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a b s t r a c t 

To diagnose Alzheimer’s disease (AD), neuroimaging methods such as magnetic resonance imaging have 

been employed. Recent progress in computer vision with deep learning (DL) has further inspired research 

focused on machine learning algorithms. However, a few limitations of these algorithms, such as the re- 

quirement for large number of training images and the necessity for powerful computers, still hinder the 

extensive usage of AD diagnosis based on machine learning. In addition, large number of training param- 

eters and heavy computation make the DL systems difficult in integrating with mobile embedded devices, 

for example the mobile phones. For AD detection using DL, most of the current research solely focused 

on improving the classification performance, while few studies have been done to obtain a more com- 

pact model with less complexity and relatively high recognition accuracy. In order to solve this problem 

and improve the efficiency of the DL algorithm, a deep separable convolutional neural network model is 

proposed for AD classification in this paper. The depthwise separable convolution (DSC) is used in this 

work to replace the conventional convolution. Compared to the traditional neural networks, the parame- 

ters and computing cost of the proposed neural network are found greatly reduced. The parameters and 

computational costs of the proposed neural network are found to be significantly reduced compared with 

conventional neural networks. With its low power consumption, the proposed model is particularly suit- 

able for embedding mobile devices. Experimental findings show that the DSC algorithm, based on the 

OASIS magnetic resonance imaging dataset, is very successful for AD detection. Moreover, transfer learn- 

ing is employed in this work to improve model performance. Two trained models with complex networks, 

namely AlexNet and GoogLeNet, are used for transfer learning, with average classification rates of 91.40%, 

93.02% and a less power consumption. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease that 

an cause mental disorders and even dementia in humans [ 1 , 2 ]. AD

atients are usually elderly, and a common symptom is the gradual 

oss of memory and understanding [3] , which can inevitably lead 

o death. It is estimated that AD will suffer one in every 85 persons

y 2050 [4] . So far, the exact cause of AD is still not quite clear. It

as been reported that there are no effective medications or treat- 

ents that can prevent or reverse the progression of AD [5] . There- 

ore, it is critical to early diagnose the AD and design a treatment 

lan to slow the progression of AD. In recent years, the diagnosis of 

D, especially its transitional phase, that is, mild cognitive impair- 
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ent (MCI), has received growing attention [6] . Every year roughly 

0 percent −15 percent of MCI patients are transitioned to AD [7] . 

t is found the converting from MCI to AD is often accompanied by 

he loss of the gray matter [8] , abnormal changes in the volume of 

he medial temporal lobe structures [9] , the decreased functional 

onnectivity in the right superior frontal gyrus [10] and the de- 

reased volumes of para hippocampal gyrus [11] . Based on these 

otential visual evidences of AD, the research approach should be 

eveloped that not only enhances the understanding of the patho- 

hysiological processes of AD, but also contributes to the clinical 

tudy of AD. 

Many neuroimaging techniques have been developed for ex- 

loiting the brain functions and structures, such as diffusion ten- 

or imaging [12] , magnetic resonance spectroscopy [13] , electroen- 

ephalography [14] , and magnetic resonance imaging (MRI) [15] . 

ecently, MRI has become increasingly popular in studying the 

https://doi.org/10.1016/j.cmpb.2021.106032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
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Table 1 

Performance comparison of previous ML methods. 

Methods EMCI versus LMCI LMCI versus AD 

[32] 72.05% 81.70% 

[33] 73.60% 90.10% 

[34] 90.00% 88.89% 
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rain nerve connections. MRI has shown tremendous promise as 

ne type of well-developed brain imaging technology in provid- 

ng detailed information for the diagnosis of high-level neurolog- 

cal disorders, such as depression and schizophrenia [16] . Rapid 

evelopments of neuroscience [17–22] and machine learning (ML) 

re widely used for automatic pattern recognition of clinical image 

ata [23–26] . Recent studies have shown that in certain circum- 

tances, ML algorithms can predict AD even better than clinicians 

24] , which is rather appealing and therefore, the computer-aided 

iagnosis has become an important research topic, due to its rela- 

ively low cost while training an expert system. Although statistical 

L method such as support vector machine (SVM) [27] has shown 

ome merits in automatic AD detection, a few recent deep learning 

DL) methods have been found superior to the conventional statis- 

ical methods. The convolutional neural network (CNN) is popular 

n DL community thanks to its great success in image classification 

28–30] . These achievements have attracted researchers to develop 

mproved CNN-based systems for AD detection. However, despite 

reat efforts have been made to improve the accuracy of classi- 

cation, few works were done to optimize of the architecture of 

NN for practical AD detection. In this paper, MRI-based feature is 

eveloped for AD classification using a depthwise separable con- 

olution (DSC)-based CNN, and decent recognition accuracy rate is 

chieved. 

The research approach of this work is divided in three-fold se- 

uentially: 

A CNN is designed to train and identify a small number of MRI 

ith an obtained high classification accuracy. 

The CNN is further optimized to improve portability, which is 

 depthwise separable convolutional neural network. It decreases 

he number of parameters and the cost of computation, while the 

lassification accuracy rate is maintained. 

Two well-trained networks are used for transfer learning and 

ood classification accuracies are achieved, which evidenced the 

ffectiveness of the proposed depthwise separable convolutional 

eural network. 

The remainder of the paper is structured as follows: similar 

orks are summarized in Section II. Section III discusses the re- 

earch methodology, and Section IV contains the experimental re- 

ults and interpretation. Section V provides the conclusion and fu- 

ure work. 

. Related works 

The ML technique is commonly used in the automated pat- 

ern recognition based on images [ 25 , 31 ]. Classical ML algorithms, 

uch as SVM algorithm [27] and linear judgment analysis algo- 

ithm [29] , have been successfully applied to diagnose the early 

tage of AD using MRI. Recently, a feed-forward neural network 

31] , which used dual-tree complex wavelet transform for feature 

xtraction, was proposed to classify the MRI. Detailed discussion 

nd its comparisons with other popular methods were also ad- 

ressed in [31] . A study on four-class classification was proposed 

n [32] : The study investigated the diagnosis of AD, late mild cog- 

itive impairment (LMCI), early mild cognitive impairment (EMCI), 

nd healthy control (HC). Multi-core SVM [33] and the weighted 

andom SVM [34] have also been used for the same types of classi- 

cation and the performance continuously improved. The detailed 

ecognition accuracy rates from these works are shown in Table 1 . 

In the area of AD recognition, DL is often considered advanta- 

eous because it does not require complex feature engineering and 

eneralization beforehand. Recently, DL methods have become in- 

reasingly popular, and arguably surpass the traditional methods. 

n [35] , it was recommended that a flexible DL program imple- 

ent dropout strategy to classify AD patients at various stages of 

evelopment. The results indicate that the dropout has a good ef- 
2 
ect in the diagnosis of AD with its final average classification rate 

eached 74.10%, improving the classification accuracy by 5.90% on 

verage, compared to the classical DL methods. As one of DL’s most 

sed architectures, CNN has gained a great deal of interest in the 

rea of image classification [ 30 , 36 ]. An AD detection system based

n CNN, AD patches and HC being used to train a CNN to recog- 

ize deep learning characteristics of MCI subjects, was introduced 

n [37] , and the final accuracy of recognition exceeded 79.9% with 

18 subjects. 

A popular method [38] achieves a good classification by seg- 

enting the entire brain into multiple anatomical or distinguished 

egions, and then extracting regional features. Another method 

39] introduced that the features extracted from neuroimaging 

ata are not isolated but have high correlations. Considering the 

elationship between these features, tree-guided sparse coding 

ethods and resampling schemes using elastic nets have been pro- 

osed in [40] for AD diagnosis. The approach of [41] uses unsu- 

ervised CNN, PCANet, to achieve feature learning of MRI images. 

CANet can learn the filters in CNN through traditional unsuper- 

ised machine learning algorithms. PCANet performs hash coding 

n the feature map obtained by the convolutional layer, and then 

ses histogram block coding, and finally outputs the extracted fea- 

ures. Although these DL algorithms provided good accuracy rates, 

he model structures are complex for deployments on the embed- 

ed devices with limited computing resources [18] . To address this 

hallenge, this work aims to replace the standard convolution ar- 

hitecture of CNN by DSC to reduce the number of parameters and 

raining time of the neural net model. 

The fine-tuning of the networks based on transfer learning have 

lso been explored using medical image data. Studies using med- 

cal images in [ 42 , 43 ] shows that fine-tuning of the model based

n transfer learning is better than training directly from scratch 

n most cases. Therefore, in this work the AlexNet and GoogLeNet 

odels are separately used as the base for transfer learning to fur- 

her classify AD. The results indicate the positive effectiveness of 

SC for diagnosing AD. 

. Methodology 

This section presents the methodology of the related methods 

roposed in this work, including CNN, DSC and transfer learning, as 

ell as the pipeline of training and optimizing the neural network. 

.1. CNN model 

As a multi-layer neural network, CNN is particularly effective 

hen dealing with scenes involving a large number of images. The 

asic structure of a classical CNN consists of a convolutional layer, 

 pooling layer, and a fully connected layer. A classical CNN’s ba- 

ic structure consists of a convolutional layer, a pooling layer, and 

 totally fully layer. In detail, the convolutional layer is designed 

o extract different f eatures of the image. The pooling layer further 

bstracts the original features, which greatly reduces the training 

arameters and eases the over-fitting of the model. In summary, 

NN allows a collection of features through the convolution ker- 

el’s filtering mechanism, which decreases the amount of network 

arameters through convolutional weight sharing and pooling ac- 
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Fig. 1. The overall design of the architecture CNN from this work. ’Conv.’ and ’Pool.’ denote the convolution and pooling processes, respectively. 
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ivity. The soft-max classifier is inserted into the fully connected 

ayer, after extracting the features, to classify the samples. 

Fig. 1 displays the overall CNN layout configuration and can be 

plit into the module for extraction of functionality and the mod- 

le for classification. ’Conv.’ and ’Pool.’ denote convolution opera- 

ions and pooling operations, respectively. 

For the feature extraction of this work, there are N gray-scale 

mages X n ,n ∈ [1, N ] after the data pre-processing, and their pix- 

ls are scaled to a size of 56 × 56 and normalized to the inter- 

al [0, 1]. Moreover, the standard convolutional layer of the con- 

olution kernel of size 3 × 3 is then fed for feature extraction. For 

ach convolution operation, batch normalization (BN) [44] function 

nd rectified liner unit (ReLU) activation function is implemented. 

hereafter, each convolutional layer is accompanied by a maximum 

ooling of size 2 × 2, which samples down by half the previous 

eature map. 

Three such standard convolutional layers are applied to this 

odel. The CNN model framework is used as a benchmark in this 

ork, as shown in Fig. 1 . 

A 7 × 7 × 128 feature matrix is fed to the classification mod- 

le after the previous feature extraction. Firstly, the feature map 

s flattened to 6272 feature vectors, and then the feature vectors 

re densified by using two fully connected layers, each layer is 

et to contain 1024 neurons. C is the number of classifications in 

D dataset. Then, the C -dimensional score vector S( [ S 1 …, S l ,…S C ])

s expressed by the predictive probability with the soft-max func- 

ion, and the value of each fraction is between [0, 1]. The soft-max 

unction is given by 

 ( y n = l X n ) = 

exp ( S l ) ∑ C 
l=1 exp ( S l ) 

, (1) 

here P ( y n = lX n ) is the forecasted likelihood for sample X n to be

lass l . 

To avoid over-fitting of the network, the popular dropout reg- 

larization is used for each pooling layer of the CNN model [45] : 

ome neurons in the neural network are discarded at random dur- 

ng model training. In this work, 10% of the neurons are randomly 

emoved. 

The network weight w and the cost function of the network 

eed to be optimized during the process of CNN training. Regu- 

arized cross-entropy is used as cost-function in this analysis. The 

ost-function can be translated as 

 ( w ) = 

N ∑ 

n =1 

C ∑ 

l=1 

y nc log [ P ( y n = l X n ) ] + γ l 2 ( w ) , (2) 

here y nc is 0 if the X n ground truth label is the l th dot, or if it

s 1 otherwise. The l 2 regularization with its coefficient γ controls 

he weight w while training the model, also detects the limitation 

f the model space so that over-fitting may be avoided. 

Fig. 2 shows the standard convolution process. A standard con- 

olution layer takes a D i × D i × M feature map I as input and gen-

rates a D i × D i × N feature map output O , where D i is the spatial

idth and height of the square input feature map, M is the num- 
3 
er of input feature map channels, and N is the number of output 

eature map channels. Extracts function from the size D k × D k con- 

olution kernel from the standard convolution layer. D k is convolu- 

ion kernel spatial width and height. 

The standard convolution calculation process formula of the 

eature map I to the feature map O is given by 

 k,l,n = 

∑ 

i, j,m 

K i, j,m,n . I k + i −1 ,l+ j−1 ,m 

, (3) 

here I represent the input features maps, O represents the output 

eatures maps, and k represents the convolution kernels. i and j 

pecify the Convolution kernel element location. k and l decide the 

ocation of the element in the input feature map and the output 

eature map, m represents the input feature map channel and n 

epresents the output feature channel. 

The parameters of standard convolution are computed as 

 = M × N × D k 
2 
. (4) 

The computing cost of standard convolution is shown by 

 = M × N × D i 
2 × D k 

2 
, (5) 

here G represents the total number of parameters of the model, 

 represents the computational cost, M represents the number of 

hannels of the input feature map, N represents the number of 

hannels of the output feature map, D i represents the spatial width 

nd height squared input features of the object map, and D k rep- 

esents the convolution the spatial width and height of the convo- 

ution kernel. 

.2. DSC operation 

The traditional convolution process uses weight sharing and 

ooling operations. Such techniques can significantly reduce the 

umber of network parameters employed and the cost of compu- 

ation, but still cannot satisfy the criteria of installing models on 

any embedded devices. In this work, A new approach for fur- 

her reduce the number of parameters and the computational bur- 

en of a CNN is provided. The standard convolutional layer con- 

iders the input image data from the channel and space aspects 

imultaneously. DSC decomposes the traditional convolution into 

wo sequential steps in order to reduce the potential redundancy 

f the standard convolution due to ignorance of information types: 

epthwise convolution followed by pointwise convolution (1 × 1 

onvolution kernels). In detail, DSC divides the standard convolu- 

ional layer into two layers, one for filtering and the other for ex- 

racting features with multiple 1 × 1 convolution kernel. Depth- 

ise convolution first applies the convolution kernel to a channel 

f the image, and then the point-wise convolution is used to inte- 

rate the channel convolution output. The DSC uses a 1 × 1 convo- 

ution kernel instead of a 3 × 3 convolution kernel to process the 

nput image data. It is found in such design the DSC greatly re- 

uced model parameters and the computational complexity com- 

ared with standard convolution, and the experimental results will 

e analysed in detail. 
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Fig. 2. The structure of a standard convolution layer includes convolution module and pooling module. This framework is based on the case where the training step size is 

one and the input feature map is zero-padding. 

Fig. 3. The structure of a DSC includes depthwise convolution module and pointwise convolution module. The stride is one and zero padding applies to depthwise convolu- 

tion module. 
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The DSC structure is expressed in Fig. 3 . For each input channel, 

epthwise convolution applies a single filter with the stride of one 

nd zero padding. Pointwise convolution is then used to construct 

 linear combination of the depthwise convolution output with a 

onvolution kernel of size 1 × 1. Pointwise convolution achieves 

he effect of down-sampling by adjusting the stride. This work uses 

N [44] and ReLU nonlinear function for both DSC layers. 

The feature map for the output of the depthwise convolution is 

xpressed as 

¯
 k,l,m 

= 

∑ 

i, j 

K i, j,m 

. I k + i −1 ,l+ j−1 ,m 

, (6) 

here I represent the input feature maps, Ō represents the out- 

ut feature maps, and K represents the convolution kernels. i and j 

etermine the element position of the convolution kernel. k and l 

ecide the location of the input feature map element and the out- 

ut feature map, m represents the input feature map channel. 

The parameter calculation and cost function for the depthwise 

onvolution can be denoted by 

 2 = M × D K 
2 (7) 

nd 

 2 = M × D i 
2 × D K 

2 (8) 

The number of parameters is related only to the number of 

nput feature mapping channels and the convolution kernels. The 

omputational cost is proportional to the number of input fea- 

ure mapping sources, the convolution kernel and the square input 
4 
eature mapping function. The parameters and computing costs of 

epthwise convolution do not need to consider the output feature 

apping N. Compare to formulas (4) and (5), the formulas (7) and 

8) above clearly demonstrate the simplicity of the depthwise con- 

olution. However, unlike the conventional convolution layer, DSC 

nly filters input channels without combining them into new fea- 

ures. Therefore, this paper attempts to merge the performance 

eatures of the depthwise convolution layer with the pointwise 

onvolution in order to produce new features. 

The parameter formula for DSC is calculated by 

 3 = M × D K 
2 + M × N (9) 

The calculation cost formula for DSC is given by 

 3 = M × D i 
2 × D K 

2 + M × N × D 

2 
i (10) 

DSC based on 3 × 3 convolution kernel is used in this work, 

hich computes eight to nine times faster than the standard con- 

olution, achieved a comparable accuracy (shown in Section V). 

The parameter reduction is described by 

 4 = F 3 − F = M × D 

2 
k + M × N − M × N × D 

2 
k (11) 

The calculation cost reduction is given by 

 4 = G 3 − G = M × D 

2 
i × D 

2 
k + M × N × D 

2 
i − M × N × D 

2 
i × D 

2 
k . 

(12) 

When training a neural network, BN function, ReLU function 

nd pooling layer are used after each standard convolution layer. 
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Fig. 4. Standard convolution with BN, ReLU and pooling layer (Left), and DSC with 

depthwise and pointwise layers followed by BN and ReLU (Right). 

Table 2 

DSC network architecture. 

Type / Stride Filter Shape Input Size 

Conv / s1 3 × 3 × 1 × 32 56 × 56 × 1 

Conv dw / s2 3 × 3 × 32 56 × 56 × 32 

Conv / s1 1 × 1 × 32 × 64 28 × 28 × 32 

Conv dw / s2 3 × 3 × 64 28 × 28 × 64 

Conv / s1 1 × 1 × 64 × 128 14 × 14 × 64 

Avg Pool / s1 Pool 2 × 2 14 × 14 × 128 

FC_1 / s1 6272 × 1024 1 × 1 × 6272 

FC_2 / s1 1024 × 3 1 × 1 × 1024 

SoftMax / s1 classifier 1 × 1 × 3 
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n DSC, BN and ReLU function are used. Their structure is shown 

n Fig. 4 . 

Specially, the standard convolution feature map is down- 

ampled by the pooling layer, and the down-sampling in the DSC 

s achieved by adjusting the convolution stride. 

Table 2 shows a body architecture of the DSC used in this work. 

his architecture is an optimization of the previous standard con- 

olution architecture, replacing the two standard convolutional lay- 

rs of the standard convolutional architecture with two DSC layers. 

he pooling module in the standard convolutional layer performs 

 size 2 × 2 down sampling operation on the input feature map. 

n pointwise convolution of DSC, the stride is set to two, which 

an effectively achieve the down-sampling operation, s1 means the 

tride of convolution is one, and s2 means the stride of convolution 

s two. 

.3. Transfer learning 

For small data sets, the classification accuracy rate would be 

elatively low if CNN are trained from the scratch by back propaga- 

ion. In order to leverage multiple pre-trained networks, it is possi- 

le to obtain a higher classification accuracy rate through transfer 

earning. In transfer learning, the network model uses pre-trained 

etwork. Its weights are pre-set, and only the last fully connected 

ayer is retrained. In this work, two popular architectures are used 

ncluding: 

1 AlexNet: AlexNet was proposed in [46] and won the 2012 

ILSVRC competition. The top5 error rate was 16.4%, the second- 

best contest entry was 26.2% error rate. AlexNet’s network 
5 
structure contains eight neural networks, including five convo- 

lutional layers and three fully connected layers, containing 630 

million links, 650,0 0 0 neurons and 60 million parameters. 

2 GoogLeNet: GoogLeNet, a new DL structure, was proposed in 

[47] , which won the ILSVRC championship in 2014 and re- 

duced the error rate of Top5 to 6.67%. GoogLeNet uses 22 lay- 

ers of neural networks, but the parameters are only half that of 

AlexNet. Google LeNet points out that the best way to achieve 

high-quality models is to increase the model depth, but wider 

networks are vulnerable to overfitting and computational com- 

plexity. GoogLeNet converts some convolution and fully con- 

nection into a sparse connection, and propose for this reason 

a modular system called Inception. 

. Results 

The dataset used in this work is first presented in this section, 

hen the results of CNN, DSC and transfer learning algorithms on 

D detection are analysed. 

A series of comparisons are presented: the results of CNN are 

ompared with other relevant algorithms. The results of DSC are 

urther compared with the standard CNN algorithm. Finally, the re- 

ults of transfer learning are analysed. 

.1. Dataset 

In this paper the Open Access Sequence of Image Studies (OA- 

IS) structural MRI data is used. [48] . OASIS is a project that is 

ntended to provide the scientific community free access to brain 

euroimaging datasets. The examples from HC, MCI and AD groups 

re shown in Fig. 5 . OASIS provides two types of data, cross- 

ectional data and longitudinal data. Because the purpose of this 

aper is to classify data sets into two and three categories, cross- 

ectional data meets the requirements. The data collection con- 

ains a cross-sectional sample of 416 subjects aged 18 to 96. 3 

o 4 separate T1-weighted MRI scans are obtained from a sin- 

le scan for each subject. The subjects are right-handed, includ- 

ng men and women. Clinically, 100 subjects over the age of 60 

ad been diagnosed with very mild to moderate AD, among them. 

mong them, 100 subjects over 60 years old had been clinically di- 

gnosed with very mild to moderate AD. In addition, the reliabil- 

ty dataset, which contains 20 non-dementia subjects, was tested 

gain 90 days after their initial meeting. Whether the subjects in 

he dataset were ill was determined by the clinical dementia rat- 

ng (CDR) variable, ranging from zero to two. Hypothesis zero rep- 

esents HC, two represents AD, and the rest are MCI. 

The dataset includes 332 HC, 68 MCI and 30 patients with 

evere AD. Data of patients with MCI and AD are over-sampled, 

hich can expand the amount of data and avoid the impact of 

ata imbalance. At the same time, HC data is under sampled. Af- 

er resampling, the final dataset includes 266 HC images, 136 MCI 

mages and 90 images of patients with severe AD. Finally, data 

nhancement processing (clipping, flipping, increase contrast, ro- 

ate etc.) are performed on the OASIS dataset. After data enhance- 

ent, 532 HC images, 408 MCI images and 450 images of patients 

ith severe AD were obtained. During training, data enhancement 

s also performed on the model, e.g. dropout [45] technology is 

pplied. The OASIS dataset is randomly broken down into five sec- 

ions, where cross-validation is used five times during training. The 

xperiments in this paper secured that the patient-wise division is 

aken into account. 

In this paper, the Alzheimer’s Disease Neuroimaging Initiative 

ADNI) dataset is used as a test set to test the performance of the 

odel. The ADNI is a longitudinal multiple centers study aimed 

t the development of clinical, imaging, genetic and biochemical 

iomarkers, as well as early detection and tracking of AD. At each 
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Fig. 5. Images from the OASIS MRI dataset (a) HC. (b) MCI. (c) AD. 

Table 3 

Performance comparison with other methods. 

Methods Number of samples ACC SEN SPC AUC 

Random forest [32] 164 EMCI versus 189 LMCI 72.50% 79.00% 68.70% 78.50% 

189 LMCI versus 99 AD 81.70% 83.50% 72.80% 84.30% 

Random forest [25] 229 HC versus 188 AD 75.00% 72.00% 64.00% –

CNN [37] 229 HC versus 188 AD 79.90% 84.00% 74.80% 86.10% 

Multi-kernel SVM [33] 114 EMCI versus 91 LMCI 78.80% 74.40% 82.10% 78.30% 

SVM [49] 33 HC versus 57 AD 81.10% 60.60% 93.00% –

SVM [50] 127 HC versus 67 MCI 74.90% 61.10% 83.40% –

Regression analyses [51] 42 HC versus 38 AD 82.50% – – –

This work 266 HC versus 136 MCI 84.65% 82.35% 79.50% 85.23% 

136 MCI versus 90 AD 72.96% 78.34% 82.15% 77.56% 

226 HC, 136 MCI versus 90 AD 78.02% 83.21% 75.32% 83.45% 

353 MCI versus 99 AD (ADNI) 75.32% 80.13% 65.32% 81.41% 
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tage of the ADNI dataset, new participants were recruited across 

orth America and agreed to complete various imaging and clini- 

al evaluations. This has made a significant contribution to AD the 

esearch. 

.2. Experimental results for CNN algorithm 

The CNN model is trained for two classification scenarios in or- 

er to test the efficiency of the CNN model developed in this pa- 

er: binary and three-class classifications. The training for binary 

lassification is conducted for two cases, i.e. HC versus MCI, and 

CI versus AD. The demonstrate proposed in this paper is com- 

ared to other models, and a better performance is achieved. The 

lassification accuracy rate of health control and mild cognitive im- 

airment reach 84.65%, and the classification accuracy rate of mild 

ognitive impairment and AD is 72.96%. A comparison with other 

ethods is shown in Table 3 . 

When classifying HC and MCI, training 100 epochs, the training 

oss and verification loss can converge quickly, the final training 

oss can reach 0.3919, and the verification loss can reach 0.4048. 

heir convergences are shown in Fig. 6 . When classifying MCI and 

C, training 100 epochs, the training loss and verification loss can 

onverge quickly, the final training loss can reach 0.4062, and the 

erification loss can reach 0.4243. Their convergences are shown 

n Fig. 7 . The training loss of HC and MCI is 0.0143 which is lower

han MCI and AD, and the verification loss of HC and MCI is 0.0195

hich is lower than MCI and AD. It can be seen from the exper- 

ment that because the number of samples of HC is larger, the 

raining loss and verification loss of HC and MCI are lower. 

In Table 3 , ACC stands for accuracy, SEN stands for sensitivity, 

PC stands for specificity, and AUC stands for area under curve. 

MCI describes a mild cognitive disability at an early stage and 

MCI is a mild late cognitive impairment. Among all these meth- 

ds, the classification accuracy rate obtained from the proposed 

ethod appears to be outstanding. The sample sizes of the differ- 

nt classes of dataset used in this work are quite different com- 
6 
ared to the datasets used in other methods. Among patients with 

CI and AD, the number of samples is small. In particular, the 

ample size of HC and AD differs greatly, which is the main rea- 

on for the low classification accuracy rate between them. In 266 

C samples and 136 MCI samples, the classification accuracy rate 

s 84.65%. In addition, HC, MCI and AD are also classified into three 

lasses, and the classification accuracy rate is 78.02%. Compared 

ith other advanced methods, the proposed CNN method has bet- 

er classification performance. For the proposed method, the sen- 

itivity is 83.21%, the specificity is 82.15%, and the AUC is 85.23%. 

ompared with other methods, the proposed method achieves a 

imilar detection performance. There are some minor differences 

nder several specific metrics which is mainly due to that the 

atasets used in the approaches and the number of samples are 

ifferent. However the main advantages of the proposed method 

re efficient network design and significantly reduced parameters 

nd more details will be provided in next subsection. In particular, 

his work uses the ADNI dataset to test the generalization of the 

odel. 353 MCI and 99 AD images are selected by ADNI dataset. 

CC reaches 75.32%, SEN reaches 80.13%, SPC reaches 65.32%, and 

UC reaches 85.23%. It can be seen from the test results of ADNI 

ata that there is a difference in SPC, which may be due to the 

ifferences between OASIS and ADNI. 

.3. Analysis for DSC algorithm 

The DSC is used to optimize the CNN model. The CNN model in 

his paper uses three standard convolutions and they are replaced 

y DSCs. Comparing to the optimized depthwise separable models 

ith the standard CNN model, the results are shown in Table 4 . 

In Table 4 , the levels of classification accuracy, the number of 

arameters and computational costs of the optimized DSC neural 

etwork are compared with the standard convolution model. The 

onventional convolutions are replaced by deep separable convo- 

utions with less computing cost and model parameters, and very 

lose classification accuracy and AUC. In particular, when all three 
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Fig. 6. Training loss and validation loss for classifying HC and MCI. 

Fig. 7. Training loss and validation loss for classifying MCI and AD. 

Table 4 

Depthwise separation convolution VS standard convolution. 

Resolution ACC AUC Million Mult-Adds Thousand Parameters 

CNN model 78.02% 83.45% 29.804544 92.448 

One DSC 77.91% 83.23% 29.029952 92.201 

Two DSC 77.85% 82.35% 16.410688 76.105 

Three DSC 77.79% 81.95% 3.678528 11.145 
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tandard convolution layers of the complete standard convolution 

odel are replaced by DSC, the classification accuracy rate only 

ecreases by 0.23% and the ACC rate decreases by 1.50%, whereas 
7 
he advantage of the proposed neural network reduces the num- 

er of million mult-adds by 84.25% and the thousand parameters 

y 87.94%. 

In the meantime, the advantage of the proposed model is 

hat the number of million mult-adds is significantly reduced by 

4.25%, and the thousand parameters is reduced by 87.94%. 

Fig. 8 shows the relationship between test accuracy rate and 

omputing cost between the CNN model and the DSC model. Af- 

er a standard convolution layer is replaced by the DSC layer, it is 

ound that the test accuracy rate is reduced by 0.11%, but the com- 

uting cost is reduced by 40.07%. After two standard convolution 

ayers is replaced with DSC layers, it is found that the test accu- 
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Fig. 8. When testing with the OASIS dataset, there is a trade-off between the computational cost of the model and the accuracy of the test. 

Fig. 9. When testing with the OASIS dataset, there is a trade-off between the parameter of the model and the accuracy of the test. 
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model in the future work. 
acy rate is reduced by 0.17%, but the computing cost is reduced 

y 81.65%. When all three standard convolution layers of the com- 

lete standard convolution model are replaced by DSC layers, the 

lassification accuracy rate only decreases by 0.23%. In the mean- 

ime, the advantage of the proposed model is that computing cost 

s reduced by 84.25%. Therefore, as more convolutional layers are 

eplaced, the computing cost decreases, and the model proposed 

chieves a reasonable trade-off between accuracy and the compu- 

ational cost. 

Fig. 9 shows the relationship between test accuracy rate and 

odel parameter between the CNN model and the DSC model. Af- 

er a standard convolution layer is replaced by the DSC layer, it 

s found that the test accuracy rate is reduced by 0.11%, but the 

odel parameter is reduced by 16.99%. After two standard con- 

olution layers is replaced with DSC layers, it is found that the 

est accuracy rate is reduced by 0.17%, but the model parameter 

s reduced by 87.68%. When all three standard convolution layers 
8 
f the complete standard convolution model are replaced by DSC 

ayers, the classification accuracy rate only decreases by 0.23%. In 

he meantime, the advantage of the proposed model is that model 

arameter is reduced by 87.94%. Therefore, as more convolutional 

ayers are replaced, the model parameter decreases, and the model 

roposed achieves a reasonable trade-off between model parame- 

er and accuracy. 

Comparative experiments show that the DSC layer is used to 

eplace more conventional convolution layers in the CNN model, 

nd this achieves a lower computational cost and parameters of 

he model while maintaining the test accuracy. Therefore, the AD 

lassification system using the DSC model is very beneficial for em- 

edded devices with limited computing resources. The proposed 

ethod in this work has low computational cost and low number 

f parameters, but the generalization performance can be further 

nvestigated. This can be addressed by optimizing the proposed 
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Table 5 

Test models and corresponding average accu- 

racy rates. 

Model Acc. (%) 

CNN (from scratch) 78.02 

DSC (from scratch) 77.79 

AlexNet (transfer learning) 91.40 

GoogLeNet (transfer learning) 93.02 
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.4. Results of transfer learning algorithm 

In the case of small dataset, this may lead to over-fitting or 

nder-fitting, and the classification accuracy of training a neural 

etwork model from scratch is generally not high. The pre-trained 

odel is used for transfer learning, and the rate of accuracy is sub- 

tantially increased. The models AlexNet and GoogLeNet are pre- 

rained on the ImageNet dataset, and are then used for transfer 

earning in this work. 

Table 5 shows the accuracy rate results for the four models, 

ll of which are trained using the OASIS MRI dataset. It can be 

een from Table 5 that due to insufficient training data, the clas- 

ification accuracy of CNN and DSC models trained from scratch is 

ow. The pre-trained AlexNet and GoogLeNet models are fine-tuned 

sing the OASIS MRI data, and the classification accuracy rates 

re significantly improved. The pre-training models of AlexNet and 

oogLeNet are based on ImageNet data which includes a large 

mount of data, so they have very good generalization ability and 

an achieve a good performance when applied to OASIS MRI data. 

he AlexNet and GoogLeNet models obtain classification accuracy 

ates of 91.40% and 93.02%, respectively. GoogLeNet uses more con- 

olutions and deeper layers than AlexNet, so classification accuracy 

s higher. Note that both the AlexNet model and the GoogLeNet 

odel use 5-fold cross-validation and 500 iterations of training 

uring transfer learning. 

In Table 5 , it can be seen that transfer learning can achieve 

igher classification results, but AlexNet and GoogLeNet are very 

omplex neural networks, and their computations are very inten- 

ive. Moreover, their frameworks also contain many standard con- 

olution modules which can be replaced by the proposed DSC 

odule to reduce the network complexity. This is one option for 

uture research work. 

. Conclusion 

A novel DSC network-based method for detection of AD is pro- 

osed in this paper. The conventional CNN method is first used 

o detect AD, and the classification accuracy rate reached 78.02% 

n a three-way classification scenario (AD, MCI and normal). Then, 

n AD detection method combining DSC and CNN is proposed. 

ompared with the CNN, the model parameters of the proposed 

ethod are reduced by 87.94% and the computing cost is reduced 

y 84.25%, where the classification accuracy rate remains moder- 

tely the same. It is quite promising in implementing the func- 

ionality of AD detection on mobile embedded devices with limited 

omputing resources. Experiments on OASIS MRI dataset show that 

SC method has great potential for AD recognition. The common 

raining models of AlexNet and GoogLeNet are used for transfer 

earning to improve the classification accuracy rate of AD detec- 

ion, and a good result is obtained in this paper. Consequently, one 

otential future work will consider combining DSC with AlexNet 

r GoogleNet to further increase the AD classification accuracy rate 

nd to obtain a more compact model. At the same time, using the 

roposed method in other application areas can also be investi- 

ated in the future. 
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