL-COPAR objective function, too large a training
dataset can cause the learning process to converge slowly, result-
ing in longer calculation time. To achieve a balance between learn-
ing time and learning effect, only one 2-D slice per image was
extracted to train the model. There is ample evidence showing that
GM atrophy patterns are different between pMCI and sMCI
patients. Additionally, GM atrophy beyond the temporal lobe is a
characteristic of pMCI patients (Korf et al., 2004; Bell-McGinty
et al., 2005; Chételat et al., 2005; Jack et al., 2005; Karas et al.,
2008). Karas et al. found that the axial MNI coordinate of the peak
value of the cluster with the largest volume of GM atrophy
between pMCI and sMCI is 10 (Karas et al., 2008). We chose the
same axial location to extract the 2-D image. Moreover, Fig. 5(f)
shows that the highest prediction performance between pMCI
and sMCI was found at the axial MNI coordinate of 10, which
was consistent with previous findings. These results provided fur-
ther confirmation that selecting a single 2-D image can serve to dif-
ferentiate pMCI and sMCI patients.

To determine whether the GM density of the patients changed
over time, we also used the ‘‘Statistical analysis” module of DPABI
to perform a paired two-sample t-test at a threshold significance of
p < 0:0001 (false discovery rate corrected for multiple compar-
isons) on the first and third time points of all pMCI and sMCI
patients. The results of the selected slice are shown in Fig. 7(a).
To analyze the results of dictionary learning in more detail, we
obtained the average coefficients of columns in specific dictionar-
ies, ranked the average coefficients corresponding to the two speci-
fic dictionaries from large to small, and found the columns in
specific dictionaries that had the largest positive contribution to
the average coefficients in the top twenty. The same operation
was performed for the dictionary and coefficient matrix learned
in each fold. The locations where the significant patches appear
more frequently are shown in Fig. 7(b). The common atrophy pat-
tern between pMCI and sMCI was eliminated, and the differential
discriminative characteristics of the two categories could be effec-
tively captured by the dictionary learning algorithm.

The performance of our prediction system was better than that
of other longitudinal systems (Devanand et al., 2007; Mubeen
fic dictionary and (b) the size of the shared dictionary.



Fig. 7. Differences in longitudinal atrophy between pMCI (patients who progress to Alzheimer’s disease) and sMCI (patients who remain stable) patients. (a) The results of
paired two-sample t-test paired two-sample t-test at a threshold significance of p < 0:0001 (false discovery rate corrected for multiple comparisons) on the first and third
time points of all pMCI and sMCI patients, respectively; (b) The locations where the patches that had the largest positive contribution to the average coefficients in the top
twenty appear more frequently.
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et al., 2017; Moscoso et al., 2019). The reasons may be that our sys-
tem avoids ROI segmentation using a dictionary learning algo-
rithm, and the dictionary learning algorithm used can eliminate
the common atrophy pattern between pMCI and sMCI to better
capture the differences between the two categories.

There are also limitations in our work. One limitation was that
the dataset for pMCI was small because of our desire for com-
pletely longitudinal data, so to avoid overfitting, we chose one slice
instead of the whole brain. To avoid the impact of data imbalance
on the prediction performance of our system, we used the same
number of images to train the specific dictionaries and the remain-
ing images to test our system. The other limitation is that for an
unseen MCI patient, structural MRI data needs to be provided at
three time points with a time interval of approximately one year
to obtain a more accurate prediction. In addition, we used only
image data without considering the more essential effects of genes
on the disease, which will be explored in a future study.
5. Conclusion

To conclude, we developed an objective prediction approach
without segmentation to predict MCI-to-AD progression. As a
promising imaging method for characterizing microstructural atro-
phy or differences in treatment, longitudinal structural MRI scans
were applied in our system. A spatiotemporal and dictionary learn-
ing scheme for classification was utilized to capture nuances
between pMCI and sMCI. The results indicated that our proposed
prediction system can accurately predict pMCI and sMCI and that
the prediction of MCI progression with longitudinal data was more
effective and accurate. Therefore, this system will be a useful tool
in the clinical diagnosis of patients with pMCI and sMCI.
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