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A B S T R A C T   

Background: Alzheimer’s disease (AD) is the most common cause of dementia, characterised by behavioural and 
cognitive impairment. Due to the lack of effectiveness of manual diagnosis by doctors, machine learning is now 
being applied to diagnose AD in many recent studies. Most research developing machine learning algorithms to 
diagnose AD use supervised learning to classify magnetic resonance imaging (MRI) scans. However, supervised 
learning requires a considerable volume of labelled data and MRI scans are difficult to label. 
Objective: This study applied a statistical method and unsupervised learning methods to discriminate between 
scans from cognitively normal (CN) and people with AD using a limited number of labelled structural MRI scans. 
Methods: We used two-sample t-tests to detect the AD-relevant regions, and then employed an unsupervised 
learning neural network to extract features from the regions. Finally, a clustering algorithm was implemented to 
discriminate between CN and AD data based on the extracted features. The approach was tested on baseline brain 
structural MRI scans from 429 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), of 
which 231 were CN and 198 had AD. 
Results: The abnormal regions around the lower parts of limbic system were indicated as AD-relevant regions 
based on the two-sample t-test (p < 0.001), and the proposed method yielded an accuracy of 0.84 for discrim
inating between CN and AD. 
Conclusion: The study combined statistical and unsupervised learning methods to identify scans of people with 
AD. This method can detect AD-relevant regions and could be used to accurately diagnose AD; it does not require 
large amounts of labelled MRI scans. Our research could help in the automatic diagnosis of AD and provide a 
basis for diagnosing stable mild cognitive impairment (stable MCI) and progressive mild cognitive impairment 
(progressive MCI).   

1. Introduction 

Dementia is receiving increasing attention because there are now 
over 50 million people all living with dementia globally [1]. Dementia is 
a clinical condition leading to cognitive and behavioural impairment, i. 
e., language or memory loss, typically among people aged 65 years old 
and over [2]. Alzheimer’s disease (AD) is the most common and prev
alent cause of dementia, accounting for an approximate 60% to 80% of 
dementia cases [3]. 

AD is commonly diagnosed using structural MRI scans [4], which 

generate a 3D image and capture changes in the structure of the brain 
through using magnetic fields and radio waves [5]. However, analysing 
MRI scans is difficult because traditional medical imaging scan analysis 
for AD diagnosing is undertaken manually by doctors. The structure of 
the brain is complex, and each scan contains millions of voxels (units in a 
3D medical imaging scan) and massive amounts of information, so 
analysing it manually by doctors is a time-consuming task. Machine 
learning (and deep learning) techniques have been used for diagnosing 
various disease in previous research, e.g., Coronavirus disease 2019 
(COVID-19) [6], cancer [7], AD [8], etc. As a result, computer-aided 
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diagnosis of AD based on using machine learning (including deep 
learning) to analyse medical imaging scans has emerged as an area of 
interest. Zhang et al. [9] employed the improved framework TResNet of 
residual network with regional attention mechanism to diagnose AD. 
They fed data from structural MRI scans of grey matter into the network 
and achieved an accuracy of 90%, sensitivity of 92.8%, and specificity of 
87.5% in the classification of AD and CN. Zeng et al. [8] applied a novel 
deep belief network (DBN) based multi-task learning algorithm to MRI 
scans of grey matter to discriminate between CN and AD, and achieved 
an accuracy of 98.62%. Nigri et al. [10] proposed explainable CNN 
models to better interpret the results in addition to achieving high 
performance with an AUC (Area Under the Curve) of 0.923. Baskar et al. 
[11] first extracted hippocampus and posterior cingulate cortex from the 
MRI scans and then used fuzzy c-means to eliminate suspicious, i.e., 
irrelevant, samples, before employing a 4-layer backpropagation artifi
cial neural network (BANN) to classify the data into CN, mild cognitive 
impairment (MCI), and AD. The performance of classification achieved 
an accuracy of 98.63%, sensitivity of 85.63%, and specificity of 79.56%. 

These studies used supervised learning models, which requires a 
large number of MRI scans that have been labelled beforehand (often 
manually) for training. Although crowdsourcing can solve the problem 
of labelling data, labelling medical imaging data is still difficult as it 
requires qualified practitioners with extensive experience and profes
sional knowledge; however, recruiting these professionals is difficult 
and resource intensive. Furthermore, learning discriminative features 
from labelled data also means that the algorithm is guided by people on 
what to do [12], which means that it is likely to ignore some hidden 
patterns. In contrast, unsupervised learning methods can capture hidden 
patterns within the data with the help of feature learning [13]. There
fore, methods using limited amounts of, or no, labelled data (i.e., semi- 
supervised and unsupervised learning methods) have become 
important. 

In recent years, some studies have used unsupervised learning to 
undertake diagnosis of AD. Farouk & Rady [14] utilised k-means clus
tering with a combination of ROI features and the whole brain features 
to cluster data, achieving an accuracy of 76.3%. Bi et al. [15] applied a 
PCANet on three slices from three planes of view for each brain MRI scan 
to extract features and then used k-means to cluster the data, achieving 
an accuracy of 89.15% in the diagnosis of AD and CN. Escudero et al. 
[16] applied k-means clustering to data features in five clinical scenarios 
and one of the scenarios used MRI scans. In their method, 73.6% of the 
AD scans were clustered into the pathological cluster. However, 
compared with supervised learning methods, there have been far fewer 
studies using unsupervised methods. Further work is therefore required 
to understand the potential of unsupervised learning methods for diag
nosing AD, as well as their limitations. 

This paper contributes to this emerging area by proposing a novel 
approach that combines statistical methods, an unsupervised neural 
network, and a clustering algorithm to support clinicians in diagnosing 
AD. The statistical method locates the AD-relevant regions using a 
limited number of labelled MRI scans; the unsupervised neural network 
converts the AD-relevant regions (voxel level), which are low-level 
features, to higher-level features. Higher-level features refer to a more 
complex and a more abstract representation of the input raw data that is 
learned by neural networks. However, neural networks are effectively 
black boxes and higher-level features computed by neural networks are 
often difficult to perceive and interpret for humans: this is one of the 
disadvantages of using these methods. Although higher-level features 
can indeed be helpful for discriminating between different classes, 
defining these higher-level features, and what they represent, is not al
ways possible. In this paper we seek to represent these higher-level 
features, not by defining them precisely, but by plotting them in rela
tion to each other according to their class or group (as shown later in 
Fig. 3 (c) and (d)). Finally, the clustering algorithm divides the data into 
two groups: AD and cognitively normal (CN). This process is important 
in that it involves only limited amounts of labelled data and does not 

require clinical input. Our proposed method therefore makes an original 
contribution to this field and it performed well in the clustering. Addi
tionally, it could potentially be used in future work to predict the 
development of AD. 

2. Materials and methodology 

Here we describe the data used in our study and our methodology. 

2.1. Dataset 

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lon 
i.usc.edu). The ADNI was launched in 2003 as a public–private part
nership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com
bined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). We used T1-weighted MRI scans 
from 429 participants in ADNI, specifically, a baseline dataset consisting 
of 231 CN and 198 AD scans (details of these participants are available 
from https://adni.loni.usc.edu/wp-content/uploads/2012/08/ADNI_En 
roll_Demographics.pdf). 

2.2. Data pre-processing 

The MRI scans were pre-processed using anterior commissure- 
posterior commissure alignment (AC-PC alignment), motion correc
tion, intensity normalisation, template registration, and skull stripping. 
The AC-PC alignment was undertaken manually using Statistical Para
metric Mapping (SPM) software and the other pre-processing steps were 
followed using SPM and Computational Anatomy Toolbox (CAT) auto
matically. The pre-processing workflow finally resampled all the scans 
to 121× 145× 121 voxels, with voxel sizes of 1.5 mm across all planes 
(sagittal, coronal, and axial). 

2.3. Abnormality detection between two groups 

This phase aims to detect regions that are visibly different in AD and 
CN groups at the voxel level, so- called the regions of interest (ROIs). The 
commonly-used two-sample t-test was employed to test for ROIs be
tween the two groups within AD-relevant regions in MRI scans 
[171819]. The two-sample t-test was applied to 60 labelled scans, of 
which 30 were AD and 30 were CN, to obtain ROIs between the two 
groups. The choice of the numbers of scans was based on the t-test 
generally being used for small amounts of data (e.g., often a sample size 
of less than 30) [20]. In addition, based on the experiments we con
ducted previously, when the number of MRI scans of each group was 
increased, the distinguishing ROIs that were detected using the two- 
sample t-test were almost the same. Therefore, it was determined that 
30 labelled scans for a two-sample t-test respectively from each group 
were sufficient to detect AD-relevant regions, and this reduced the need 
for labelled MRI scans. 

2.4. Feature extraction 

Although, following the ROIs detection stage, in which the regions 
indicating the existence of AD have been recognised, it is still difficult to 
accurately cluster data using only the intensity values of the voxels 
within the regions directly, because the voxel intensity values are still 
low-level features. Hence, to obtain higher level features from unla
belled data, an unsupervised neural network, PCANet, a combination of 
Principal Component Analysis (PCA) method and Convolutional Neural 
Network (CNN) [21], was employed, as shown in Fig. 1. This has three 
stages: the first two stages both learn convolution filters by PCA for 
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feature mapping, and the final stage binarises and generates a block- 
wise histogram for feature output. 

2.4.1. First stage of a PCANet 
Given N input images {Ii}N

i=1 of size m × n and assuming the size of 
the patch is k1 × k2 at all stages. All overlapping patches within the ith 
image were collected and there are m × n vectorised patches in each 
image. We then subtracted the patch mean from each patch and ob
tained Xi = [xi,1, xi,2, ⋯, xi,mn], where xi,j is a mean-removed patch. 
Therefore, all images were operated on in the same way and we obtained 
X = [X1,X2,⋯,XN] ∈ Rk1k2×Nmn. 

Assuming that the number of filters in layer is L1, a PCA was used to 
learn the filter bank in this stage. The solution is known as the L1 

principal eigenvectors of XXT . Therefore, the PCA filters are expressed 
as: 

W1
l = matk1 ,k2

(
ql
(
XXT) ) ∈ Rk1k2 , l = 1, 2,⋯, L1  

where matk1 ,k2 (υ) is a function that maps υ ∈ Rk1k2 to a matrix 
W∈ Rk1×k2 , and ql

(
XXT) denotes the lth principal eigenvector of XXT . 

This captures the main variation across all of the mean-removed 
patches. 

2.4.2. Second stage of a PCANet 
The process of the second stage almost repeats the same process as 

the first stage. Let the lth filter output of the first stage be: 

Il
i = Ii*W1

l , i = 1, 2,⋯,N  

where * denotes 2D convolution and the boundary of Ii is zero-padded 
before convolving with W1

l in order to make the Il
i having the same 

size of Ii. Similar to the first stage, all the overlapping patches of Il
i were 

collected, and the patch mean was subtracted from each patch. This 

formed Yl
i = [yi,l,1, yi,l,2, ⋯, yi,l,mn]∈ Rk1k2×mn, where yi,l,j is the jth mean- 

removed patch in Ii. We further defined Yl = [Yl
1,Y

l
2,⋯,Yl

N] ∈

Rk1k2×Nmn for the matrix that collects all mean-removed patches of the lth 

filter output and concatenate Yl for the outputs of all filters: 

Y =
[
Y1,Y2,⋯,YL1

]
∈ Rk1k2×L1Nmn 

The PCA filters of the second stage were obtained as: 

W2
l = matk1 ,k2

(
ql
(
YYT) ) ∈ Rk1k2 , l = 1, 2,⋯, L2  

where L2 is the number of filters in the second stage. For each input Il
i of 

the second stage, there were L2 outputs, and each convolves W2
l for l =

1,2,⋯,L2: 

O
l
i = {Il

i*W2
l }

L2
l=1 

The number of outputs in the second stage was L1L2. 

2.4.3. Output stage of a PCANet 
In this stage, a process of hashing and histogram generating was 

implemented. In the process of hashing, L2 outputs in O l
i were converted 

into a single integer-valued “image”: 

T
l
i =

∑L2

l=1
2l− 1H(O l

i)

whose every pixel is an integer in the range [0, 2l− 1 − 1]. H(•) is a 
Heaviside step function whose value is one for positive and zero other
wise. 

Then, for each of the L1 images T l
i, l = 1,2,⋯,L1, we partitioned it 

into B blocks. We computed the histogram (with 2L2 bins) of the decimal 
values in each block. After concatenating all the B histograms into one 
vector and denote as Bhist(T l

i), the feature vector of the input image Ii 
was then defined to be the set of block-wise histograms: 

fi = [Bhist
(
T

1
i

)
,Bhist

(
T

2
i

)
,⋯,Bhist

(
T

L1
i

)] T
∈ R(2L2 )L1B 

In addition, the local blocks could be either overlapping or non- 
overlapping. 

2.4.4. PCANet in this study 
In this study, the number of stages was set to two because a two-stage 

PCANet is sufficient to achieve good performance [21]. The size of the 
patches k1 × k2 was set to 3 × 3 in both two stages; the number of filters 
L1 and L2 were both set to eight, respectively, which indicated that there 
were eight principal eigenvectors in each PCA process of the two stages; 
the block size for the histograms was set to 15 × 15; the overlap ratio of 
the local blocks was set to zero in this study for reducing the number of 
features. After feeding into the PCNet, the original normalised voxel 
intensity values (zero to one) were mapping to higher-level features. 

2.5. Clustering 

Data were divided into two groups: AD and CN, which means that the 
clustering tasks needed to split the data into two clusters. A refined 
version of k-means cluster analysis, the k-means++ algorithm [22], was 
used to cluster data from CN and AD patients using the features 
extracted by PCANet: this was performed for the whole sample of 429 
scans, i.e., 231 scans from CN patients and 198 from AD patients. This 

Fig. 1. The structure of PCANet.  
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method partitions a collection of data into k disjointed clusters without 
any labels of the data. The detailed k-means++ algorithm is as follows:  

(1) Select the first centroid at random;  
(2) Calculate the distance from each data point xi to the nearest, 

previously chosen centroid, and we note it as dist(xi);  
(3) Choose the new data point from the n data points as the next 

centroid with the help of the maximum probability: dist(xi)
2

∑n
i=1

dist(xi)
2;  

(4) Repeat steps (2) – (3) until k centroids are selected;  
(5) Form k clusters by assigning each point to its closest centroid;  
(6) Re-compute the centroid of each cluster;  
(7) Repeat until centroids do not change [2223]. 

The k value was set to 2 in this study, because the data had to be 
divided into two groups: CN and AD. The Euclidean distance, d(x, y), was 
selected in step (3) of the algorithm, and was calculated by: 

d(x, y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1
(xk − yk)

2

√

where n is the number of dimensions and xk and yk are the kth features of 
data points x and y, respectively. Therefore, the distance between a 
certain data point xi and a centroid c in the step (2) above, dist(xi), could 
be calculated by: 

dist(xi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1

(
xi,k − ck

)2

√

,

where the n is the number of dimensions and xi,k and ck are the kth 
features of xi and c, respectively. 

In the k-means++ algorithm, the first centroid was selected at 
random, such that the algorithm may have different results for different 
first centroids: we therefore repeated the k-means++ algorithm ten 
times, and the mean value was used. Clustering algorithms do not need 
to train, thus cross-validation was not necessary in this study. 

3. Results and discussion 

3.1. ROIs detection 

Using 30 scans from CN patients and 30 scans from AD patients, the 
two-sample t-test analysis detected the regions pathologically related to 
AD (increasing the sample size for the t-test did not detect any further 
regions). Fig. 2 shows a heat map of the ROIs in the sagittal, coronal, and 
axial view planes of the MRI scan. Red and orange regions indicate that 
the mean of the intensity value (after being normalised) of the voxel in 
AD group is greater than that in the CN group and the blue indicates 
where the mean value of the voxel in AD group is less than CN group. 

As shown in Fig. 2, the most conspicuous regions were the lower 
parts of the limbic system, which includes the parahippocampal gyrus, 
the amygdala, and the hippocampus, in the left and right cerebra. There 
were also fragmentary regions involving small parts of the thalamus and 
frontal lobe (including some tiny parts of the frontal gyrus). 

3.2. Clustering results 

Since there are two main AD-relevant regions located in the left and 
right cerebra, we utilised one of them (one ROI) and both of them (two 
ROIs) separately to discriminate between AD and CN, respectively for 
the 429 scans. The clustering performance was compared using five 
metrics: accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV), on the clustering task using 
one ROI and two ROIs (Table 1). 

Table 1 shows that, for all five measures, using two ROIs performed 
better than using one ROI: the accuracy for two ROIs was 6% higher than 
using one ROI and the sensitivity was 10% higher, indicating that it was 
better at identifying people with AD; the respective 95% CI indicate that 
these differences are statistically significant. The ROIs also indicate that 
there are two diseased areas within AD. The wider CI of sensitivity when 
using one ROI (64%–75%) indicates a more variable performance. The 
specificities for one (84%) and two (88%) ROIs indicates that they both 
performed well in identifying non-AD cases, although the specificity for 
one ROI is significantly lower than that for two ROIs. 

The significantly higher PPV when using two ROIs (86%; 95% CI =
83–88%) versus one ROI (80%; 95% CI = 76–83%) indicates that we can 
trust that a person identified as having AD actually has the disease, i.e., 
its diagnosing AD is fairly credible. The significantly higher NPV for two 
ROIs, i.e., 7% greater than using one ROI, gives greater confidence that 
someone who receives a negative test result does not actually have the 

Fig. 2. A heat map of the regions related to AD noted in the three view planes of the MRI scan.  

Table 1 
Measures of Clustering using one ROI and two ROIs using PCANet.  

Measures K-means++

One ROI Two ROIs 

Accuracy Mean 0.773 0.842 

95% CI* (0.764, 0.782) (0.833, 0.851) 
Sensitivity Mean 0.695 0.797 

95% CI (0.640, 0.750) (0.768, 0.826) 
Specificity Mean 0.840 0.881 

95% CI (0.792, 0.888) (0.853, 0.909) 
PPV Mean 0.798 0.855 

95% CI (0.764, 0.832) (0.829, 0.881) 
NPV Mean 0.767 0.836 

95% CI (0.747, 0.787) (0.819, 0.853) 
Error Rate 0.227 0.158  

* Confidence Interval. 
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disease. Overall, using two ROIs was more reliable than using only one 
ROI, whether a person receives either a “CN” or an “AD” result. 

To further demonstrate the effectiveness of the combination of the 
ROIs selected using the two-sample t-test and the PCANet, we compared 
the distributions of the features in four situations:  

(1) features directly extracted from random selected slices (without 
PCANet);  

(2) features directly extracted from the whole slices involving the 
ROIs (without PCANet);  

(3) features directly extracted from the ROIs (without PCANet); 
(4) features extracted from ROIs calculated by PCANet in the pro

posed method. 

From the distribution of the features from the randomly-selected 
slices of the MRI scans (Fig. 3 (a)), we can see that the data are 
distributed irregularly and the two classes are completely visually 
inseparable and are hard to split. When we examine the distribution of 
the features from the whole slices that involve ROIs (Fig. 3 (b)), we can 
see that, although the two classes are still mixed together, most AD 
points gather towards the lower right part of the graph and most CN 
points gather towards the upper left area of the graph. This means that 
the ROIs do indeed help the two classes of data to split. 

From the distribution of the features directly from the ROIs without 
PCANet (Fig. 3 (c)), we can see that the data further tend to separate 
compared with Fig. 3 (a) and (b). This means that the ROIs selected by 
the two-sample t-test are truly AD-relevant although there is still room 
for improvement. When examining the distribution of features calcu
lated by the PCANet using the ROIs (Fig. 3 (d)), it can be seen that, 
although the two groups are still adjacent to each other, fewer deviants 
are mixed in the wrong group, compared with the Fig. 3 (c), and there is 
improved separation of the groups. Therefore, the results in Fig. 3 (c) 
and (d) generally suggest that the ROIs detected by the two-sample t-test 
are truly related to AD and that the PCANet helps the ROIs convert to 
high-level features that can be clustered more accurately. 

In order to understand better why some cases were mistakenly 
discriminated into AD at baseline, when they were actually CN, we 
looked at how these patients progressed subsequently, as summarised in 
Table 2. We can observe that 15 of the participants who were CN at 
baseline, subsequently developed to MCI from CN or developed to AD 
from CN (excluding those who developed to MCI and returned to CN 
later) before the 36th month, and 6 out of these 15 participants were 
clustered into the AD cluster. If we examine the participants who 
developed to AD before the 48th month, 8 out of 25 were clustered into 
the AD cluster; if we look at those who developed to AD before the 60th 
month, 8 out of 31 were clustered into AD; 37 participants progressed to 

Fig. 3. Distributions of the features from four situations. (a) is the distribution of features from randomly selected slices; (b) is the distribution of features from the 
slices involving ROIs; (c) is the distribution of features directly from the ROIs; (d) is the distribution of the features computed by PCANet using the ROIs. 
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MCI or AD before the 72nd month and 9 of them were clustered into AD; 
if we prolong the conversion time to 108th month, 12 out of 52 par
ticipants were clustered into AD. 

From the observations above, our conjecture is that the proposed 
method could potentially help clinicians to predict the early develop
ment and progression of the participants from being CN to having MCI 
and AD, and the reason is that the unsupervised learning method is 
based on the features themselves, instead of feedback from the human 
assessors. Hence, even though some participants were diagnosed as CN 
at baseline, if their brains more or less show pathological changes 
related to AD, it is quite natural that they could possibly be clustered 
into AD based on the changes. This suggests that this method can 
potentially detect pre-clinical changes in the brain, i.e., before the pa
tient is diagnosed with AD. 

However, from Table 2, the performance of the prediction decreases 
with the time of conversion delaying. This is likely to be because the 
proposed method only used the baseline scans; however, if the time of 
the conversion is long after the baseline, the structure of the brain at the 
conversion time is more likely to have dramatic changes than that at the 
baseline, which means that the scan of the baseline still shows a healthy 
status even if it develops into AD in the long term. 

In addition, some participants eventually developed only MCI (rather 
than AD), but they were still clustered into AD. Regardless of the wrong 
clustering by the proposed methods, it is also likely that the participants 
developed to progressive MCI and their brain had some AD-related 
changes but still exhibited symptoms of MCI. We will use this in our 
future work to explore whether progressive MCI and stable MCI can be 
discriminated using CN and AD scans. This will involve clustering all 
MCI, CN, and AD scans into two groups, and if an MCI scan is clustered 
into AD group or CN group, we will determine whether it is more likely 
to be progressive MCI or stable MCI, respectively. 

Compared with some state-of-the-art methods that detect regions 

pathologically related to AD, our method located similar regions. In 
their study, Zhang et al. [9] noted the left-hand side of hippocampus 
from slice 72 to slice 74 of the brain MRI scan as the parts with obvious 
changes. Nigri et al. [10] highlighted the region within the left hippo
campus and ventricles in form of a heat map using Occlusion Test from 
their proposed neural network, AlexNet 2D plus Channel, similar to the 
red region in Fig. 2 (a). Nigri et al. [10] used the Swap Test, to interpret 
their network: the Swap Test highlighted the hippocampus in the cor
onal plane, which is also similar to the ROI in Fig. 2 (b). 

In addition to the detection of pathologically AD-relevant regions, 
the clustering performance used in our study compared favourably with 
other state-of-the-art clustering methods (shown in Table 3). Bi et al. 
[15] used similar methods, PCANet and k-means, to cluster CN and AD 
data, and achieved overall accuracy of 89.15%. Although the accuracy 
in their study was 5% greater, accuracy alone is not sufficient to 
comprehensively evaluate the performance of a method, because it only 
measures its overall capability to discriminate between CN and AD. 
Other measures of accuracy, e.g., sensitivity, specificity, etc., as we 
presented here, together provide a more rounded evaluation of the 
performance of a method, especially when data are unbalanced, i.e., 
there are significantly more of one class than another. In other words, if, 
for example, the number of the data that are correctly clustered into CN 
is extremely large but the number of the data correctly clustered into AD 
is small, the overall accuracy still can be good, especially when the two 
classes of data are unbalanced: thus comparing other metrics beyond 
accuracy is important. 

Farouk et al. [14] used k-means method alone based on the selected 
ROIs and the whole brain, respectively. They obtained the best perfor
mance when using the whole brain (accuracy = 76.3%). Our accuracy 
was around 8% greater than this, which suggests that the PCANet is a 
key component that enhances the performance when clustering CN and 
AD data. Escudero et al. [16] also employed k-means to cluster CN and 
AD based on the normalised left and right hippocampus volumes from 
MRI scans, and 73.6% of AD were correctly clustered. Our proposed 
method achieved 79.65% sensitivity, namely, 79.65% of the AD cases 
were clustered into the correct cluster, which is more than 6% higher 
than Escudero et al.’s [16] method. Cabreza et al. [24] applied a GAN to 
MRI scans and achieved an accuracy of 74.44%, a sensitivity of 73.86%, 
and a PPV of 82.28%, all of which were lower than our method. 

In addition to the studies that employed unsupervised learning 
methods, our method also outperforms some state-of-the-art supervised 
learning methods, as listed in the Table 3. From Table 3, we can see that 
the accuracy of our method is higher than those of some studies 
[30313233]. Although some studies [252627] achieved higher accu
racy, some of the other measures that were achieved using our method 
were higher, i.e., sensitivity or specificity. Zeng et al. [8], Lin et al. [28], 
and Lin et al. [29] achieved accuracies of 98.62%, 88%, and 88.79%, 
respectively, which were much higher than our method. The reason 

Table 2 
A summary of the scans that are CN but were mis-clustered into AD. The first 
column shows the month when the participants developed to MCI from CN or 
developed to AD from CN; the second column indicates the number of patients 
who developed to MCI or AD from CN in corresponding months; the third col
umn is the number of participants who are CN at baseline but were mistakenly 
clustered into AD group by our proposed method; the fourth column indicates 
the ratio of the third column to the second column.  

MCI/AD detected in 
(months) 

No. of 
patients 

Mis-clustered into 
AD group 

Mis-clustered into AD 
group (%) 

36 15 6 40 
48 25 8 32 
60 31 8 25 
72 37 9 24 
108 52 12 23  

Table 3 
The studies of CN/AD clustering and classification based on structural MRI. Empty values (–) indicate these measures were not reported in the respective publications.   

Study Accuracy Sensitivity Specificity PPV NPV Dataset Method  

Unsupervised learning 
[14] 76.3% – –  – – 113 CN, 162 AD K-means 
[15] 89.15% – –  – – 307 CN, 243 AD PCANet, k-means 
[16] – 69% 94%  – – 200 CN, 200 AD K-means 
[24] 74.44% 73.86% –  82.28% – Not reported GAN  

Supervised learning 
[25] 96.92% 73% 88%  76.73% 82% 36 CN, 38 AD HPT-TSVM 
[26] 84.4% 83.6% 85.9%  – – 226 CN, 186 AD FSNet 
[27] 87.1% 93.3% 85.5%  – – 61 CN, 37 AD DBAD CNN based model 
[8] 98.62% – –  – – 92 CN, 92 AD DBN-based multi-task learning 
[28] 88% – –  – – 330 CN, 336 AD ROI-based CNN 
[29] 88.79% – –  – – 229 CN, 188 AD CNN, PCA, extreme learning machine 
[30] 83.7% 79.16% 87.2%  – – 228 CN, 188 AD CNN 
[31] 80% – –  – – 61 CN, 50 AD 3D-CNN 
[32] 81.3% – –  – – 233 CN, 188 AD ResNet 
[33] 81.25% – –  – – 92 CN, 92 AD SDPSO-SVM  
Our approach 84.17% 79.65% 88.05%  85.46% 83.64% 231 CN, 198 AD Two-sample t-test, PCANet, k-meansþþ
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could be that their methods learned more information from the labelled 
data by using supervised neural networks with backpropagation. How
ever, the backpropagation also makes the process of diagnosis more 
time-consuming. Therefore, this becomes a trade-off between perfor
mance and efficiency: although our method achieved a slightly lower 
performance, it reduced the reliance on the labels of the data and the 
overall process was quicker. In other words, our method balanced the 
performance (a relatively advantageous performance) and the efficiency 
(quicker discrimination) of the diagnosis. 

An additional advantage of our using unsupervised learning 
methods, is that these do not require training data or test data. This 
means that there is no data leakage, a limitation identified by Wen et al. 
[34] in a number of earlier studies [35–38]. 

The advantages of the method proposed in our study can be sum
marised as follows: Our method reduced the need for labelled MRI scans 
in the process of diagnosis of AD, which required only 30 scans from CN 
and AD groups, respectively, for locating the AD-relevant regions. 
PCANet, as a 2-stage unsupervised neural network, converted the low- 
level features (voxels) within the ROIs to higher-level features without 
backpropagation. Although a number of CNN architectures, e.g., ResNet, 
LeNet, AlexNet, etc., have been developed, most of these architectures 
are supervised, which requires backpropagation and is time-consuming. 
However, the process of the feature extraction in the PCANet does not 
rely on the labels for the data and this makes it much quicker than su
pervised neural networks. In addition, although there are improved 
versions of PCA, e.g., kernel PCA, they are still mainly used for reducing 
the dimensions of data rather than feature extraction. Therefore, PCA
Net manipulates the unsupervised characteristic of the PCA and the 
feature extraction of CNN to extract features from the data very well, 
and without the need for labels. Finally, k-means++ performed well in 
discriminating between CN and AD without using labels for the data, 
which is relatively quick and simple. In addition to diagnosing AD, our 
method also has the potential to predict the development of AD; this 
requires further development and testing. 

However, the proposed method has some limitations: First, the 
PCANet used a basic (linear) PCA to learn convolutional filters, which 
means that it cannot capture nonlinear structures within the data. Sec
ond, although the PCANet is simply structured (with only two convo
lution layers) and is quicker in extracting features due to not having 
backpropagation, it increases the dimension of the original features. In 
other words, the dimension of the output from the PCANet is much 
higher than that of the input. This suggests that, if the input of the 
PCANet has high dimensions, the extracted features will occupy a larger 
volume of computational memory. Therefore, when a PCANet is applied 
to MRI scans, ROIs or slices containing ROIs need to be selected be
forehand. In this way, the performance of the PCANet also depends on 
the detection of the ROIs in this study. Despite these limitations, the 
methods used in this study make an important contribution to the 
detection of AD in MRI scans as is summarised in the next section. 

4. Conclusion 

AD is the most common type of dementia, and it is becoming a 
worldwide problem. The available AD diagnosis that uses machine 
learning and deep learning often requires a large amount of labelled data 
but labelling medical imaging data is quite difficult. Methods involving a 
limited amount of labelled data or data without labels should therefore 
be considered. 

In this paper, we proposed a method to discriminate between CN and 
AD using a limited number of labelled brain structural MRI scans. We 
first employed a two-sample t-test to detect ROIs between CN and AD 
using the labelled scans; we then used PCANet to extract high-level 
features from the ROIs; finally, we utilised k-means++ to divide the 
MRI scans into two clusters using the high-level features. The proposed 
method achieved accuracy of 84.17%, sensitivity of 79.65%, specificity 
of 88.05%, PPV of 85.46%, and NPV of 83.64%. In addition, the method 

potentially predicts the progression of the CN participants, and it sug
gests that stable MCI and progressive MCI can be discriminated by using 
AD and CN data. This could be of potential benefit to clinicians in 
diagnosing people with dementia. 

The contribution of the study can be summarised as follows. This 
study proposed an unsupervised approach that combines a statistical 
method, a neural network, and a clustering algorithm, to locate AD- 
relevant regions and to discriminate between CN and AD based on 
only a limited number of labelled MRI scans. The method in this study 
reduced the reliance on the labels of the data and this could potentially 
save much of the time for the diagnosis of AD. In addition, this study also 
provides evidence that unsupervised learning methods have the poten
tial to predict the development of AD and thus they could be used to help 
with the diagnosis of stable MCI and progressive MCI. 

Based on the limitations of this study and proposed method, some 
improvements could be developed in future work. In recent years, MCI 
has been increasingly studied due to its being an intermediate stage in 
the development of AD. The two substages, stable MCI (sMCI) and 
progressive MCI ((pMCI), are potentially indicative of a person’s likeli
hood of worsening and progressing to AD (pCMI) or not (sMCI) 
[394084142]. Therefore, future work could use MRI scan data to cluster 
and differentiate between stable MCI and progressive MCI. In addition, 
the grey matter in the brain also has an essential role in more accurately 
diagnosing AD in previous studies [9264344], this could be used in 
future work to improve the accuracy of the diagnosis. As for the method 
used in this study, a two-sample z-test could be potentially used for 
detecting ROIs based on a larger number of labelled data (over 30 scans 
in each groups); other unsupervised neural networks, e.g., anchor 
neighbourhood discovery (AND) [45], could be considered for extract
ing features. For the clustering stage, other optimised k-means methods 
e.g., quantum-inspired ant lion optimised hybrid k-means [6], could be 
used in future work, and, in addition to k-means algorithms, Gaussian 
mixture models could also be considered to cluster the data in future 
research. 

Summary table. 
What was already known on the topic?  

• Millions of people suffering from Alzheimer’s disease (AD) globally; 
however, manual diagnosis of AD by doctors is time-consuming;  

• Machine learning techniques can help doctors to identify patients 
with AD using magnetic resonance imaging (MRI) scans.  

• Most previous studies employed supervised learning methods and 
MRI scans to diagnose AD, which means that their methods required 
a large number of labelled MRI scans. However, medical imaging 
data are very difficult to label. Therefore, the methods for diagnosing 
AD require further development and improvement. 

What this study added to our knowledge?  

• This study proposed a new approach that combines a statistical 
method and unsupervised learning models to diagnose AD using a 
limited number of labelled MRI scans.  

• The method achieved a relatively good performance for the diagnosis 
of AD.  

• The proposed method also detected the AD-associated regions in the 
brain and validated them.  

• The study also provided a basis that the unsupervised learning 
methods have the potential to predict the progression of AD.  

• Future studies should report sensitivity, specificity, positive and 
negative predictive values, as well as overall accuracy. Ninety-five 
percent CI should also be included. 
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