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a b s t r a c t 

Alzheimers disease (AD) is a complex neurodegenerative disease. Its early diagnosis and treatment have 

been a major concern of researchers. Currently, the multi-modality data representation learning of this 

disease is gradually becoming an emerging research field, attracting widespread attention. However, in 

practice, data from multiple modalities are only partially available, and most of the existing multi-modal 

learning algorithms can not deal with the incomplete multi-modality data. In this paper, we propose an 

Auto-Encoder based Multi-View missing data Completion framework (AEMVC) to learn common represen- 

tations for AD diagnosis. Specifically, we firstly map the original complete view to a latent space using 

an auto-encoder network framework. Then, the latent representations measuring statistical dependence 

learned from the complete view are used to complement the kernel matrix of the incomplete view in 

the kernel space. Meanwhile, the structural information of original data and the inherent association be- 

tween views are maintained by graph regularization and Hilbert-Schmidt Independence Criterion (HSIC) 

constraints. Finally, a kernel based multi-view method is applied to the learned kernel matrix for the ac- 

quisition of common representations. Experimental results achieved on Alzheimers Disease Neuroimaging 

Initiative (ADNI) datasets validate the effectiveness of the proposed method. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) and its early stage, Mild Cognitive Im- 

airment (MCI), are progressive and irreversible neurodegenerative 

iseases causing many elderly deaths worldwide. Their early di- 

gnosis and treatment are of great significance for improving the 

uality of patients’ life. In the field of computer-aided research, 

here have been several studies ( Weiner et al., 2017 ; Chen et al.,

016 ; Jia et al., 2012 ; Fan et al., 2007 ; Wu et al., 2006 ) exploring

ifferent aspects of the disease in the recent years. Hence, there 

re multiple modalities of data (i.e., Magnetic Resonance Imaging 

MRI) and Positron Emission Tomography (PET)) or multiple types 

f features available for this task ( Zhang et al., 2011 ). Data from
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ifferent modalities are complementary because they are the rep- 

esentations of each subject. Since each modal can be treated as a 

iew of subjects, the multi-modal medical data processing problem 

s modeled as a multi-view machine learning framework. 

Multi-view representation learning aims to learn new represen- 

ations that can better fulfill the task than the original data. Ear- 

ier multi-view studies usually explore the minimum disagreement 

etween views based on co-training ( Kumar and Daumé, 2011 ). 

anonical Correlation Analysis (CCA) based methods including CCA 

 Hotelling, 1992 ), Kernel Canonical Correlation Analysis (KCCA) 

 Akaho, 2006 ), deep neural networks based CCA ( Andrew et al., 

013 ) are widely used in representation learning advocating learn- 

ng a latent common subspace across different views. For AD 

iagnosis, the recent work ( Zhu et al., 2014 ; Zhu et al., 2016 )

ransform the original features from different modalities to a 

ommon space by using CCA. There are also some multi-kernel 

ethods applied in multi-view learning ( Zien and Ong, 2007 ) 

https://doi.org/10.1016/j.media.2020.101953
http://www.ScienceDirect.com
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Fig. 1. The process of multi-view representation learning with incomplete views for 

Alzheimer’s disease diagnosis. As shown in the figure, rows and columns represent 

subjects and modalities, respectively. White blocks represent existing subjects, and 

gray blocks represent missing subjects. We expect to complement the missing in- 

formation and learn common representations ˜ X . Then a classifier such as SVM is 

used to predict Alzheimer’s disease. 
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 Liu et al., 2019 ), which calculate the kernel matrices for each view

o obtain the optimal combination of kernels. 

Recently, multi-view learning algorithms ( Bickel and Schef- 

er, 2004 ; Perrin et al., 2009 ; Kumar and Daumé, 2011 ) are based

n a hypothesis that all views are complete. However, we often 

ace the dilemma that only partial data from multiple views can be 

btained in practice, especially in the field of medical data analysis, 

hich is featured by the incompleteness of multi-modality data, 

he scarcity of subjects and the complexity of data ( Zhang et al., 

011 ; Zhou et al., 2019 ; Ghazi et al., 2019 ). Since the cost of PET

xamination is nearly ten times that of MRI in reality, some sub- 

ects may only take one examination for economic reasons. As a 

esult, only one modal data can be acquired, which results in an in- 

omplete view. General algorithms that require complete data are 

hus inapplicable, making it extremely difficult to accomplish the 

ask, especially in the case of few subjects. Therefore, we have a 

otivation to develop a multi-view method that can deal with in- 

omplete views and learn common representations of multi-view 

ata as shown in Fig. 1 . The representations obtained from exist- 

ng data are crucial for exploring the relationship between subjects 

nd subsequent analysis. 

Under the above conditions, there are some multi-view meth- 

ds ( Li et al., 2014 ; Lei et al., 2016 ; Liu et al., 2016 ; Tran et al.,

017 ; Liu et al., 2018 ) having been developed. First, the miss- 

ng modality imputation methods ( Ngiam et al., 2011 ; Tran et al., 

017 ) work on a premise that a set of fully-paired training data 

an be obtained to learn the relationship between different views. 

n the test stage, it can predict the missing part from the ob- 

erved one. Second, some low-rank based methods ( Cai et al., 

010 ; Mazumder et al., 2010 ) are not applicable to this task since

he missing views are usually blockwise that have been recognized 

 Tran et al., 2017 ; Cai et al., 2018 ). Finally, the most direct approach

s to fill the missing values in feature space or kernel space with 

andom or mean values. The advantage is that it can easily com- 

ine with other multi-view methods to gain the common latent 

epresentations. However, few methods are designed for AD data 

nd they do not fully consider the correlation between views dur- 

ng completion. 

In general, there are three main challenges in multi-view rep- 

esentation learning for AD diagnosis. Firstly, the complicated AD 

ata and extracted features with noise pose a challenge to the 

earning of low dimensional representations while preserving the 

tructural information of AD data and reducing the impact of noise. 

econdly, completion is not sufficient to get a better performance, 

hich also requires joint complementation of the missing part 

hile exploring other information such as the inherent association 

etween views. Thirdly, it is difficult to maintain the alignment of 

he completed matrix and the truth value in the absence of infor- 

ation and supervision. 

To address these challenges, we propose an incomplete multi- 

iew representation learning method for AD diagnosis. Specifically, 

e firstly map the original complete view to a latent space by 
2 
sing an auto-encoder network framework, which can reduce the 

oise of data and the dimensionality of features. Graph regular- 

zation is utilized to maintain the structural information of orig- 

nal data. Then, latent representations learned from the complete 

iew are used to complement the kernel matrix of the incomplete 

iew in the kernel space. Meanwhile, the correlation between dif- 

erent views is explored using Hilbert-Schmidt Independence Cri- 

erion (HSIC). Finally, a kernel-based multi-view method is applied 

o the learned kernel matrix to obtain the common representa- 

ions. The proposed method complements information in the ker- 

el space rather than in the original feature space, so it can bet- 

er maintain the relationship of samples in the high dimensional 

pace. In view of this, the proposed method is more applicable to 

he processing of complex AD data and can be easily docked with 

ther kernel-based multi-view algorithms (e.g., KCCA and Spectral 

lustering). The contributions of this study can be summarized as 

ollows: 

• We study an incomplete multi-modal representation learning 

problem for Alzheimers disease diagnosis in a new way of com- 

plementing the missing data. 
• We propose an Auto-Encoder based Multi-View missing data 

Completion framework called AEMVC, that is able to comple- 

ment the missing data in the kernel space while taking into 

account the structural information of data and the inherent as- 

sociation between multiple views. 
• We conduct extensive experiments to evaluate the effectiveness 

of the proposed method. The proposed model is superior to the 

state-of-the-art models according to the experimental compari- 

son results. 

The rest of this paper is organized as follows. We overview the 

elated work in Section 2 . In Section 3 , the problem is defined and

he proposed method is introduced. We describe our optimization 

lgorithm in Section 4 . Experimental results and conclusion are 

hown in Sections 5 and 6 . 

. Related work 

Traditional machine learning methods are designed to identify 

roups of similar behavior in single view data ( Von Luxburg, 2007 ; 

teinwart et al., 2015 ). However, in many machine learning prob- 

ems, data are often described by multiple distinct feature sets, 

ach of which can be considered as a view of the original data 

ets. These feature sets can be divided into two parts, which are 

eatures of different types and features from different data sources 

 Zhang et al., 2018 ). For instance, an image can be described 

y morphological features and histogram features (i.e., different 

ypes). In content-based web-image retrieval, an object is simul- 

aneously described by visual features from the image and the text 

urrounding the image (i.e., different data sources). Each feature 

escribes different independent information of the same sample. In 

ddition, a noteworthy feature of multi-view learning is that man- 

facturing splitting can improve the performance even when there 

s a lack of natural feature splitting ( Sun, 2013 ). In this task, we

ombine the information of multiple views from different sources 

i.e., MRI and PET) to learn better representations. 

Recently, a number of unsupervised multi-view learning meth- 

ds ( De Sa, 2005 ; Cai et al., 2013 ; Xu et al., 2016 ) have been

roposed to improve experimental performance. For example, the 

ethod in ( Wang et al., 2014 ) co-regularize the clustering hy- 

otheses to exploit the complementary information within the 

pectral clustering framework. A co-training method ( Kumar and 

aumé, 2011 ) is used to search for the clustering that agrees 

mong different views. The work in ( Zhang et al., 2016a ) using the

ilbert-Schmidt Independence Criterion (HSIC) performs the kernel 

atching to regularize the dependence across multiple views and 
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btains the low-dimensional projection for each view. The sub- 

pace clustering methods ( Elhamifar and Vidal, 2013 ; Liu et al., 

012 ; Hu et al., 2014 ) have been proposed to explore the rela-

ionships between samples by self-representation. Inspired by the 

aplace regularization, a clustering method with incomplete view 

 Trivedi et al., 2010 ) aligns the kernel matrices of multiple views 

o obtain closed solutions for incomplete views. Besides, a multi- 

iew weak-label learning method ( Tan et al., 2018 ) simultaneously 

earns a shared subspace, local label correlations and a predictor. 

In the application of Alzheimer’s disease diagnosis, although 

ome methods use a single modal data ( Zhang et al., 2016b ; 

ian et al., 2018 ), there are also a lot of methods that con-

ider multi-modal data to improve the diagnostic performance. 

he work in ( Zhang et al., 2011 ) adopts a kernel combination 

ethod to combine three modalities of biomarkers (i.e., MRI, FDG- 

ET and CSF biomarkers) to discriminate between AD (or MCI) 

nd healthy controls. The method in ( Zhang et al., 2018 ) captures 

he high-order complementarity among different views, by exploit- 

ng the underlying information with a low-rank tensor regulariza- 

ion. Considering that the extracted features from different brain 

egions are related to each other to some extent, the method in 

 Shi et al., 2019 ) leverages the coupled interactions in the feature 

evel and modality level for diagnosis. More recently, the method 

n ( Zhou et al., 2019 ) learns a common latent representation and 

ses subjects with incomplete data to learn independent modal- 

ty specific latent representations for AD diagnosis. Yet it does 

ot constrain the relationship between modalities, and the latent 

epresentations learned by subjects with missing modalities are 

odality specific and not shareable. The proposed method comple- 

ents the missing data in the kernel space, which helps to explore 

he relationship between modalities and obtain common represen- 

ations that can be shared. 

The main purpose of multi-view learning is to make use of 

nformation from different views as fully as possible. In addition 

o the methods mentioned above, CCA-based methods (includ- 

ng CCA ( Hotelling, 1992 ), KCCA ( Akaho, 2006 ), deep neural net-

orks based CCA ( Andrew et al., 2013 ), mathrm S 2 GCA ( Chen et al.,

012 )) are extensively applied in multi-view representation learn- 

ng ( Hardoon and Shawe-Taylor, 2003 ; Hardoon et al., 2004 ). CCA 

ims to model the relationship between different sets of variables 

views). CCA linearly computes low dimensional common repre- 

entations of two different views so that the correlation between 

ifferent views is maximized in this common space. Given a pair 

f datasets X and Y which can be treated as samples of two dif-

erent views, two projection vectors a and b can be obtained by 

aximizing the following formula: 

rg max 
a , b 

cov 
(
a T X , b 

T Y 

)
√ 

D 

(
a T X 

)√ 

D 

(
b 

T Y 

) . (1) 

However, the relationship between variables in a real dataset 

s generally non-linear, which cannot be modeled by CCA. Fortu- 

ately, kernel methods ( Shawe-Taylor et al., 2004 ) are applicable 

o it. Kernel methods adopt the linear method (e.g., Support Vec- 

or Machines ( Burges, 1998 )) after using the kernel function (e.g., 

olynomial kernel and Gaussian kernel) to find the inner product 

f the data in a high dimensional space without the need of an ex- 

ct mapping from a low dimensional space to a high dimensional 

ne. Inspired by the kernel methods, KCCA is proposed. 

With the advantage of the kernel method, we expect to de- 

elop an incomplete multi-view representation learning method, 

hich complements the missing information in the kernel space, 

nd then uses KCCA to map the multi-view data to a common fea- 

ure space. 
3 
. Proposed model 

In this section, we explicate the overall network architecture of 

he proposed AEMVC as shown in Fig. 2 and the optimization al- 

orithm. 

.1. Problem definition 

Consider that the feature vectors extracted from two modal 

ata (i.e., MRI and PET) are two views, which are represented by 

 

(1) and X 

(2) respectively. We can assume that X 

(1) ∈ R 

N×d 1 hav- 

ng N subjects with d 1 dimension is complete whereas X 

(2) ∈ R 

C×d 2 

aving C subjects with d 2 dimension is incomplete. Note that D = 

 

X 

(1) 
n , X 

(2) 
n 

} C 

n =1 
is the set of subjects which are fully paired in two 

iews, and M = 

{ 

X 

(1) 
n 

} N 

n = C 
is a set of subjects only in view 1 with

 + M = N. Taking X 

(1) as the input of the Auto-Encoder, we ex-

ect to get latent representations H . K 1 and K 2 , which should be 

wo N × N symmetric matrices, denote kernel matrices computed 

y the original features. Yet, only K 2 ∈ R 

C×C can be obtained due 

o incompletion of this view. ˜ K 1 is calculated by H . Afterward, the 

issing part of K 2 is complemented using ˜ K 1 , and KCCA is adopted 

o obtain the common representation for the prediction task. More 

etailed notations used in this paper are listed in Table 1 . 

.2. Auto-encoder based multi-view missing data completion 

Kernel completion. K 1 and K 2 are both N × N kernel matrices. 

nly a C × C sub-block of K 2 can be obtained since features for 

iew X 

(2) are merely available for a subset of all samples. Moti- 

ated by the work in ( Trivedi et al., 2010 ), we reconstruct the full

ernel matrix K 2 by solving the following optimization problem: 

min 

K 2 ≥0 
tr ( L 1 K 2 ) 

s.t. K 2 (i, j) = k 
(
x 

(2) 
i 

, x 

(2) 
j 

)
, ∀ 1 ≤ (i, j) ≤ C, (2) 

here tr denotes the matrix trace and x (2) 
i 

stands for the i -th sam- 

le of view 2. The corresponding graph Laplacian is defined as 

 1 = D 1 − K 1 , where D 1 is the diagonal matrix consisting of the 

ow sums of K 1 along its diagonals. Then, a couple of matrices 

ultiplication and inverses give a closed-form solution of K 2 . Note 

hat K 2 (i, j) = k 

(
x (2) 

i 
, x (2) 

j 

)
, ∀ 1 ≤ (i, j) ≤ C in Eq. (2) is K 

cc 
2 

, which

s a C × C sub kernel matrix of view X 

(2) . K 2 , a positive-definite

atrix, can be rewritten as AA 

T , where A is just a constant matrix 

f reals. 

In order to explicitly state the problem, we split A into 

 

A c , A m 

) 
T 
, where A c is a constant satisfying A c A 

T 
c = K 

cc 
2 

, and A m 

s the missing part. Then L 1 is divided into: 

 1 = 

[
L 

cc 
1 L 

cm 

1 (
L 

cm 

1 

)T L 

mm 

1 

]
. 

Therefore, based on tr(X ) = tr(X 

T ) , Eq. (2) can be expressed

s: 

min 

A 
tr 

(
L 1 AA 

T 
)

= min 

A 
tr 

(
A 

T L 1 A 

)

= min 

A m 
tr 

⎛ 

⎝ 

( 

A c 

A m 

) T 
⎡ 

⎣ 

L 

cc 
1 L 

cm 

1 (
L 

cm 

1 

)T L 

mm 

1 

⎤ 

⎦ 

( 

A c 

A m 

) 

⎞ 

⎠ 

= min 

A m 
2 × tr 

(
A 

T 
c L 

cm 

1 A m 

)
+ tr 

(
A 

T 
m 

L 

mm 

1 A m 

)
. (3) 
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Fig. 2. Illustration of the proposed framework. It mainly consists of four parts. First of all, features of the original data are extracted to obtain the feature vectors. Then, we 

obtain the latent representations H of the complete view X (1) by using an auto-encoder network. Meanwhile, the graph regularization is utilized to maintain the structural 

information. The latent representations H are used to complement the missing part of view X (2) in the kernel space. Farther, HSIC constraint explores the correlation between 

different views. Finally, Kernel CCA is adopted to obtain the common representations ˜ X , which can be used for the next task. 

Table 1 

Table of main notations used in this paper . 

Model Specification 

Notation Meaning 

X (1) ∈ R N×d 1 feature matrix of the view 1 (complete) 

X (2) ∈ R C×d 2 feature matrix of the view 2 (incomplete) 

K n ∈ R N×N kernel matrix of view n 

H ∈ R N×h latent representations of view 1 encoded by the auto-encoder network 
˜ K 1 ∈ R N×N kernel matrix of view 1 calculated by the latent representations 
˜ X ∈ R N×d common representations of two views to accomplish the specific task 

� parameters of the auto-encoder network 

λn > 0 hyperparameters balancing the effects of individual loss functions 

s

m

A

t

m

o

L

w

a

i

d

n

e

t

G

o

d  

c

L

a

r

l

s

t

i

t

L

w

i  

t

p

E

L

w

a

Taking the derivative A m 

and setting it to zero, the closed-form 

olution of K 2 can be achieved according to K 2 = AA 

T . 

Auto-encoder network. Unlike the original kernel completion 

ethod, we firstly calculate latent representations H relying on an 

uto-Encoder network framework that can reduce noise and main- 

ain self information of samples simultaneously. Then a new kernel 

atrix ˜ K 1 can be computed by H to complement the missing part 

f K 2 . The preliminary objective function is defined as follows: 

 = L rec + L com 

, (4) 

here L reg represents the reconstruction loss of the auto-encoder 

nd L com 

stands for the completion loss defined by Eq. (2) . 

The auto-encoder is a commonly used unsupervised learn- 

ng method that maps the original features into latent low- 

imensional representations, capable of reducing dimensions and 

oise. In this paper, we use a neural network to build an auto- 

ncoder. The auto-encoder network with M layers is denoted as 

f 
(
X 

(1) ;�
)

= 

ˆ X , where X 

(1) is the input data (i.e., the original fea- 

ures) and � is the parameter set consisting of wights and bias. 

enerally, the first M/ 2 layers are defined as an encoder whose 

utput is latent representations containing the main information 

enoted by H ∈ R 

N×h with h dimension. The last M/ 2 layers re-

onstruct the input by decoding H to output ˆ X 

(1) . We have H = 

f 

(
X 

(1) ;� M 
2 

)
by minimizing the following equation: 

 rec = ‖ X 

(1) − ˆ X 

(1) ‖ 

2 
F . (5) 

As shown by the formula, input and output of the auto-encoder 

re expected to be as consistent as possible so that the latent rep- 
4 
esentations can well preserve their own information. Since the 

atent representations H are learnable, the addition of some con- 

traints may help achieve a better performance. 

Structural constraint. Furthermore, H should have more struc- 

ural information to reflect the differences among samples of var- 

ed categories. Spurred by the graph regularization, we add a struc- 

ural constraint on H as follows: 

 graph = 

1 

2 

N ∑ 

i, j=1 

‖ h i − h j ‖ 

2 W i j , (6) 

here h i represents the i -th sample and W i j is defined as the sim- 

larity of samples ( Yang et al., 2017 ). Here W can be replaced by

he kernel matrix K 1 , which reflects the similarity between sam- 

les in the kernel space. For simplicity, we can further derive the 

q. (6) as follows: 

 graph = 

1 

2 

N ∑ 

i, j=1 

‖ h i − h j ‖ 

2 K i j 

= 

1 

2 

N ∑ 

i =1 

h 

T 
i h i D ii −

N ∑ 

i, j=1 

h 

T 
i h j K i j 

= 

1 

2 

tr 
(
H 

T L 1 H 

)
, (7) 

here D 1 is a diagonal matrix consisting of the row sums of K 1 

nd L = D − K is called the graph Laplacian matrix. Since H is 
1 1 1 
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A

ust latent representations of the auto-encoder, after optimizing �, 

he above formula can be represented: 

in 

�
tr 

(
f 

(
X 

(1) ;� M 
2 

)T 

L 1 f 

(
X 

(1) ;� M 
2 

))
. (8) 

By minimizing the Eqs. (5) and (7) , we obtain a new latent rep-

esentations H in which h i and h j are mapped close to each other 

n this R 

N×h space if data points x (1) 
i 

and x (1) 
j 

are close in the orig-

nal space. 

Correlation constraint. Since different views are deemed as dif- 

erent representations of the same sample in the multi-view learn- 

ng, these representations should be as relevant as possible. With 

he view that representations of view X 

(1) and the missing part 

f view X 

(2) are learnable, a correlation constraint is added in the 

raining stage. However, there is a gap between the problem of in- 

omplete data and the task of calculating the correlation. Fortu- 

ately, the complete kernel matrix of two views can be acquired 

y the above formula (4) , (8) . It has been proven both theoreti-

ally ( Gretton et al., 2005 ) and empirically ( Xiao and Guo, 2014 ;

ong et al., 2007 ) that HSIC ( Gretton et al., 2005; Liu et al., 2020 ) is

n appropriate measure of (in)dependence between different views 

hen it is associated with a generic kernel. 

Assume two views Z 

(v ) and Z 

( w ) containing n samples 
 (

z (v ) 
i 

, z ( 
w ) 

i 

)
∈ Y 

(v ) × Y 

( w ) 
} n 

i =1 
that are jointly drawn from a prob- 

bility distribution P z (v ) z ( w ) . The correlation measured by HSIC is 

alculated based on the norm of the cross-covariance operator in 

he domain Y 

(v ) × Y 

( w ) of the Hilbert space. A larger HSIC value 

ndicates strong dependence on kernel selection. Note that φ
(
z (v ) 

)
nd ψ 

(
z ( w ) 

)
are functions obtained by mapping z (v ) ∈ Y 

(v ) and 

 

( w ) ∈ Y 

( w ) to a higher dimensional space respectively. The respec- 

ive kernel spaces F and � for the kernel functions k v 

(
z (v ) 

i 
, z (v ) 

j 

)
= 

 

φ
(

z (v ) 
i 

)
, φ

(
z (v ) 

j 

)〉 
and k w 

(
z ( 

w ) 
i 

, z ( 
w ) 

j 

)
= 

〈 
ψ 

(
z ( 

w ) 
i 

)
, ψ 

(
z ( 

w ) 
j 

)〉 
are 

hen achieved. The cross-covariance function that gives the covari- 

nce of two random variables and is defined as follows: 

 z (v ) , z ( w ) = E z (v ) z ( w ) 
[(

φ
(
z (v ) 

)
− μz (v ) 

)
� ψ 

(
z ( w ) 

)
− μz ( w ) 

]
, (9) 

here � denotes the tensor product, F and � are Reproducing 

ernel Hilbert Space (RKHS) on Y 

(v ) and Y 

( w ) . Then the HSIC is 

efined as: 

SIC ( P z (v ) z ( w ) , F, �) := ‖C z (v ) , z ( w ) ‖ 

2 

HS 
, (10) 

here ‖ A ‖ HS = 

√ ∑ 

i, j a 
2 
i j 

. Accordingly, the empirical version of 

SIC is given as: 

SIC 

(
z (v ) , z ( w ) 

)
= ( n − 1 ) 

−2 tr ( K v EK w 

E ) , (11) 

here K v , K w 

, E ∈ R 

n ×n , k v ,i j = k v 

(
z (v ) 

i 
, z (v ) 

j 

)
, k w,i j = k w 

(
z ( 

w ) 
i 

, z ( 
w ) 

j 

)
nd e i j = δi j − 1 /n which centers the matrix to gain a zero mean

n the feature space. 

In our implementation, HSIC is used to investigate the correla- 

ion between the ˜ K 1 computed by H and the complemented kernel 

atrix K 2 . Minimizing the HSIC loss helps render the representa- 

ion of the two views more relevant. Therefore, the e i j = δi j − 1 /N

nd Eq. (11) can be rewritten as: 

 hsic = −( N − 1 ) 
−2 tr 

(
˜ K 1 EK 2 E 

)
. (12) 

In general, the learned latent representations H are better than 

he original features X 

(1) . The kernel matrix calculated by H is 

ore accurate than the one calculated by the original data. A bet- 

er kernel matrix of view X 

(2) can be obtained by replacing L 1 in 

he Eq. (2) with a new Laplace matrix ˜ L = 

˜ D − ˜ K computed by 
1 1 1 

5 
 . Eq. (2) can be rewritten as follows: 

L com 

= tr 
(

˜ L 1 K 2 

)
s.t. K 2 (i, j) = k 

(
x 

(2) 
i 

, x 

(2) 
j 

)
, ∀ 1 ≤ (i, j) ≤ C. (13) 

In summary, the total objective function that should be mini- 

ized is as follows: 

 = L rec + λ1 L graph + λ2 L hsic + λ3 L com 

= ‖ X 

(1) − f 
(
X 

(1) ;�M 

)‖ 

2 
F 

+ λ1 tr 

(
f 

(
X 

(1) ;� M 
2 

)T 

L 1 f 

(
X 

(1) ;� M 
2 

))
−λ2 tr 

(
˜ K 1 EK 2 E 

)
+ λ3 tr 

(
˜ L 1 K 2 

)
, (14) 

here non-negative λ1 , λ2 , λ3 are hyperparameters to balancing 

he effects of individual loss functions. The proposed model is able 

o complement the missing data in the kernel space and take into 

onsideration the structural information of data and the inherent 

ssociation between multiple views in an unsupervised manner. 

. Optimization 

Two variables (i.e., the auto-encoder network parameters � and 

he kernel matrix K 2 ) in the above objective function need to be 

ptimized jointly and iteratively. The general optimization steps 

re expounded next. 

.1. Update the auto-encoder network 

According to the total objective function Eq. (14) , the follow- 

ng function should be minimized to update the auto-encoder net- 

ork: 

 ae ( �) = ‖ X 

(1) − f 
(
X 

(1) ;�M 

)‖ 

2 
F 

+ λ1 tr 

(
f 

(
X 

(1) ;� M 
2 

)T 

L 1 f 

(
X 

(1) ;� M 
2 

))
−λ2 tr 

(
˜ K 1 EK 2 E 

)
+ λ3 tr 

(
˜ L 1 K 2 

)
. (15) 

In particular, it is not straightforward to solve tr 
(

˜ L 1 K 2 

)
in a ma- 

rix form. Instead, inspired by the work ( Tao et al., 2017 ), we intro-

uce an auxiliary matrix P ∈ R 

N×N as: 

 = 

[
P 1 . . . P j . . . P N 

]
, P j = 

⎡ 

⎣ 

‖ A 1 − A j ‖ 

. . . 
‖ A N − A j ‖ 

⎤ 

⎦ . (16) 

Consequently, tr 
(

˜ L 1 K 2 

)
is rewritten as tr 

(
P 

T ˜ K 1 

)
in Eq. (15) . Fi- 

ally, parameters are updated with gradient descent as: �( t+1 ) = 

( t ) − α ∂L ae ( �) 

∂�( t ) where α is defined as the learning rate. 

.2. Update K 2 

To update the kernel matrix K 2 , the following loss function 

hould be minimized: 

 K ( K 2 ) = t r 
(

˜ L 1 K 2 

)
− λt r 

(
˜ K 1 EK 2 E 

)
. (17) 

Satisfactorily, HSIC can be transformed into the form of trace 

s shown in Section 3.2 . Hence, the optimal solution is obtained 

hen the first-order derivative of K 2 is set to zero. As suggested in 

ection 3.2 , K 2 can still be rewritten as AA 

T where A = ( A c , A m 

) 
T .

hen, taking the derivative A m 

and setting it to zero, we can solve: 

 m 

= −
(

˜ L 

mm 

1 + L mm 

)−1 (
˜ L 

cm 

1 + L cm 

)T 
A c , (18) 
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here L = E ̃

 K 1 E is a constant. For convenience, A m 

is rewritten as

B 

−1 C 

T A c . Finally, the closed-form expression for K 2 is given as: 

 2 = 

(
K 

cc 
2 −K 

cc 
2 CB 

−1 

−B 

−1 C 

T K 

cc 
2 B 

−1 C 

T K 

cc 
2 CB 

−1 

)
. (19) 

In conclusion, two variables are updated alternately using 

qs. (15) and (19) in order to seek the optimal solution. To clar- 

fy, we summarize the optimization process in Algorithm 1 . 

Algorithm 1: Algorithm of AEMVC. 

Input : data set: X = { X 

(1) , X 

(2) } , where X 

(2) is an incomplete 

view. 

Initialization: initialize network parameter �. while not 

converged do 

for each sample of view X 

(1) do 

update the parameter of the auto-encoder Network 

with Eq (15) 

end 

update the missing part of K 2 with Eq (19) 

end 

Calculate ˜ K 1 , K 2 andcommon representations ˜ X . 

Adopt the K-means clustering and SVM classification 

algorithm for ˜ X . 

Output : Category list. 

. Experiments 

.1. Materials 

In this paper, the multi-modality dataset with two modalities 

i.e., 1.5T MR and PET images) obtained from 85 Alzheimer’s dis- 

ase (AD), 185 mild cognitive impairment (MCI), and 90 normal 

ontrol (NC) subjects are used to evaluate the proposed algorithm. 

ll data are downloaded from the Alzheimers Disease Neuroimag- 

ng Initiative (ADNI) from the ADNI website 2 . 

We follow the work in ( Zhou et al., 2019 ) for data preprocess-

ng steps. In order to guarantee the quality of MR images col- 

ected by using various scanners following their respective proto- 

ols, the spatial distortions of MR images in homogeneities and 

radient nonlinearities caused by B1 field are resolved. These im- 

ges are subjected to the following steps: anterior commissure- 

osterior commissure (AC-PC) correction, intensity inhomogeneity 

orrection, brain extraction, cerebellum removal, tissues segmenta- 

ion, registration to a template with 93 ROIs ( Kabani et al., 1998 )

nd ROI labels projection. For each ROI, we use the gray matter 

olume normalized with the intracranial volume in the labeled 

mage as a feature representation. Moreover, the PET images are 

ollected by 30–60 min post Fluoro-Deoxy Glucose (FDG) injec- 

ion and aligned to their corresponding T1 MR images using affine 

egistration. Then, in the same template, the average PET inten- 

ity value of each ROI is computed as a feature representation in 

he labeled image. Therefore, for each subject, we extract a 93- 

imensional ROI-based feature vector from a specific modality (i.e., 

RI or PET). Furthermore, in each modality, we use Chi-Square test 

o rank these 93 ROI-based features according to their influence on 

he task and select 40 most representative ROI-based features as 

xperimental data, so as to obtain more effective and stable. Since 

he top ROIs selected for each task is similar, we visualize top 15 

epresentative ROIs in each modality as shown in Fig. 3 (includ- 

ng thalamus, putamen, fornix, etc.). To verify the effectiveness of 
2 http://adni.loni.usc.edu/ 

w

r

6 
he extracted features on the diagnosis task, we report the classi- 

cation accuracy in the AD/NC task at the missing rate of 50% as 

hown in Fig. 4 . Note that the results of MRI+PET is obtained by 

he multi-modal method MDcR( Zhang et al., 2016a ). 

.2. Comparison method 

We compare the proposed AEMVC framework with the follow- 

ng methods: 

FeaCon: FeaCon method can simply concatenate the features 

rom multiple view. 

CCA: CCA ( Hotelling, 1992 ) (Canonical Correlation Analysis) 

ethod mentioned in Section 2 maps features from multiple view 

nto a common space, capable of keeping the maximum correlation 

etween views. 

KCCA: KCCA (Kernel Canonical Correlation Analysis) method 

entioned in Section 2 also maps features from multiple view into 

 common space, and employs the kernel method to keep the max- 

mum correlation between views. 

DCCA: DCCA ( Andrew et al., 2013 ) (Deep Canonical Correlation 

nalysis) explores the common space and keeps the maximum cor- 

elation between views with the deep neural network, just like the 

CA. 

DCCAE: DCCAE ( Wang et al., 2015b ) (Deep Canonical Correlated 

utoEncoders) adopts auto-encoders for common representation, 

hen combines these projected low dimensional features together. 

MDcR: MDcR ( Zhang et al., 2016a ) (Multi-view Dimensionality 

o-Reduction) applies the kernel matching to regularize the depen- 

ence across multiple views and projects each view onto a low di- 

ensional space. 

MCIV: MCIV ( Trivedi et al., 2010 ) (Multiview Clustering with In- 

omplete Views) complements missing views in the kernel space 

ia kernel alignment, and then obtains common representations 

etween views through KCCA. 

K-Com: K-Com( Zhang et al., 2011 )(Multi-modal classification of 

lzheimer’s disease and mild cognitive impairment) is a multi- 

odal data fusion and classification method based on kernel com- 

ination for AD and MCI. 

iMVWL: iMVWL( Tan et al., 2018 )(Incomplete Multi-View Weak- 

abel Learning) jointly addresses incomplete views and missing la- 

els. It learns a shared subspace from incomplete views with weak 

abels, label correlations, and a predictor in this subspace simulta- 

eously. 

.3. Experiment setup 

We conduct experiments on commonly used ADNI dataset. 

pecifically, the Gaussian kernel function (i.e., k 
(
x i , x j 

)
= 

φ( x i ) , φ
(
x j 

)〉
= exp 

(
−‖ x i −x j ‖ 2 

2 σ 2 

)
) is used for steps that requires 

he kernel method. For comparison methods that cannot directly 

andle the incomplete data, we complement the missing part 

ith random values in experiments. The missing rate is defined 

s η = 

M 

N , where M indicates the number of missing samples 

n the incomplete view. Due to the high cost, some subjects do 

ot perform PET examinations, resulting in the missing PET view. 

herefore, we set the MRI data as the complete view and the PET 

ata as the incomplete view by default. At the same time, we 

arry out different settings to conduct more experiments to verify 

he effectiveness of our method. 

To verify the diagnosis performance of the proposed method, 

e perform multiple classification experiments on the learned rep- 

esentations (AD/MCI/NC, AD/NC, MCI/NC, AD/MCI). Note that a 

http://adni.loni.usc.edu/
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Fig. 3. Visualization of ROIs selected in two modalities, where figure (a) and figure (b) denote ROIs for MRI and PET respectively. 

Fig. 4. Classification results with different feature dimensions in AD / NC task. 
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f

a

i

o

p

upport vector classification model from the LIBSVM toolbox 3 pub- 

icly available with the margin parameter C = 1 is employed as 

he basic classifier for the compared methods. A ten-fold cross- 

alidation strategy is applied to evaluating all compared methods. 

irst, all 360 subjects are randomly divided into 10 subsets on aver- 

ge, 9 of which are selected to train the classifier and the remain- 

ng 1 subset is taken as the test set to verify classification perfor- 

ance. This step is repeated 30 times to avoid possible biases. The 

ccuracy and standard deviation of the classification experiment 

re reported. Moreover, the common representations of our model 

re achieved in an unsupervised manner, so we further conduct 

lustering experiments to evaluate the performance of the repre- 

entations. Finally, a kernel alignment experiment is performed in 

rder to verify the superiority of the proposed method over other 

omparison methods using kernel method. 

In the operation, subjects are randomly chosen as the missing 

arts in the incomplete modality. The clustering accuracy, classi- 

cation accuracy and kernel alignment of all methods are mainly 

xamined. For the hyperparameters in the objective function, we 

une the algorithm to the best performance and set λ1 , λ2 , and λ3 

o 0.01, 1 and 1e-5, respectively. 

Evaluation metrics. On one hand, clustering accuracy reflects 

he quality of the representation learned by the proposed method. 

he accuracy used in our clustering experiments is defined as: 

CC = 

∑ n 
i =1 Γ ( s i , map ( r i ) ) 

n 

, (20) 

here r i and s i are cluster label and ground-truth label of sample 

 i respectively, and Γ ( x, y ) = 1 if x = y, or otherwise Γ ( x, y ) = 0 .

ap ( ·) is a permutation map function mapping the cluster label 

nto the class labels. Then the best map can be obtained by Kuhn- 

unkres algorithm. 

On the other hand, the kernel alignment index is used to eval- 

ate the degree of alignment of different kernel matrices after 
3 https://www.csie.ntu.edu.tw/cjlin/libsvm/ 

a

p

s

7 
ompletion. Referring to the work ( Wang et al., 2015a ), the kernel 

lignment index in experiments is defined as: 

 ( K , K 

∗) = 

〈 K , K 

∗〉 F √ 〈 K , K 〉 F 〈 K 

∗, K 

∗〉 F 
, (21) 

here K and K 

∗ denote the kernel matrix. 〈 K , K 

∗〉 F is the Frobe- 

ius inner product between two matrices. This alignment index 

 ( K , K 

∗) can be treated as a similarity index based on the cosine 

f the angle, ranging between −1 and 1. A greater value indicates 

 higher similarity between the two kernel matrices. In practice, 

 

∗ is replaced with YY 

T , where Y is a one-hot type label matrix. 

herefore, K 

∗ can be regarded as the target kernel matrix, which 

eflects the ideal similarity between samples (that is the similarity 

etween samples with the same label is 1, or otherwise 0). It is 

orth noting that a good kernel matrix can exactly describe rela- 

ionships between the samples and contributes to the later task. 

.4. Results and analysis 

The clustering and classification results of various methods at 

ifferent missing rates are reported in Table 2 and Fig. 5 , respec- 

ively. 

The vertical analysis of the data in Table 2 suggests that the 

lustering ACC of the proposed method is higher than that of other 

ethods at all missing rates. Meanwhile, the standard deviation of 

he proposed method is lower than that of other methods. From 

he horizontal perspective, the clustering ACC of most compared 

ethods fluctuates greatly as the missing rate increases. While, 

he proposed method can maintain stable. Hence, the proposed 

ethod can learn better common representations with the incom- 

lete view, and thus is of importance for AD diagnosis. It should be 

oted that the K-Com and iMVWL methods are not considered in 

lustering experiments since they are not a representation learning 

pproach, and K-means is not applicable to them. 

We report the classification results of comparison methods at 

ifferent missing rates as shown in Fig. 5 . The proposed method is 

epresented with red bars, and other methods are shown in blue. 

t is observed that the proposed method has the best and sta- 

le classification performance in all experiments at different miss- 

ng rates, even at 50% missing rate, indicating that the proposed 

ethod has good robustness. The classification results obtained by 

wo-category experiments are shown in Fig. 5 from row 2 to row 

. From the figure, the proposed method exhibits the best per- 

ormance. Especially in the classification of AD/NC, our algorithm 

chieves the accuracy of 84.85% at the missing rate of 50%. Specif- 

cally, we can see that the DCCAE method performs better than 

ther CCA-based methods in most experiments. One of the main 

ossible reasons is that DCCAE maintains self information of views 

nd correlations between the views. The K-Com method has poor 

erformance due to its simple strategy of exploring the relation- 

hip between views (i.e., directly linear fusion). The MDcR method 

https://www.csie.ntu.edu.tw/cjlin/libsvm/
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Table 2 

Clustering results with different methods at the missing rates of 10% to 50%. 

Method 10% 20% 30% 40% 50% 

FeaCon 0.454 ±0.012 0.457 ±0.027 0.462 ±0.022 0.450 ±0.024 0.449 ±0.021 

CCA 0.460 ±0.015 0.455 ±0.016 0.457 ±0.016 0.458 ±0.017 0.455 ±0.016 

KCCA 0.457 ±0.020 0.468 ±0.010 0.443 ±0.022 0.424 ±0.033 0.424 ±0.011 

DCCA 0.475 ±0.051 0.453 ±0.047 0.472 ±0.025 0.449 ±0.040 0.451 ±0.008 

DCCAE 0.462 ±0.031 0.463 ±0.039 0.455 ±0.32 0.473 ±0.035 0.466 ±0.038 

MDcR 0.445 ±0.027 0.435 ±0.027 0.433 ±0.021 0.425 ±0.026 0.422 ±0.032 

MCIV 0.481 ±0.013 0.455 ±0.021 0.438 ±0.011 0.422 ±0.015 0.427 ±0.033 

AEMVC 0.523 ±0.012 0.516 ±0.005 0.519 ±0.002 0.518 ±0.010 0.520 ±0.012 

Fig. 5. Classification results achieved by different methods at different missing rates, where each row represents a classification task (i.e., AD/MCI/NC, AD/NC, MCI/NC, 

AD/MCI) and each column has the same missing rate. The red bar represents the proposed method, and blue bars represent other compared methods. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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into account the structural information of data and the inherent 
chieves a better performance than other multi-view methods with 

omplete data, because it introduces the kernel method and the 

orrelation constraint between views. In addition, as a multi-view 

ethod with incomplete view, the MCIV method complements the 

issing information in the kernel space, and has a better accu- 

acy than other methods in MCI/NC classification. This verifies the 

ffectiveness of kernel matrix completion. It is worthwhile noting 
8 
hat iMVWL achieves the second-best result, because it simulta- 

eously learns a shared subspace, local label correlations and a 

redictor. Yet it does not consider the deeper correlation of sam- 

les in higher-dimensional space (e.g., kernel space). The proposed 

ethod integrates the advantages of DCCAE and MCIV methods, 

omplements the missing data in the kernel space while taking 
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Fig. 6. Ablation experimental results (AD/NC task at the missing rate of 50%) . 

Table 3 

Clustering and classification results achieved by dif- 

ferent methods in AD/NC task at the missing rate of 

50% (PET data is complete and MRI data is incom- 

plete). 

Method Clustering ACC Classification ACC 

FeaCon 0.520 ±0.026 0.530 ±0.105 

CCA 0.533 ±0.021 0.655 ±0.099 

KCCA 0.549 ±0.021 0.616 ±0.085 

DCCA 0.614 ±0.013 0.682 ±0.108 

DCCAE 0.636 ±0.027 0.772 ±0.071 

MDcR 0.603 ±0.024 0.782 ±0.085 

MCIV 0.571 ±0.022 0.664 ±0.075 

K-Com - 0.548 ±0.106 

iMVWL - 0.828 ±0.079 

AEMVC 0.654 ±0.021 0.836 ±0.077 
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Fig. 7. Clustering and classification results achieved by different methods in AD/NC 

task when one view is completely missing. 

Fig. 8. Kernel alignment indices with different methods. 
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ssociation between multiple views, and shows the best perfor- 

ance. As the missing rate changes from 50% to 10%, the accuracy 

f the proposed method improves by about 4%. Although the best 

erformance (black lines) changes with some minor fluctuations, 

he mean values (red bars) consistently improve with less missing 

ata and achieve the best performances. 

To further verify the effectiveness of HSIC constraint and graph 

egularization, we report the clustering and classification accura- 

ies of the variants of the proposed AEMVC method in AD/NC task 

t the missing rate of 50% in Fig. 6 . The variants of AEMVC are as

ollows: AEMVC-HSIC-GR represents the AEMVC method without 

he HSIC and graph regularization constraints, AEMVC-HSIC repre- 

ents the AEMVC method without HSIC constraint and AEMVC-GR 

enotes the AEMVC method without graph regularization. It can be 

een that the AEMVC method achieves the best performance with 

wo constraints. 

Furthermore, we conduct more experiments in different set- 

ings to verify the effectiveness of the proposed method. When 

ET data is complete and MRI data is incomplete, the accuracies 

f clustering and classification with different methods in AD/NC 

ask at the missing rate of 50% are shown in Table 3 . It can be

bserved that AEMVC has the best performance compared with 

ther methods in this scenario. Moreover, we compare different 

ethods in AD/NC task when the missing rate is 100% as shown 

n Fig. 7 . Fig. 7 (a) shows the performance when MRI data is com-

lete and PET data is completely missing and Fig. 7 (b) shows the 

erformance when PET data is complete and MRI data is com- 

letely missing. It can be observed that when a modality is com- 

letely missing, the classification accuracy of most methods includ- 

ng AEMVC drops by nearly 10%. However, the proposed method 

till has the best performance in this extreme case. 

Fig. 8 shows the comparison of kernel alignment indices for dif- 

erent methods in the AD/NC classification task at different miss- 

ng rates. The red line represents the baseline. The blue line de- 
9 
otes a random filling method used by KCCA, which indicates the 

lignment degree between the incomplete K 2 obtained by filling 

he missing parts with random values. The K-Com method repre- 

ented by the green line also uses random values to fill the miss- 

ng information, but it calculates the kernel alignment index with 

he weighted kernel matrix of two views. The kernel alignment in- 

ices of the AEMVC and MCIV method both are calculated by the 

omplemented K 2 . Compared with other methods, the proposed 

ethod has the highest degree of kernel alignment at any miss- 

ng rate, implying that it can better mine the relationship between 

amples than other methods and is therefore more conducive to 

D diagnosis. 

To determine the dimensions of the learned common represen- 

ation, as shown in Fig. 9 , we report the classification accuracy on 

ifferent dimensions of the common representation in AD/NC task 
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Fig. 9. Classification results on different dimensions of the common representation 

in AD/NC task at the missing rate of 50% . 

Fig. 10. Convergence curve of the objective function. 
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t the missing rate of 50%. According to observations, when the 

ommon dimension is 40, the proposed method achieves the best 

erformance. Moreover, To verify the convergence of the proposed 

ethod, as shown in Fig. 10 , we report the objective function value 

t each iteration step with 50% missing rate in AD/NC classifica- 

ion task. It is obvious to be observed that objective function value 

ecreases in the first 30 iterations and then gradually converges 

ithin 100 iterations. 

. Conclusion 

This paper studies an multi-modal representation learning 

roblem for Alzheimers disease diagnosis with incomplete modal- 

ties and proposes an Auto-Encoder based Multi-View missing 

ata Completion framework(AEMVC). The original complete view is 

apped to a latent space through an auto-encoder network frame- 

ork. Then, the latent representations learned from the complete 

iew are used to complement the kernel matrix of the incomplete 

iew while graph regularization and HSIC constraints are adopted 

o maintain the structural information of original data and the in- 

erent association between views. Finally, Kernel CCA is applied 

o the learned kernel matrix to obtain the common representa- 

ion. The experimental comparison of all methods verifies the best 

erformance of the proposed method on ADNI datasets. There are 

any other directions to explore in the future, such as mining 

ommonality of the same group of diseased subjects using unsu- 

ervised clustering, and improving the flexibility of the algorithm 

y taking arbitrary missing (i.e., each modality can be incomplete) 

nto consideration. 
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