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Learning Brain Effective Connectivity Network
Structure Using Ant Colony Optimization

Combining With Voxel Activation Information
Jinduo Liu , Junzhong Ji , Xiuqin Jia , and Aidong Zhang , Fellow, IEEE

Abstract—Learning brain effective connectivity (EC) net-
works from functional magnetic resonance imaging (fMRI)
data has become a new hot topic in the neuroinformatics
field. However, how to accurately and efficiently learn brain
EC networks is still a challenging problem. In this paper,
we propose a new algorithm to learn the brain EC network
structure using ant colony optimization (ACO) algorithm
combining with voxel activation information, named as VA-
COEC. First, VACOEC uses the voxel activation information
to measure the independence between each pair of brain
regions and effectively restricts the space of candidate so-
lutions, which makes many unnecessary searches of ants
be avoided. Then, by combining the global score increase
of a solution with the voxel activation information, a new
heuristic function is designed to guide the process of ACO
to search for the optimal solution. The experimental re-
sults on simulated datasets show that the proposed method
can accurately and efficiently identify the directions of the
brain EC networks. Moreover, the experimental results on
real-world data show that patients with Alzheimers disease
(AD) exhibit decreased effective connectivity not only in
the intra-network within the default mode network (DMN)
and salience network (SN), but also in the inter-network
between DMN and SN, compared with normal control (NC)
subjects. The experimental results demonstrate that VA-
COEC is promising for practical applications in the neu-
roimaging studies of geriatric subjects and neurological
patients.
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I. INTRODUCTION

BRAIN effective connectivity (EC), defined as the neural
influence that one brain region exerts over another [1], is

important for the assessment of normal brain function, and its
impairment is associated with neurodegenerative diseases such
as Alzheimer’s disease (AD) [2]–[5], Parkinson’s disease (PD)
[6]–[8], and Schizophrenia [9], [10]. Therefore, how to accu-
rately and efficiently learn brain EC network from neuroimaging
data, e.g., functional magnetic resonance imaging (fMRI), is
becoming a hot study in neuroinformatics, where a great many
of computational methods and mathematical models have been
proposed for identifying the EC network related to human
brain [11]–[21]. Naturally, learning brain effective connectivity
can be considered as a problem of searching or constructing a
directed graph structure from neuroimaging data. In other words,
a brain EC network can be represented as a directed graph in
which nodes denote brain regions, and the directed arcs denote
effective connectivity between brain regions.

Generally the EC learning methods can be categorized into
two types: the model-driven method and the data-driven method.
The model-driven approach has been applied extensively for
inferring the brain EC network, but this kind of methods re-
quires prior assumptions on the models and is commonly used
to construct the relatively small-scale networks [22]. So the
data-driven approach, that can extract neural influences without
the need of any prior assumptions or knowledge from fMRI
data, gradually becomes the mainstream method in detecting
the effective connectivity. Though data-driven methods have
their own characteristics and are applicable to different fMRI
data environments, they have some limitations on causal es-
timation [21]–[23]. For instance, Linear non-gaussian acyclic
model (LiNGAM) method [14], [15] uses temporal indepen-
dent component analysis (ICA) to infer effective connectivity
from data, however, ICA requires a large number of datapoints,
which make it perform poorly when the fMRI data sample is
small [22]. Granger causality (GC) methods [16], [17] infer
effective connectivity by the multiple regressions and require the
fMRI time series to be wide-sense stationary, which may become
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unreliable when the underlying dynamics is dominated by unsta-
ble modes [21]–[23]. Generalized synchronization (GS) based
method models the functional relation between the dynamics
of coupled chaotic systems in the nonlinear dynamics [18].
GS employs some related measures to estimate the effective
connectivity, e.g., non-linear interdependence measures (S in-
dex and H index) and normalized non-linear interdependence
measure (N index) [11]. However, each of them has its own
limitations. For instance, S index is not very robust against noise
and signal length; H index is more robust against noise and easier
to interpret than S index, but with the drawback that it is not
normalized; N index is normalized but it reaches its maximum
value of 1, only when the conditioned mean squared Euclidean
distance is zero, which does not happen even if two brain regions
are identically synchronized [20].

Recently, Bayesian network (BN) methods that are based on
probability, statistics, and graph theory have gradually become
an important and useful data-driven approach for identifying
the brain EC network [24]–[26]. This is mainly because this
kind of methods can accurately identify connections between
brain regions [22]. However, BN methods perform well in
identifying the connections, but they are rarely able to reliably
and completely identify causal directions just as many other
data-driven methods [22]. When the number of brain regions
increases, the search space will become larger which results in
the long running time and low direction identification ability of
BN methods [24]–[26]. Besides, most of these methods only
consider the distribution and statistical properties of fMRI data,
and ignore some specific information (e.g., activation informa-
tion, temporal information) of fMRI data [24]–[26]. Therefore,
how to employ useful information from fMRI data to better infer
effective connectivity is still an open and challenging research
topic.

In this paper, we propose a novel method to learn the brain
EC network structure using ant colony optimization (ACO)
algorithm combining with voxel activation information, i.e.,
VACOEC. The main contributions of this paper, compared with
our preliminary model [26], are as follows:

• We present a new strategy which uses the voxel activation
information to measure the independence between each
pair of brain regions and restrict the space of candidate
solutions. The strategy can help the ACO avoid many
unnecessary searches, and improve the time performance
of the algorithm remarkably.

• We develop a new heuristic function of ACO by using the
voxel activation information. The new heuristic function
can instruct the ants to select the arcs which are more
reasonable during the searching process, and improve the
accuracy of the algorithm.

• We compare VACOEC with other state-of-the-art methods
on simulated fMRI datasets, the results show that VACOEC
has a stronger direction identification ability when learning
brain effective connectivity network from fMRI data.

• We apply the new algorithm to two real fMRI datasets
of AD, Mild Cognitive Impairment (MCI) and normal
control (NC) subjects. The results show that some changes
of effective connectivity in brain regions are related to

MCI and AD, which can help to explain and predict the
progression and evolution of the AD disease.

II. RELATED WORK

A. Ant Colony Optimization for Learning Bayesian
Networks (ACO-B)

ACO-B algorithm is a score-and-search approach for learning
Bayesian networks by using K2 scoring metric to guide ants
search for the global optimal solution (directed acyclic graph,
DAG) [26], [27]. A brain effective connectivity network can be
represented as a DAG G = < V,E >, where V is a set of
nodes with each node a ∈ V representing a brain region; and E
is a set of arcs with each arc arcab ∈ E describing an effective
connectivity between brain regions a and b. Thus learning brain
EC network can be seen as a process of learning Bayesian
network structure from fMRI data.

In ACO-B, each ant k begins with an empty graph G(0) and
incrementally constructs a solution by adding an arc at a time.
The specific process of searching a BN by ACO algorithm is
described below. The probabilistic transition rule of an ant k to
select a arc arcab from the current candidate arcs at time t is
defined as

arcab =

{
arg maxa,b∈DAk(t){[τab(t)] · [ηab(t)]β}, if q ≤ q0

arca′b′ , otherwise
,

(1)
where τab(t) and ηab(t) respectively represent the pheromone
intensity and the heuristic information of the directed arc arcab;
β is the weighted coefficient which controls ηab(t) to influence
the selection of arcs; DAk(t) (a, b ∈ DAk(t)) is the set of
all candidate arcs whose heuristic information is larger than
zero; q0 (0 ≤ q0 < 1) is an initial parameter that determines the
relative importance of exploitation versus exploration (exploita-
tion means selecting arcs by pheromone intensity and heuristic
information, and exploration means global random selecting
arcs); q is a random number which uniformly distributed in [0,
1]; and a pair of brain regions a′ and b′ are randomly selected
according to the probability p:

pkab(t) =

⎧⎪⎨
⎪⎩

[τab(t)]
α · [ηab(t)]β∑

r,l∈DAk(t)
[τrl(t)]α · [ηrl(t)]β , if a, b ∈ DAk(t)

0, otherwise

,

(2)
where parameter α describes the relative importance of the
pheromone τab(t) left by the real ants. As the goal of ACO
algorithm is to get the optimal structure whose K2 scoring metric
is the maximum, the heuristic function of a directed arc is defined
as:

ηab(t) = f(a, Pa(a) ∪ b)− f(a, Pa(b)), (3)

for τab(t), ACO-B respectively carries out two pheromone up-
dating processes including local and global updating.

The algorithm will get the current optimal solutionG + , when
the iterations of ant colony are ended.

Because ACO-B algorithm adopts a stochastic search mech-
anism based on ACO, its quality is usually higher than that
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of solutions obtained by many deterministic search methods.
Besides, ACO algorithm can support information fusion easily,
as it can integrate useful information in search process to help
search.

B. Patel’s Voxel Activation Model

The joint activation model of brain voxels is defined conceptu-
ally by Patel et al. [13]. In this model, Patel et al. developed two
measurements of association (κ and τ ) to describe the functional
connectivity and effective connectivity based on the voxels
activation probabilities. This method performs well relative to
other methods on identifying brain effective connectivity, which
has attracted some scholars’ attention.

Smith et al. implemented Patel’s method by recalculating each
time series into the range [0, 1]. By comparing this method with
other methods, they found that the direction identification ability
of this method was better than all other algorithms [22].

Xue et al. developed a multimodal approach based on the joint
activation in pairs of brain regions for network analysis [28].
They extended the measure of the activation in Patel’s model,
which evaluates joint activation only based on Cohens Kappa
to describe functional connectivity (FC) and EC between pairs
of brain regions. Then they further illustrated the advantages of
the method by comparisons to methods that only incorporate
functional information.

Although these methods have many advantages, there are
some defects to limit their usage. 1) The connections obtained
by Patel’s κ are usually more than the actual connections, which
results in low precision [22]. 2) The selection of the threshold is
not very flexible, especially in the cases when ground truths are
not available.

Therefore, how to further employ the useful information of
the voxel activation model to more reasonably identify brain
effective connectivity is a meaningful and challenging work.
Thus, we subsequently try to combine the voxel activation
information with the ACO-B algorithm to explore a new method
for identifying the brain EC networks.

III. THE VACOEC ALGORITHM

In this section, we introduce the new method (VACOEC) for
learning brain EC network structure from fMRI data.

A. Main Idea

To effectively learn a brain effective connectivity network,
VACOEC employs two new strategies by using ACO with voxel
activation information. The first strategy uses the voxel activa-
tion information to reduce the search space (called R. S.) while
the second one employs a new heuristic function reinforced by
the voxel activation information in ACO algorithm to heuristi-
cally guide search for an effective connectivity network (called
new H. F.). Fig. 1 shows the flowchart of the VACOEC algorithm.
First, we get the voxel activation information from fMRI data
by calculating the joint and marginal activation probabilities
for each pair of brain regions, e.g., the brain region a and the
brain region b. Next, we use voxel activation information to

Fig. 1. The flowchart of the VACOEC algorithm.

Fig. 2. Illustration of voxel joint activation: (a) The relationship between
voxels and brain regions: a brain region is represented by the mean level
of the all voxels in this area; (b) The four cases of the joint activation: 1)
both region a and region b are active, 2) region a is active while region
b is inactive, 3) region a is inactive while region b is active, and 4) both
region a and region b are inactive.

determine whether there is a connection between brain regions
a and b. After all connections of brain regions are determined,
the candidate constraint network (CN) will be derived. Mean-
while, we propose a new heuristic function by using the voxel
activation information to guide the ants searching for an optimal
solution. Then the ants search for the brain effective connectivity
network based on the candidate constraint network and the new
heuristic function, and updates the pheromone to guide the next
generation ants to search. Finally, when the search phase ends,
the algorithm will get the brain EC network.

B. The Voxel Activation Information

In this paper, the representative voxel in a brain region is
obtained by calculating the global mean of all voxels in this
region. Fig. 2(a) shows the mapping between voxels and brain
regions. Thus, a brain region is represented by the mean voxel,
the voxel activation is also shown as the brain region activation.

For each fMRI time series in a brain region, we define

A = I(Ra > p), (4)
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TABLE I
THE JOINT ACTIVATION PROBABILITIES FOR BRAIN REGIONS a AND b

where Ra is the timeseries of the representative voxel in re-
gion a, p is a threshold to measure whether a voxel is active,
which is represented as c× σ in [13], and I(.) is the indicator
function. Thus, A serves as an indicator of elevated regional
brain activity, where the mth element is 1 if the corresponding
element of Ra is larger than p; and the mth element of A is 0
otherwise.

For each pair of regions a and b, the joint activation of this
pair of brain regions can be interpreted as the four different
cases, which are shown in Fig. 2(b). Then the joint activation
probabilities for the corresponding four cases of brain regions a
and b are shown in Table I.

In Table I, the four elements of θ1, θ2, θ3, and θ4 are the
joint activation probabilities corresponding to the above four
cases, and θ1 + θ2 and θ1 + θ3 are the marginal activation
probabilities for brain regions a and b, respectively. In detail,
the joint activation probabilities θi(i = 1, 2, 3, 4) are defined as:

θ1 = P (Aasm = 1, Absm = 1),

θ2 = P (Aasm = 1, Absm = 0),

θ3 = P (Aasm = 0, Absm = 1),

θ4 = P (Aasm = 0, Absm = 0). (5)

where s denotes sth subject and m denotes mth measurement.
Aasm = 1 means that the brain region a of the sth subject’s
mth measurement is active, and it is inactive otherwise. Absm

is similar to Aasm.
Then, we give the definition of voxel activation information:
Definition 3.1: The voxel activation information is a general

term for the activation probability between voxel pairs, which
contains the joint activation probabilities (θ1, θ2, θ3, and θ4) and
the marginal activation probabilities (θ1 + θ2 and θ1 + θ3).

C. Reducing Search Space Using Voxel Activation
Information

From the original timeseries xaxaxa and xbxbxb of two brain regions
a and b, first we linearly map them, and get the “normalised”
timeseries nanana and nbnbnb of a and b. The mapping method is
described as follows: 1) Setting these values under the 10th

percentile to 0, values over the 90th percentile to 1; and 2)
Linearly mapping the other values to the range of [0, 1]. Next,
we set a threshold p to define whether voxels in this pair of brain
regions are active. If a voxel’s value is higher than the threshold
p, we set its value to 1, otherwise set its value to 0, then we will get
the binary column vectorvavava andvbvbvb. Finally, we present a formula
to calculate the joint activation probabilities θi in the following.

Fig. 3. An example of calculating the joint activation probabilities θ.

For i = 1. . .4, θi of two brain regions a and b can be calculated
as:

θ1 =
vTav
T
av
T
a · vbvbvb
Lv

,

θ2 =
vTav
T
av
T
a · (III − vbvbvb)

Lv
,

θ3 =
vTbv
T
bv
T
b · (III − vavava)

Lv
,

θ4 =
(III − vavava)

T · (III − vbvbvb)

Lv
, (6)

where Lv is the length of the voxel time series, III is a column
vector whose values are all 1 and has the same length withvavava and
vbvbvb. In order to more clearly illustrate this, we give an example
to express this process in Fig. 3.

Based on the voxel activation information, we give two defi-
nitions in the following:

Definition 3.2: The synchronism of brain region activation is
the set of states that two brain regions are activating at the same
time.

Definition 3.3: The asynchronism of brain region activation
is the set of states that one brain region is activating and the other
brain region is inactivating.

From the definitions, we can find that the numerator of θ1 is
the measurement of the synchronism of brain region activation,
and the θ2 and θ3 are the measurements of the asynchronism of
brain region activation. Some synchronization research meth-
ods [11] have shown that stronger synchronization between
two brain regions indicates that they are more likely to have
connections.

Finally, a measure of association is employed to describe
constraint network. Theκab of brain regions a and b is calculated
as follows:

κab =
θ1 − E

D(max(θ1)− E) + (1−D)(E −min(θ1))
, (7)
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Fig. 4. The initial candidate connection graph: (a) the complete con-
nection graph; (b) the possible connection graph.

where E = (θ1 + θ2)× (θ1 + θ3), max(θ1) = min(θ1 +
θ2, θ1 + θ3), min(θ1) = max(0, 2θ1 + θ2 + θ3 − 1), and:

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ1 − E

2(max(θ1)− E)
+ 0.5, if θ1 ≥ E

0.5− θ1 − E

2(E −min(θ1))
, otherwise

, (8)

The numerator of κ measures the difference between the joint
probability and the expected joint probability of brain regions
under the case of independence, and the denominator is simply
a weighted normalizing constant forcing to range from −1 to
1. max(θ1) represents the maximum value of join activation
probabilities, while min(θ1) represents the minimum value of
join activation probabilities. Consequently, according to Eq. (8),
κ equals 1 when θ2 or θ3 equals 0, andκ equals−1 when θ1 or θ4
equals 0. The value ofκab that is close to 1 indicates a high degree
of connectivity between two brain regions a and b. In other
words, if two brain regions have strong synchronism, θ1 is large,
then the κ will be large, which indicates a stronger dependence
relationship between these two brain regions. Conversely, the
value of κab will be 0 when the brain regions a and b are
statistically independent.

Previous studies show that using some constraint knowledge
from data to restrict the space of candidate solutions can ef-
fectively improve the efficiency of the algorithms for learning
Bayesian networks from data [29], [30]. In detail, the deletion of
redundant arcs greatly restricts the searching scope of the algo-
rithms, reduces some sightless searching, and avoids many un-
necessary constructing and scoring processes for those network
structures including these redundant arcs. For a brain effective
connectivity network, if κab, for each pair of brain regions a and
b, is lager than the thresholdK we set, there will be a connection
between them. A constraint network (CN), which consists of
all connections with κab > K, will be determined. Then the
CN becomes the new search space of the algorithm, and the
redundant arcs (κab < K) will be prevented when constructing
a solution.

For example, the initial connect graph is a complete connec-
tion graph which is shown in Fig. 4(a). Then we employ the voxel
activation information to calculate theκ of all nodes, we find that
κae, κad, κac, κbf , κbd and κcf are less than the threshold K. So
we delete these redundant arcs and get the possible connection
graph which is shown in Fig. 4(b). Comparing the two different
initial connect graphs with 6 nodes in Fig. 4, Fig. 4(a) is a
complete connect graph with 6 nodes including 30 directed
arcs and Fig. 4(b) is the possible connect graph only including

16 directed arcs through using the constraint knowledge. Due
to many redundant arcs are deleted during the construct of a
solution, the search space is greatly reduced.

D. A New Heuristic Function With the Voxel Activation
Information

In ACO-B algorithm, if the arc a → b and arc b → a have the
same K2 score, the ants will randomly select the node a or b
to begin searching. The ants’ random and blind searching may
cause some reverse arcs in the final solution, and then reduce
the search ability of the algorithm.

Considering the voxel activation information, we put forward
a weighted factor ω as:

ω = 1 +
θ1 + θ2
θ1 + θ3

, (9)

where θ1 + θ2 and θ1 + θ3 are the marginal activation probabili-
ties of two brain regions which reflect the activation relationships
between this pair of brain regions. The denominator θ1 + θ3 is
always lager than 0. Since if θ1 and θ3 are close to 0, according
to Eq. (8), κ will be zero, and this arc will be deleted in the
possible network structures.

As for two brain regions a and b, the marginal activation
probability θ1 + θ2 shows the condition that brain region a is
active while b is active or inactive, and the marginal activation
probability θ1 + θ3 shows the condition that brain region b is
active while a is active or inactive. Consequently, the ratio of
θ1 + θ2 and θ1 + θ3 can objectively reflect the ascendancy of the
corresponding two brain regions. In detail, θ1 + θ2 > θ1 + θ3
means the activation of brain region a is gaining ascendancy,
which indicates arc a → b is more appropriate than arc b → a.
On the contrary, when θ1 + θ2 < θ1 + θ3, the activation of brain
region b is gaining ascendancy, which shows arc b → a is more
appropriate than arc a → b. In other words, the new weighted
factor has considered the characteristics of the activation of the
brain regions, which contributes to guiding the ant to choose
the more reasonable arcs, and then reduce the randomness and
blindness of the searching.

Combining the limitation of the constraint candidate network
with the weighted factor, the new heuristic function of an arc
arcab is defined as:

ηab(t)

=

{
ω · (f(Gh+1 : Data)− f(Gh : Data)), if arcab ∈ CN

0, otherwise
,

(10)

where arcab is an arc from brain region a to brain region b and
CN is the constraint network. From the formula, we can see
that the constraint network can restrict the search scope and the
weighted factor ω can guide an ant to select arcs. In other words,
if an arc arcab is not in the constraint network, an ant will never
select this arc, and the higher ω makes an ant more likely to
select this arc.
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E. Algorithm Description and Complexity Analysis

The VACOEC algorithm mainly consists of two phases, i.e.,
reducing search space (using the voxel activation information)
and searching for the effective connectivity network (based on
a new heuristic with the voxel activation information), which is
summarized in Algorithm 1.

The procedure of the proposed algorithm is to carry out
initialization, reducing search space, searching for effective con-
nectivity network, and return the effective connectivity network.
After the initialization, the algorithm starts with the stage of
reducing search space, where the joint active probabilities for
every pair of brain regions are calculated according to the fMRI
data. Then the algorithm calculates the κ for each pair of brain
regions, and set threshold to get the constraint network (CN ).
In the stage of searching for an effective connectivity network,
each ant search for an optimal solution instructed by the new
heuristic information function and the pheromone. During each
iteration, each ant adds an arc as a new component of a solution
at a time, if the arc is not in the CN , it will never be added. The

algorithm obtains an optimal solution in the current iteration,
when adding an arc can not make the K2 score of the solution
higher. Then the algorithm updates the global pheromone to
guide ants in the next generation going on searching. Once the
algorithm obtains the same optimal solution for Maxl successive
generations, the search phase will end. After that, the algorithm
gets the optimal solution which has the highest K2 value (G + ).
Finally, VACOEC returns G + as the learned EC network.

Based on the description of Algorithm 1, the complexity of
VACOEC can be simply analyzed as follows: Let the number
of brain regions be N in a brain effective connectivity network.
In the initialization process, the computing complexity is O(1).
In the reducing search space process, the time complexity is
O(N ·N) = O(N2). For the process of searching for effec-
tive connectivity network, the time complexity is reduced from
O(l · w ·N2) toO(l · w · x · y) by using the constraint network,
where l is the number of iterations, w is the number of ants, and
x · y is the size of the constraint network. When the number of
brain regions is very large, x · y will be significantly smaller
than N2, thus the time performance of the VACOEC will be
obviously enhanced.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To study the performance of VACOEC, we first employ some
simulation fMRI datasets [22] to test the effects of parameters
of the VACOEC algorithm. Then, we conduct a series of ex-
periments on all Smith’s simulation fMRI datasets to compare
the proposed algorithm with other state-of-the-art algorithms.
Finally, we use the real fMRI data which are obtained from
Xuanwu Hospital of Capital Medical University and ADNI
database to further validate and demonstrate the effectiveness
of the VACOEC algorithm. The experimental platform is a PC
with Intel Core i7-4770, 24 GB RAM, 2.40 GHz CPU, and
Windows 7.

A. The Simulated fMRI Datasets

The simulated datasets contain 28 simulation cases which
were created with different percent of noise and number
of nodes [22]. The number of nodes in the 28 simula-
tion cases is 5, 10, 15 or 50, respectively. In these sim-
ulation cases, the blood oxygen level dependent (BOLD)
time series data are concatenated over 50 subjects and an-
alyzed for each simulation dataset. The detail specifications
for the 28 simulation datasets. Data were obtained from
the http://www.fmrib.ox.ac.uk/datasets/netsim/index.html are
shown in Table II. Particularly, the brain regions in the 28
simulated datasets are generated by dynamic causal models
(DCM) [22], thus they do not represent for real brain regions,
but can be viewed as a set of functional nodes (only measured
by one global mean voxel).

B. Data Preprocessing

Like many other Bayes network algorithms, VACOEC em-
ploys the K2 score which cannot directly use the continuous
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TABLE II
DESCRIPTION OF THE 28 SIMULATION CASES [22]

value of variables [25], [26]. Thus discrete processing is essen-
tial at the beginning. The discrete processing according to the
number of time points, the discretized instance data are obtained
for the whole brain, where each instance includes the discretized
values of all brain regions (nodes) at the corresponding time
point. For each node’s timeseries of a subject, the range of
voxel values is divided into several equal parts, and each part
contains the same number of voxel values. Based on the division
of node values, the voxel value of each node is quantized at every
instance into a discrete value. For example, a node’s time series
is quantized into five parts, including very low(set value = 0),
low (set value = 1), medium (set value=2), high (set value =
3), and very high (set value = 4), with each of the five parts
containing 20% of the data points.

C. Evaluation Metrics

In this section, we employ a set of measurements including
Precision, Recall, and F-measure to evaluate the direction iden-
tification ability of algorithms.

Let GN express the ground-truth network and LN denote
the learned network. The Precision, Recall and F-measure of
directions are defined as follows:

Precisiond =
Ds

Dw +Da +Ds
, (11)

Recalld =
Ds

TD
, (12)

Fd =
2 ∗ Precisiond ∗ Recalld

Precisiond + Recalld
, (13)

where Ds, Dw, Da are employed to represent the direction
differences between GN and LN. Specifically, Ds represents the

number of same arcs in GN and LN, Da shows the number of
extra added arcs in LN, Dw represents the number of arcs in LN
whose connections are the same as those of GN and directions
are different from the corresponding ones in GN, and TD is the
total number of the directions in GN.

As is mentioned in [25], F-measure is a harmonic mean of
Precision and Recall, so we only show the results of Fd to mea-
sure the network direction identification ability of algorithms on
the 28 simulation cases for the sake of brevity.

D. Parameter Analyzing and Setting

To compare with other methods in a fair and appropriate way
in the next section, we follow the parameter settings methods
of the other comparison methods that we take some simulated
fMRI datasets as examples to study the effects of the algorithm
parameters [22], [25]. These parameters include the weights
for the pheromone trail (α) and for the heuristic information
(β), the controls of the pheromone evaporation (ρ), the rela-
tive importance of the exploitation versus exploration (q0), the
number of ants (n), the threshold of the voxels activation (p)
and the threshold of the constraint networks (K). After a large
number of experimental tests, we find that the set of parameters
α = 1, β = 2, ρ = 0.2, q0 = 0.8, n = 10 performed well on
most of datasets, and the parameters p and K are mainly associ-
ated with the number of nodes. Thus we test on the simulated data
from Sim1 to Sim4 (number of nodes from 5 to 50) to determine a
better parameter configuration of p and K for VACOEC. During
all experiments, we employ the control variate technique that the
value of a single parameter is changed, while keeping the values
of other parameters fixed.

To objectively reflect the experimental results, we run 100
times and show the average results. We first set the default value
of p and K as 0.6 and 0.2, and test the running time of VACOEC
for different values of p and K. In Fig. 5, we give the form of
box plots, where the top and the bottom of each box indicate
the 75th and 25th percentiles, respectively; the line in each box
indicates the 50th percentile; the whisker bars below and above
each box indicate the minimum and maximum, respectively;
and the squares and asterisks in each box indicate the mean and
outliers, respectively. From Fig. 5(a)–(h) we can see that the
decrease of p and the increase of K make the running time
shorter. In particular, when K reaches 0.4, all paths will be
constrained, and the algorithm cannot be executed.

Then we test how the solution quality (Fd) is influenced by p
and K. In Fig. 6, we plot the effects of parameters on Fd from
Sim1 to Sim4. From Fig. 6(a), we found that the value of p at
0.15, 0.3, 0.45 and 0.9 always performed worse or equal to p
at 0.6 and 0.75, and then, as reflected in Fig. 6(b), the value of
K at 0.1, 0.15, 0.25, 0.3 and 0.35 always performed worse or
equal to K at 0.2. Considering both running time and solution
accuracy (Fd), we finally set the p value at 0.6 and the K value
at 0.2 in the following experiments.

E. Comparative Evaluations on the Simulated fMRI Data

To intuitively show the competitiveness of the VACOEC
algorithm, we compare VACOEC algorithm with other seven

Authorized licensed use limited to: University of Southern California. Downloaded on June 10,2021 at 22:19:13 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: LEARNING BRAIN EC NETWORK STRUCTURE USING ACO COMBINING WITH VOXEL ACTIVATION INFORMATION 2035

Fig. 5. The effects of the parameter p and K on time performance:
(a, b, c, d) gives the box plots of running time (ms) for different values
p from Sim1 to Sim4 when K = 0.2; (e, f, g, h) shows the box plots
of running time (ms) for different values K from Sim1 to Sim4 as the
p = 0.6.

Fig. 6. The effects of parameter p and K on the Fd from Sim1 to
Sim4: (a) gives how the Fd changes when the p increases (K = 0.2);
(b) shows the plots of Fd for different values K (p = 0.6).

methods, some of them perform well on Smith’s simulated
dataset [22], and some of them are state-of-the-art methods.
They are Prediction correlation (P-corr) method [19], LiNGAM
method, GC method, GS method, Patel’s condition dependence
measurement method (Patel) [13], learning effective connectiv-
ity network using artificial immune algorithm (AIAEC) [25],
and ACOEC [26], respectively. In particular, ACOEC is the
preliminary algorithm that only using ACO to search for the
brain effective connectivity (without considering voxel acti-
vation information), which is used to demonstrate the effec-
tiveness of voxel activation information. The parameters of

TABLE III
THE Fd VALUE OF 8 ALGORITHMS ON 28 SIMULATIONS

the algorithms under comparison are selected according to
the existed literature and have been validating optimized by
the previous works [19], [22], [25]. The default parameter
configurations of the corresponding methods are as follows.
P-corr runs with BOLDMaxlength = 15, TR = 3. LiNGAM
uses the parameters where Prune Factor = 1.0. GC is set as
max _lag ∈ [1, 30], Alpha = 0.05. GS is performed with m =
10, nn = 10, and theiler = 50. Patel runs with bin = 0.75.
The AIAEC is set as Ps = 0.5, Pc = 0.6, Pm = 0.4, T = 150,
N = 80, and M = 70. ACOEC uses the parameters where
α = 1, β = 2, ρ = 0.2, q0 = 0.8. The VACOEC algorithm
parameters are set as follows: p = 0.6, K = 0.2, α = 1, β =
2, ρ = 0.2, q0 = 0.8, n = 10. For each method, we show the
results of the mean values (Fd and running time) over 100 runs
on each simulation, which can reflect the ability of different
methods for learning brain effective connectivity networks [22],
[25]. To more intuitively see the performance of all algorithms,
we also give the average results (Ave.) of each algorithm on all
28 simulated datasets.

The detailed comparison results ofFd value for all algorithms
on 28 simulations are shown in Table III.

1) The factor of node number and session duration: From Sim1
to Sim4 in Table III, the number of nodes increases from 5 to
10, 15, and 50. Following the chain of Sim1-Sim2-Sim3-Sim4,
we can see that most of the algorithms including VACOEC have
a little decrease of Fd. Compared with AIAEC and ACOEC,
VACOEC has a better and more stable performance as the
number of nodes increases. In detail, when the number of nodes
increases to 50, VACOEC’sFd value reach 0.82, which is higher
than that of the other seven algorithms. Following the chain
of Sim26-Sim25-Sim1-Sim5-Sim7, as the session duration
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increase from 2.5 min, to 5 min, 10 min, 60 min, and 250 min.
we can find that VACOEC can get the stable solution of the EC
network from a short time to a long time, while other algorithms
have an obvious setback when the session duration is short. In
a word, a larger number of nodes and shorter session duration
will affect the performance of most of the algorithms, however,
VACOEC can still achieve a good performance.

2) Other impact factors: In Smith’s simulated datasets, some
other factors were given to test the algorithms on detecting
the effective connectivity. In Sim8 and Sim9, external inputs
are mixed into the network, which can be viewed as neuronal
“noise”. From the results in Table III, we can see that the external
inputs seriously affect the performance of VACOEC and other
algorithms. However, from the comparison results, we found
VACOEC still has obvious advantages and theFd value is higher
than all of other algorithms. Sim10 has global mean confound,
which means to add the same random time series to all node’s
BOLD time series. VACOEC performs well in this simulation
which shows this factor has no affect to it. Sim11 and Sim12
show the factor of bad region of interests (ROIs). From the
results in Table III, we find that bad ROIs in Sim11 seriously
affect VACOEC and other algorithms, while Sim12 does not. In
particular, VACOEC performs better than AIAEC and ACOEC
in these two simulations. Sim13 shows the factor of backward
connection, this factor obvious affect algorithms, and most of
algorithms including VACOEC perform worse in this case. In
Sim14, the ground-truth is a cyclic graph. This case is a problem
for many of the global network modeling methods including
most of the Bayesian network methods, due to it breaks the
general modeling assumption in these methods, i.e., the graph
has no cycle. From the results, we can see AIAEC, ACOEC and
VACOEC perform worse, all falsely identifying the cyclic arc.
So not accurately identifying cyclic connections is a limitation
of Bayesian network method. In Sim15, the connection strength
is increased from 0.4 to 0.9, which has a bad influences on most
algorithms, but VACOEC performs quite well. In Sim16, the
number of connections increases to seven from five, in this case,
VACOEC performs better than GC, AIACE, and ACOEC but
worse than P-corr, LiNGAM, GS and Patel. Sim18, Sim19,
and Sim20 show the factor of low TR and HRF variability,
VACOEC performs well and has a stable performance. Sim22
and Sim23 show the factor of nonstationarity and stationarity
of connection strength between nodes. Most of the algorithms
perform well in Sim22 while they perform worse in Sim23.
These results indicate that nonstationary connection strength
has less effect on detecting effective connectivity, while the
stationarity connection has a bad effect for most of the algo-
rithms. Sim25, Sim26, Sim27, Sim28 show the factor of different
noises. From the results in Table III, we can find that VACOEC
performs better than ACOEC in almost all simulations, which
further demonstrate the effectiveness of the new strategies of
VACOEC. Besides, VACOEC achieves the highest Ave., which
indicates that VACOEC has a stronger direction identification
ability compared with other algorithms. Therefore, we draw the
conclusion that VACOEC performs well on almost all cases,
especially at the situations when the session is short and the
noise is significant.

TABLE IV
THE POST-HOC TEST RESULTS (P-VALUES) OF ALL PAIRS OF

ALGORITHMS ON Fd VALUE

To further compare the statistical differences between these
algorithms, we use the Friedman test with post-hoc tests [31]
to attest the corresponding algorithms with the confidence level
95%, i.e., the probability of producing the difference by chance
is not greater than 5%. If the p-value obtained from the test is
less than 0.05, we consider that a significant difference exists
in the corresponding experimental results. The result of the
Friedman test shows that there is a significant difference between
the 8 compared algorithms (p-value = 8.61× 10−13 < 0.05).
Since significant differences are detected between the compared
algorithms by the Friedman test, there are several post-hoc tests
that can be applied to find out which algorithms differ from the
others. The post-hoc test results of all pairs of algorithms on Fd

value are shown in Table IV.
To reduce the chances of obtaining false-positive results

when multiple pairwise tests are performed on Table IV, we
use the Bonferroni correction to correct for the multiple com-
parisons [32]. From Table IV, we can find that there are
28 hypotheses simultaneously exist in the multiple compar-
isons, with a critical p-value of 0.05. In this situation, where
p-value < 0.05/28 = 0.0018 indicates that the corresponding
two algorithms have a statistically significant different effect
on the performance and vice versa. We can see the p-values of
VACOEC and P-corr, VACOEC and GC are all less than 0.0018,
which means VACOEC is significantly different from these
methods. Combining these results with the results in Table III,
we can come to the conclusion that VACOEC is significantly
superior to these algorithms on Fd value, which indicates that
VACOEC has better performance on identifying brain effective
connectivity.

Finally, we present the time performance of 8 algorithms on
each simulated dataset. As is shown in Table V, Patel’s running
time is the shortest. LiNGAM, AIAEC, ACOEC, and VACOEC
are well-matched, whose running times are shorter than P-corr,
GC, and GS. In particular, VACOEC’s time performance has
certain advantages compared with other algorithms, only worse
than Patel, and worse than LiNGAM in some simulations. So
compared with other algorithms, the computational time over
most simulated fMRI data sets of the new algorithm is in the
upper middle level. From Table V we also find, the main two
factors that affect the algorithms’ running time are the number
of nodes and the session duration.

Therefore, the VACOEC is better or comparable to the seven
comparison algorithms, so we only use it in real fMRI data for
new explorations in the following section.
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TABLE V
THE TIME PERFORMANCE (RUNNING TIME) OF 8 ALGORITHMS

ON 28 SIMULATIONS

F. Experiments on the Real fMRI Data

The study was conducted under a research protocol approved
by the Institutional Review Board of the Xuanwu Hospital (IRB-
2016-004), in accordance with the Declaration of Helsinki. All
participants were given a detailed explanation of the study and
signed an informed consent prior to the study. As the numbers
of both healthy and diseased subjects in our dataset are small,
we also use a large-scale dataset called the ADNI database
(adni.loni.usc.edu).

1) Experimental Results on the Collected fMRI Data: Our
collected MRI data were acquired with a 3-Tesla Trio scanner
(Siemens, Erlangen, Germany). All participants were asked
to hold still, with their eyes closed. Foam padding was em-
ployed to limit head motion and headphones were used to
reduce scanner noise. Resting-state functional magnetic res-
onance imaging (rs-fMRI) images were acquired using an
echo-planar imaging (EPI) sequence with a repetition time
(TR)/echo time (TE)/flip angle (FA) = 2000 ms/40 ms/90, 28
axial slices, slice thickness/gap= 4/1 mm, field of view (FOV)=
256 mm, bandwidth = 2232 Hz/pixel and number of repetitions
= 239. The 3D T1-weighted anatomical image was acquired
with a magnetization-prepared rapid gradient echo (MPRAGE)
method with the following parameters: TR/TE/inversion time
(TI)/FA = 1900 ms/2.2 ms/900 ms/9, matrix = 256 × 224,
bandwidth = 199 mm, 176 sagittal slices with 1 mm thickness.
The clinical characteristics of the 13 AD patients and 10 NCs

TABLE VI
THE CLINICAL CHARACTERISTICS OF THE NC AND AD PATIENTS

1Values represent means ± standard deviation.
2CDR: Clinical Dementia Rate.
3MoCA: Montreal Cognitive Assessment.

TABLE VII
THE REGIONS OF INTEREST IN THE REAL fMRI DATA

1DMN: Default Mode Network.
2ECN: Executive Control Network.
3SN: Salience Network.

are shown in Table VI. fMRI data preprocessing was performed
using SPM12 toolbox.1

In our experiments, we select twelve ROIs that are considered
to be potentially relevant to AD based on the literature [33], [34].
These ROIs are defined by the parcellation map from Power et al.
(2011) [33]. Please see Table VII for the name of each ROI from
three networks.

The effective connectivity network of NC and AD identified
by VACOEC are shown in Fig. 7. In Fig. 7, the red dotted
line divides the entire network into nine regions. In particular,
the first region divided by red dotted line shows the effective
connectivity in DMN, the second region to its right shows the
effective connectivity between the DMN and ECN, and the third
region to its right shows the effective connectivity between the
DMN and SN. The rest of the regions’ meaning are the same as
them.

From the result in Fig. 7, we can draw the conclusion: 1) The
connection relationship in DMN: Both LIPL → RIPL and
LIPL → MPPC exist in the NC and AD, while the effective
connective MPPC → PCC is missing in the AD patients’
networks. 2) The connection relationship between DMN and
ECN: there are six effective connectivity between the DMN
and ECN in NC and AD, which means the connections in
this network of the AD patients remain to be intact. Moreover,
there are some connections in AD patients that are reverse to
those in NCs, these reverse connections may have an effect
on AD. 3) The connection relationship between DMN and SN:
there are three connections in NC which are dACC → PCC,

1The toolbox is available at http://www.fil.ion.ucl.ac.uk/spm.
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Fig. 7. The effective connectivity learned by VACOEC from fMRI data
of NC and AD. The horizontal and vertical coordinates indicate the
corresponding regions of interest, the color grid indicates an effective
connectivity between the two corresponding regions which is obtained
by the VACOEC: the blue grid shows the effective connectivity exists
simultaneously in both NC and AD, the yellow grid shows the effective
connectivity has the opposite directions in NC and AD, and the green
grid shows that the effective connectivity only exists in NC while are
missing in AD. The red dotted line divides the entire network into nine
regions, including the effective connectivity in the three networks (DMN,
ECN and SN) and the effective connectivity between each of two corre-
sponding networks.

RFIC → LIPL, and RFIC → MPPC, while there are only
one connection LIPL → RFIC. Two connections are missing
in AD patients’ network, which may indicate the missing con-
nections between DMN and SN is a factor that causes AD. 4) The
connection relationship in ECN: the number of connections in
ECN of NC and AD are the same, and there are two connections
in AD patients that are reverse to those in NCs. 5) The connection
relationship between ECN and SN: the result is similar to 4). 6)
The connection relationship in SN: the effective connectivity
in SN are different between AD and NC. In NC, there are two
connections, RFIC → dACC and LFIC → RFIC, while in
AD, there is only one connection, RFIC → LFIC. Generally,
we can see that there are some missing and reversing effective
connectivity in the three networks of AD patients compared to
NCs. The missing effective connectivity in DMN and SN could
be the cause of Alzheimer’s disease in the elderly, which has
been confirmed by many existing studies [5], [31]. The reversing
effective connectivity, which can not be found in functional
network studies, may also be a cause of Alzheimer’s disease
in the elderly. The current study found that there are specific
disruptions of the effective connectivity in the DMN of AD
patients [34]. These findings are also verified by our results
in Fig. 7 that some effective connectivity (MPDC → PCC,
dACC → PCC, andRFIC → MPFC) in DMN (or between
DMN and other networks) are missing in AD compared with NC.
Besides, Dobryakova et al. found that the effective connectivity
dACC → PCC exists in NCs, but it is missing in Primary
Progressive Multiple Sclerosis (PPMS) [35]. This finding is
exactly consistent with our results in Fig. 7, which indicates that
effective connectivity can help us understand the differences
between healthy people and people with a disease. [34]–[36]
To further explore the performance of VACOEC algorithm in
large-scale brain nodes and multiple subjects, we carry out some
experiments on another real fMRI dataset below.

2) Experimental Results on the ADNI Database: Another
real dataset used in this article was obtained from the ADNI

TABLE VIII
THE CLINICAL CHARACTERISTICS OF THE NC, MCI AND AD PATIENTS

Fig. 8. The effective connectivity learned by VACOEC from ADNI data
of NC, MCI and AD groups.

database. To date, over 1500 adults, aged 55 to 100, were
recruited to participate in the research, consisting of cognitively
normal controls (NC) older individuals, patients with Mild
Cognitive Impairment (MCI), and patients with Alzheimer’s
disease (AD). For more information, see www.adniinfo.org. In
this study, a total of 220 subjects of the ADNI database are
studied. These subjects belong to 3 groups according to ADNI
baseline diagnosis: NCs, MCIs, and AD patients. Demographic
data (age and gender) is shown in Table VIII.

The EC networks learned for 3 different groups are graphi-
cally rendered in a circular diagram format in Fig. 8, where the
outermost rings represent the brain regions and the center is a
representation of brain effective connectivity. Each circular dia-
gram is obtained by VACOEC on the corresponding dataset. We
employ the Automated Anatomical Labeling (AAL) template
as the parcellation map to define the brain regions (contain 90
ROIs). Each brain region is represented by a circle with different
colors (some may be same), and the color of arrows are the same
with the parent nodes.

Following the chain of NC-MCI-AD in Fig. 8, the number
of brain effective connectivity in each group is respectively
334, 302, and 281. In other words, the group of AD has 7.0
percent less amount of effective connectivity than MCI and 15.9
percent less amount of effective connectivity than NC. This
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result shows that as the disease worsens, the number of brain
effective connectivity will be less and less. Loss of connectivity
in AD has been widely reported in the literature [37], [38]. Aside
from having different amounts of brain effective connectivity at
the global scale, AD may also have a different pattern of connec-
tivity across the brain compared with MCI and NC. Therefore,
we count the number of arcs in each of the brain regions to
find the different patterns of connectivity between 3 different
groups. The results show that there are significant decreases of
brain effective connectivity in the brain regions of Cingulum,
Precuneus, Insula, and Hippocampus. These findings are also
corroborated by previous studies that have implicated changes
in these regions to be related with MCI and AD [37]. Previous
pathological studies observed that neuropathological hallmarks
accumulate in the hippocampus, and found that loss of effective
connectivity in the hippocampus is related to AD [5], [38]. Our
finding that the number of brain effective connectivity of AD
between the hippocampus and other brain regions is decreased
further verifies it, which is in agreement with previous studies
and can help to explain and predict the progression and evolution
of the AD disease [5]. Besides, the cingulum is a major structure
of the limbic system, which is closely associated with memory
function, and the decreased number of effective connectivity in
the cingulum may be a factor causing AD in the elderly. This
finding is also consistent with the results in our collected fMRI
dataset.

V. CONCLUSION

This paper presents a novel Bayesian network method for
learning brain EC network structures from fMRI data, i.e., VA-
COEC. The algorithm first uses the voxel activation information
to measure the independence between each pair of brain regions,
and effectively restricts the space of candidate solutions, which
avoids many unnecessary searches by ants. Then, it combines
the global score increase of a solution with the voxel activation
information, and introduces a new heuristic function with better
heuristic ability to enhance the solution quality. The experi-
mental results illustrate that the new algorithm is superior both
in terms of quality of the solutions and computational time to
other compared algorithms on most simulated fMRI data sets we
have tested. Moreover, the results on the real fMRI data show
that AD patients experience decreased effective connectivity
in some brain regions compared to NC, and as the disease
worsens, the number of effective connectivity will be less and
less. These findings are corroborated by previous studies that
have implicated changes of EC to be related with MCI and
AD, which can help to explain and predict the progression and
evolution of the AD disease.
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