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As the largest cause of dementia, Alzheimer’s disease (AD) has brought serious burdens to patients and their families, mostly in
the financial, psychological, and emotional aspects. In order to assess the progression of AD and develop new treatment methods
for the disease, it is essential to infer the trajectories of patients’ cognitive performance over time to identify biomarkers that
connect the patterns of brain atrophy and AD progression. In this article, a structured regularized regression approach termed
group guided fused Laplacian sparse group Lasso (GFL-SGL) is proposed to infer disease progression by considering multiple
prediction of the same cognitive scores at different time points (longitudinal analysis). The proposed GFL-SGL simultaneously
exploits the interrelated structures within theMRI features and among the tasks with sparse group Lasso (SGL) norm and presents
a novel group guided fused Laplacian (GFL) regularization.This combination effectively incorporates both the relatedness among
multiple longitudinal time points with a general weighted (undirected) dependency graphs and useful inherent group structure in
features. Furthermore, an alternating direction method of multipliers- (ADMM-) based algorithm is also derived to optimize the
nonsmooth objective function of the proposed approach. Experiments on the dataset from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) show that the proposed GFL-SGL outperformed some other state-of-the-art algorithms and effectively fused the
multimodality data.The compact sets of cognition-relevant imaging biomarkers identified by our approach are consistent with the
results of clinical studies.

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative
disease, which mainly affects memory function, and its
progress ultimately culminates in a state of dementia where
all cognitive functions are affected. Therefore, AD is a
devastating disease for those who are affected and presents a
major burden to caretakers and society. According to reports
conducted by the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI), the worldwide prevalence of AD would be
131.5 million by the year 2050, which is nearly three times as
much as the number in 2016 (i.e., 46.8 million) [1].
Moreover, the total worldwide cost of dementia caused by
AD is about 818 billion US dollars, and it will become a
trillion dollar disease by 2018 [1].

According to some researches, there exists strong con-
nection between patterns of brain atrophy and AD pro-
gression [2, 3]. Thus, it is important to utilize some
measurements to assess the patients’ cognitive character-
ization so that the development of AD can be monitored
[4, 5]. In the clinical field, the criteria such as Mini Mental
State Examination (MMSE) and Alzheimer’s Disease As-
sessment Scale cognitive subscale (ADAS-Cog) have been
widely applied to evaluate the cognitive status of patients for
diagnosis of probable AD. However, the results of these
clinical criteria may be affected by demographic factors and
insensitive to progressive changes occurring with severe
Alzheimer’s disease [6]. Furthermore, accurate diagnosis
based on these criteria also depends on a doctor’s expertise.
Recently, some machine learning-based techniques have
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been employed in AD research. Compared with the clinical
criteria, these machine learning approaches are always data-
oriented. That is, they seek to infer patient’s cognitive
abilities and track the disease progression of AD from
biomarkers of neuroimaging data such as magnetic reso-
nance imaging (MRI) and positron emission tomography
(PET).

Regression-based models could explore the relationship
between cognitive abilities of patients, and some valuable
factors that may cause AD or affect disease development
were widely applied for AD analysis field. Some early studies
establish regression models for different cognitive scores or
the same cognitive score over time independently. However,
researchers have found that there exist inherent correlations
among different cognitive scores or the same cognitive score
over time, largely because the underlying pathology is the
same and there is a clear pattern in disease progression over
time [7–10]. To achieve a more accurate predictive ability,
multitask learning (MTL) was introduced for AD analysis to
learn all of the models jointly rather than separately [11]. In
many studies, it has been proven that MTL could obtain
better generalization performance than the approaches
learning each task individually [12, 13]. An intuitive way to
characterize the relationships among multiple tasks is to
assume that all tasks are related and their respective models
are similar to each other. In [14], Zhang et al. considered
regression models of different targets (such as MMSE and
ADAS-Cog) as a multitask learning problem. In their
method, all regression models are constrained to share a
common set of features so that the relationship among
different tasks can be captured. Wan et al. [15] proposed an
approach called sparse Bayesian multitask learning. In this
approach, the correlation structure among tasks is adaptively
learnt through constraining the coefficient vectors of the
regression models to be similar. In [16], the sparse group
Lasso (SGL) method was also adopted to consider two-level
hierarchy with feature-level and group-level sparsity and
parameter coupling across tasks.

Besides, there also exist some studies which focused on
analyzing longitudinal data of AD by MTL. That is, the aim
of each task is to model a given cognitive score at a given
time step, and different tasks are utilized to model different
time steps for the same cognitive score. For AD, longitudinal
data usually consist of measurements at a starting time point
(t� 0), after 6months (t� 6), after 12months (t� 12), after
24months (t� 24), and so on usually up to 48months
(t� 48). Zhou et al. employed MTL algorithm for longitu-
dinal data analysis of AD [9]. In this work, we develop
temporal group Lasso (TGL) regularization to capture the
relatedness of multiple tasks. However, since the TGL en-
forces different regression models to select the same features
at all time steps, the temporal patterns and variability of the
biomarkers during disease progression may be ignored. In
order to handle this issue, an MTL algorithm based on
convex fused sparse group Lasso (cFSGL) was proposed [10].
Through a sparse group Lasso penalty, cFSGL could select a
common set of biomarkers at all time steps and a specific set
of biomarkers at different time steps simultaneously.
Meanwhile, the fused Lasso penalty in cFSGL also took on

the temporal smoothness of the adjacent time steps into
consideration [17]. Since cFSGL is nonsmooth, the MTL
problem with cFSGL regularization was solved by a variant
of the accelerated gradient method.

Though TGL and cFSGL have been successfully imple-
mented for AD analysis, a major limitation of the complex
relationships among different time points and the structures
within the ROIs are often ignored. Specifically, (1) the fused
Lasso in TGL and cFSGL only takes into account the asso-
ciation existing between the two consecutive time points that
are likely to skip useful task dependencies beyond the next
neighbors. To summarize, in a case where every task (time
step) is seen to be a node of a graph, together with the edges
determining the task dependencies, cFSGL makes use of a
graph where there exist edges between the tasks, t and
t + 1, t � 1, . . . , T− 1; nonetheless, there do not exist any
other edges. Assume that the scores between the two con-
secutive time points need to be close is quite logical [18].
Nevertheless, concerning medical practice, this supposition is
unlikely to stay valid all the time. Figure 1 sheds light on how
not just the real ADAS but also MMSE and RAVLTscores of
several subjects from our dataset changed throughout the
years. Besides, consistent periods are coupled with sharp falls
and tangled with occasional enhancements. It suggests that
the longitudinal medical scores are likely to have a more
intricate evolution as compared with straightforward linear
tendencies with the local temporal relationships [19]. (2)
Conversely, concerning MRI data, many MRI attributes are
interconnected, in addition to revealing the brain cognitive
activities together [20]. In accordance with our data, multiple
shape measures (which include volume, area, and thickness)
from the same area offer a detailed quantitative assessment of
the cortical atrophy, besides tending to be chosen as the
collective predictors. Our earlier research work put forward a
framework, which made use of the previous knowledge to
guide amultitask feature learning framework.Thismodel is an
effective approach that uses group information to enforce the
intragroup similarity [21]. Thus, exploring and utilizing these
interrelated structures is important when finding and selecting
important and structurally correlated features together. In our
previous work [22], we proposed an algorithm that gener-
alized a fused group Lasso regularization to multitask feature
learning to exploit the underlying structures. This method
considers a graph structure within tasks by constructing an
undirected graph, where the computations are pairwise
Pearson correlation coefficients for each pair of tasks.
Meanwhile, the method jointly learns a group structure from
the image features, which adopts group Lasso for each pair of
correlated tasks. Thus, only the relationship between two time
points in the graph was considered by the regularization.

For the sake of overcoming these two limitations, a
structure regularized regression approach, group guided fused
Laplacian sparse group Lasso (GFL-SGL), is proposed in this
paper. Our proposed GFL-SGL can exploit commonalities at
the feature level, brain region level, and task level simulta-
neously so as to exactly identify the relevant biomarkers from
the current cognitive status and disease progression. Specif-
ically, we designed novel mixed structured sparsity norms,
called group guided fused Laplacian (GFL), to capture more
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general weighted (undirected) dependency graphs among the
tasks and ROIs. This regularizer is based on the natural as-
sumption that if some ROIs are important for one time point,
it has similar but not identical importance for other time
points. To discover such dependent structures among the time
points, we employed the graph Laplacian of the task de-
pendency matrix to uncover the relationships among time
points. In our work, we consider weighted task dependency
graphs based on a Gaussian kernel over the time steps, which
yields a fully connected graph with decaying weights. At the
same time, through considering the group structure among
predictors, group information is incorporated into the
regularization by task-specific G2,1-norm, which leads to
enforce the intragroup similarity with group sparse. Besides,
by incorporating task-common G2,1-norm and Lasso pen-
alties into the GFL model, we can better understand the
underlying associations of the prediction tasks of the cog-
nitive measures, allowing more stable identification of
cognition-relevant imaging markers. Using task-common
G2,1-norm can incorporate multitask and sparse group
learning, which learns shared subsets of ROIs for all the
tasks. This method has been demonstrated to be an effective
approach in our previous study [23]. And Lasso canmaintain
sparsity between features. The resulting formulation is
challenging to solve due to the use of nonsmooth penalties,
including the GFL, G2,1-norm, and Lasso. In this work, we
propose an effective ADMM algorithm to tackle the complex
nonsmoothness.

We perform extensive experiments using longitudinal
data from the ADNI. Five types of cognitive scores are
considered. Then, we empirically evaluate the performance of
the proposed GFL-SGL methods along with several baseline
methods, including ridge regression, Lasso, and the temporal
smoothness models TGL [9] and cFSGL [24]. Experimental
results indicate that GFL-SGL outperforms both the baselines
and the temporal smoothness methods, which demonstrates
that incorporating sparse group learning into temporal
smoothness and multitask learning can improve predictive
performance. Furthermore, based on the GFL-SGL models,
stable MRI features and key regions of interest (ROIs) with
significant predictive power are identified and discussed.
We found that the results corroborate previous studies in

neuroscience. Finally, in addition to the MRI features, we use
multimodality data including PET, CSF, and demographic
information for GFL-SGL as well as temporal smoothness
models. While the additional modalities improve the pre-
dictive performance of all the models, GFL-SGL continues to
significantly outperform other methods.

The rest of the paper is organized as follows. In Section 2,
we provide a description of the preliminary methodology:
multitask learning (MTL), two types of group Lasso norms,
and fused Lasso norm. In Section 3, we present the GFL-SGL
model and discuss the details of the ADMM algorithm
proposed for the optimization. We present experimental
results and evaluate the performance using the MRI data
from the ADNI-1 and multimodality data from the ADNI-2
in Section 4. The conclusions are presented in Section 5.

2. Preliminary Methodology

2.1. Multitask Learning. Take into account multitask
learning (MTL) setting having k tasks [19, 21]. Suppose that
p is the number of covariates, which is shared all through
each task, n indicates the number of samples. Suppose that
X ∈ Rn×p indicates the matrix of covariates, X ∈ Rn×k im-
plies the matrix of feedbacks with each of the rows that
correspond to a sample, and Θ ∈ Rp×k suggests the pa-
rametermatrix, with column θ.m ∈ Rp that corresponds to task
m, m � 1, . . . , k, and row θj. ∈ Rk that corresponds to the
feature j, j � 1, . . . , p. Besides, the MTL issue can be estab-
lished to be among the estimations of the parameters based on
the appropriate regularized loss function. To associate the
imaging markers and the cognitive measures, the MTL model
minimizes the objective as follows:

min
Θ∈Rp×k

L(Y,X,Θ) + λR(Θ), (1)

where L(·) is an indication of the loss function, whereas R(·)
suggests the regularizer. In the present context, we make an
assumption of the loss as a square loss, i.e.,

L(Y,X,Θ) �‖Y−XΘ‖2F �􏽘
n

i�1
yi −xiΘ
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Figure 1: The change patterns of several patients’ cognitive scores over the 6 time points: (a) ADAS, (b) MMSE, and (c) RAVLT.TOTAL.
The different colors indicate different patients from our dataset.
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where yi ∈ R1×k and xi ∈ R1×p denote the i-th rows of Y and
X that correspond to the multitask feedback as well as the
covariates for the i-th sample. Besides that, we observe the
fact that the MTL framework is possible to be conveniently
elongated to other loss functions. Quite apparently, varying
options of penalty R(Θ) are likely to result in significantly
varying multitask methodologies. Based on some previous
knowledge, we subsequently add penalty R(Θ) to encode the
relatedness among tasks.

2.2. G2,1-Norm. One of the attractive properties of the
ℓ2,1-norm regularization indicates that it provides multiple
predictors from varying tasks with encouragement for
sharing the same kind of parameter sparsity patterns. The
ℓ2,1-norm regularization considers

‖Θ‖2,1 �􏽘
p

j�1
θj.
�����

�����2
, (3)

and is appropriate to concurrently enforce sparsity over the
attributes of each task.

The primary point of equation (3) involves using
ℓ2-norm for θj., forcing the weights that correspond to the j-
th attribute across multiple tasks for being grouped, besides
being inclined to selecting the attributes based on the ro-
bustness of k tasks collectively. Besides, there is a re-
lationship existing among multiple cognitive tests. As per a
hypothesis, a pertinent imaging predictor usually more or
less impacts each of these scores; furthermore, there is just a
subset of brain regions having relevance to each evaluation.
Through the use of the ℓ2,1-norm, the relationship in-
formation among varying tasks can be embedded into the
framework to build a more suitable predictive framework,
together with identifying a subset of the attributes. The rows
of Θ receive equal treatment in ℓ2,1-norm, suggesting that
the potential structures among predictors are not taken into
consideration.

In spite of the achievements mentioned earlier, there are
few regression frameworks, which consider the covariance
structure among predictors. Aimed at attaining a specific
feature, the brain imaging measures usually correlate with
one another. Concerning the MRI data, the groups are re-
spective to certain regions of interest (ROIs) in the brain, for
instance, the entorhinal and hippocampus. Individual at-
tributes are specific properties of those areas, for example,
cortical volume as well as thickness. With regard to each area
(group), multiple attributes are derived for the measurement
of the atrophy information for all of the ROIs that involve
cortical thickness, in addition to surface area and volume
from gray matters as well as white matters in the current
research work. The multiple shape measures from the same
region provide a comprehensively quantitative evaluation of
cortical atrophy and tend to be selected together as joint
predictors [23].

We assume that p covariates are segregated into the q
disjoint groups Gl, l � 1, . . . , q wherein every group has ]l
covariates, correspondingly. In the backdrop of AD, every
group is respective to a region of interest (ROI) in the brain;
furthermore, the covariates of all the groups are in respect to

particular attributes of that area. Concerning AD, the
number of attributes in every group, ]l, is 1 or 4, whereas the
number of groups q is likely to be in hundreds. After that, we
provide the introduction of two varying G2,1-norms in ac-
cordance with the correlation that exists between the brain
regions (ROIs) and cognitive tasks: ‖Θ‖cG2,1

encouraging a
shared subset of ROIs for all the tasks and ℓ2,1 encouraging a
task-specific subset of ROIs.

The task-common G2,1-norm ‖Θ‖cG2,1
is defined as

‖Θ‖cG2,1
�􏽘

q

l�1
wl

��������

􏽘
j∈Gl

θj.
�����

�����2

􏽳

, (4)

where wl �
��]l

√ is the weight of each group. The task-
common G2,1-norm enforces ℓ2-norm at the features within
the same ROI (intragroup) and keeps sparsity among the
ROIs (intergroup) with ℓ1 norm, to facilitate the selection of
ROI. ‖Θ‖cG2,1

allows to learn the shared feature representa-
tions as well as ROI representations simultaneously.

The task-specific G2,1-norm ‖Θ‖sG2,1
is defined as

‖Θ‖sG2,1
�􏽘

q

l�1
􏽘

k

m�1
wl θGlm

�����

�����2
, (5)

where θGl ,m
∈ R]l is the coefficient vector for group Gl and

task m. The task-specific G2,1-norm allows to select specific
ROIs while learning a small number of common features for
all tasks. It has more flexibility, which decouples the group
sparse regularization across tasks, so that different tasks can
use different groups. The difference between these two
norms is illustrated in Figure 2(a).

2.3. Fused Lasso. Fused Lasso was first proposed by Tib-
shirani et al. [25]. Fused Lasso is one of the variants, where
pairwise differences between variables are penalized using
the ℓ1 norm, which results in successive variables being
similar. The fused Lasso norm is defined as

HΘT
����

����1 � 􏽘
k−1

m�1
θ.m − θ.m+1
����

����, (6)

where H is a (k− 1) × k sparse matrix with Hm,m � 1, and
Hm,m+1 � −1. It encourages θ.m and θ.m+1 to take the same
value by shrinking the difference between them toward zero.
This approach has been employed to incorporate temporal
smoothness to model disease progression. In longitudinal
model, it is assumed that the difference of the cognitive
scores between two successive time points is relatively small.
The fused Lasso norm is illustrated in Figure 2(b).

3. Group Guided Fused Laplacian Sparse Group
Lasso (GFL-SGL)

3.1. Formulation. In longitudinal studies, the cognitive
scores of the same subject are measured at several time
points. Consider a multitask learning problem over k tasks,
where each task corresponds to a time point t � 1, . . . , k. For
each time point t, we consider a regression task based on data
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(Xt, yt), where Xt ∈ Rn×p denotes the matrix of covariates
and yt ∈ Rn is the matrix of responses. Let Θ ∈ Rp×k denote
the regression parameter matrix over all tasks so that column
θ.t ∈ Rp corresponds to the parameters for the task in time
step t. By considering the prediction of cognitive scores at a
single time point as a regression task, tasks at different time
points are temporally related to each other. To encode the
dependency graphs among all the tasks, we construct the
Laplacian fused regularized penalty:

||ΘD||1 �􏽘
k

t�1
θ.t − 􏽘

k

ℓ�1
ℓ≠t

wℓ,tθ.ℓ

��������������

��������������1

, (7)

where D ∈ Rk×k has the following form:

1 −w1,2 −w1,3 · · · −w1,k

−w2,1 1 −w2,3 · · · −w2,k

⋮ ⋮ ⋮ ⋮ ⋮

−wk,1 −wk,2 −wk,3 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

We assume a viewpoint that is under inspiration from
the local nonparametric regression, being specific, the
kernel-based linear smoothers like the Nadaraya–Watson
kernel estimator [26]. Considering this kind of view, we
model the local approximation as

wℓ,t �
exp − (ℓ − t)2/σ2􏼐 􏼑􏼐 􏼑

􏽐
k
ℓ′�1
ℓ′≠t

exp − ℓ′ − t( 􏼁
2/σ2􏼐 􏼑􏼐 􏼑

, ℓ, ℓ′ � 1, . . . , k, ℓ ≠ t.

(9)
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Figure 2: The illustration of three different regularizations. Each column of Θ is corresponding to a single task and each row represents a
feature dimension. For each element in Θ, white color means zero-valued elements and color indicates nonzero values. (a) G2,1-norm.
(b) Fused Lasso.
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In our current work, weights are figured out with the
help of a Gaussian kernel, as stated in equation (9), wherein
σ indicates the kernel bandwidth, which requires a man-
datory definition. As σ is small, the Gaussian curve shows a
quick decay, followed by subsequent rapid decline of the
weights w|t−ℓ| with the increasing |t− ℓ|; conversely, as σ is
large, the Gaussian curve shows a gradual decay, followed by
the subsequent slow decline of the weights w|t−ℓ| with the
increasing |t− ℓ|. In this manner, the matrix D shares
symmetry with wt,ℓ � wℓ,t, as an attribute of |t− ℓ|. Taking
into account the covariance structure among predictors, we
extend the Laplacian fused norm into group guided Lap-
lacian fused norm.

The task-specific G2,1-norm was used here to decouple
the group sparse regularization across tasks. G2,1-norm al-
lows for more flexibility so that different fused tasks are
regularized by different groups. The group guided fused
Laplacian (GFL) regularization is defined as

||ΘD||GF2,1 �􏽘
k

t�1
􏽘

q

l�1
wl θGlt

− 􏽘
k

ℓ�1
ℓ≠t

wℓ,tθGlℓ

�������������

�������������2

. (10)

The GFL regularization enforces ℓ2-norm at the fused
features within the same ROI and keeps sparsity among the
ROIs with ℓ1-norm to facilitate the selection of ROI. The
GFL regularization is illustrated in Figure 3. The regulari-
zation involves two matrices: (1) Parameter matrix (left). For
convenience, we let each group correspond to a time point in
the transformation matrix. In fact, the transformation
matrix operates on all groups. (2) Gaussian kernel weighted
fused Laplacianmatrix with σ � 1 (right). Since this matrix is
symmetric, we represent the columns as rows.

The clinical score data are incomplete at some time
points for many patients, i.e., there may be no values in the
target vector yi ∈ Rk. In order not to reduce the number of
samples significantly, we use a matrix Λ ∈ Rn×k to indicate
incomplete target vector instead of simply removing all the
patients with missing values. LetΛi,j � 0 if the target value of
sample i is missing at the j-th time point, and Λi,j � 1
otherwise. We use the componentwise operator ⊙ as fol-
lows: Z � A⊙B denotes zi,j � ai,jbi,j, for all i, j. Then,
plugging task-common G2,1-norm Θc

G2,1
and Lasso to GFL

model, the objective function of group guided fused Lap-
lacian sparse group Lasso (GFL-SGL) is given in the fol-
lowing optimization problem:

min
Θ

1
2
‖Λ⊙ (Y−XΘ)‖2F + R

λ1
λ2
(Θ) + λ3‖ΘD‖GF2,1 , (11)

where R
λ1
λ2
(Θ) � λ1‖Θ‖1 + λ2‖Θ‖

c
G2,1

and λ1, λ2, λ3 are the
regularization parameters.

3.2. Efficient Optimization for GFL-SGL

3.2.1. ADMM. Recently, ADMM has emerged as quite fa-
mous since parallelizing the distributed convex issues is
quite convenient usually. Concerning ADMM, the solutions

to small local subproblems are coordinated to identify the
global best solution [27–29]:

min
x,z

f(x) + g(z),

s.t. Ax + Bz � c.
(12)

The formulation of the variant augmented Lagrangian of
ADMM methodology is done as follows:

Lρ(x, z, u) � f(x) + g(z) + u
T
(Ax + Bz− c)

+
ρ
2
‖Ax + Bz− c‖2,

(13)

where f and g indicate the convex attributes and
variables A ∈ Rp×n, x ∈ Rn, B ∈ Rp×m, z ∈ Rm, c ∈ Rp. u
denotes a scaled dual augmented Lagrangian multiplier,
whereas ρ suggests a nonnegative penalty parameter. In
all of the iterations of ADMM, this issue is solved
through the alternation of minimization Lρ(x, z, u) over
x, z, and u. Concerning the (k + 1)-th iteration, ADMM is
updated by

x
k+1 ≔ argmin

x

Lρ x, z
k
, u

k
􏼐 􏼑,

z
k+1 ≔ argmin

z

Lρ x
k+1
, z, u

k
􏼐 􏼑,

u
k+1 ≔ u

k
+ ρ Axk+1 + Bzk+1 − c􏼐 􏼑.

(14)

3.2.2. Efficient Optimization for GFL-SGL. We put forward
an efficient algorithm to solve the objective function in
equation (11), equaling the limited optimization issue as
follows:

min
Θ,Q,Γ

1
2
‖Λ⊙ (Y−XΘ)‖2F + R

λ1
λ2
(Q) + λ3‖Γ‖GF2,1,

s.t.
Θ−Q � 0,

ΘD− Γ � 0,
(15)

where Q, Γ refer to slack variables. After that, the solution of
equation (15) can be obtained by ADMM. The augmented
Lagrangian is

Lρ(Θ, Q, Γ, U, V) �
1
2
‖Λ⊙ (Y−XΘ)‖2F + R

λ1
λ2
(Q)

+ λ3‖Γ‖GF2,1 +〈U,Θ−Q〉 +
ρ
2
‖Θ−Q‖2

+〈V,ΘD− Γ〉 +
ρ
2
‖ΘD− Γ‖2,

(16)

where U, V are augmented Lagrangian multipliers.
Update Θ: from the augmented Lagrangian in equation

(16), the update of Θ at (s + 1)-th iteration is conducted by
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Θ(s+1)
� arg min

Θ

1
2
‖Λ⊙ (Y−XΘ)‖2F +〈U

(s)
,Θ−Q(s)〉

+
ρ
2
Θ−Q(s)
�����

�����
2
+〈V(s),ΘD− Γ(s)〉 +

ρ
2
ΘD− Γ(s)
�����

�����
2
,

(17)

that is a closed form, which is likely to be extracted through
the setting of equation (17) to zero.

0 � −Λ⊙XT
(Y−XΘ) + U(s) + ρ Θ−Q(s)􏼐 􏼑 + V

(s)
D

+ ρ ΘD− Γ(s)􏼐 􏼑D.

(18)

It requires observation that D indicates a symmetric
matrix. Besides, we state Φ � DD, wherein Φ is also an
indication of a symmetric matrix where Φt,l denotes the
value of weight (t, l). Through this kind of a linearization, Θ
can be updated in parallel with the help of the individual θ.t.
In this manner, in the (s + 1)-th iteration, it is possible to
update θ(s+1).t efficiently with the use of Cholesky.

0 � −XT
yt −Xθ.t( 􏼁 + u

(s)
.t + ρ θ.t − q

(s)
.t􏼐 􏼑

+ v
(s)
.t − 􏽘

k

t�1
t≠l

Dt,lv
(s)
.l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + ρ Φt,tθ.t − 􏽘
k

t�1
t≠l

Φt,lθ.l
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− ρ c
(s)
.t − 􏽘

k

t�1
t≠l

Dt,lc
(s)
.l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(19)

The above optimization problem is quadratic. The op-
timal solution is given by θ(s+1).t � F−1t b

(s)
t , where

Ft � X
T
X + ρ 1 +Φt,t􏼐 􏼑I,

b
(s)
t � X

T
yt − u

(s)
.t − v

(s)
.t − 􏽘

k

t�1
t≠l

Dt,lv
(s)
.l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + ρq(s)t

+ ρ c
(s)
.t − 􏽘

k

t�1
t≠l

Dt,lc
(s)
.l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + ρ􏽘
k

t�1
t≠l

Φt,lθ.l.

(20)

Computing θ(s+1).t deals with the solution of a linear system,
themost time-consuming component in the entire algorithm.
For the computation of θ(s+1).t in an efficient manner, we
perform the calculation of the Cholesky factorization of F as
the algorithm begins:

Ft � A
T
t At. (21)

Observably, F refers to a constant and positive definite
matrix. With the use of the Cholesky factorization, we re-
quire solving the following two linear systems at all of the
iterations:

A
T
t
􏽢θ.t � b

(s)
,

Aθ.t � 􏽢θ.t.
(22)

Accordingly, At indicates an upper triangular matrix,
which solves these two linear systems, which is quite
effective.

l=1
q

t=1
k ||Θ ||GF

2,1 = k
ℓ=1
ℓ≠t
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Figure 3:The illustration of GFL regularization.The regularization involves twomatrices: parameter matrix (left); Gaussian kernel weighted
fused Laplacian matrix with σ � 1 (right).
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Update Q: updating Q effectively requires solving the
problem as follows:

Q
(s+1)

� argmin
Q

ρ
2
Q−Θ(s+1)
�����

�����
2
+ R

λ1
λ2
(Q)−〈U(s), Q〉,

(23)

which equals the computation of the proximal operator for
R
λ1
λ2
(·). Being specific, we require solving

Ψλ1/ρ
λ2/ρ

Ω(s+1)
􏼐 􏼑 � argmin

Q
R
λ1/ρ
λ2/ρ
(Q) +

1
2
Q−Ω(s+1)
�����

�����
2

􏼚 􏼛,

(24)

where Ω(s+1) � Θ(s+1) + (1/ρ)U(s). This is aimed at being
capable of computing Q(s+1) � Ψλ1/ρ

λ2/ρ
(Ω(s+1)) in an efficient

manner. The computation of the proximal operator for the
composite regularizer can be done effectively in two steps
[30, 31], which are illustrated as follows:

Π(s+1)
� Ψλ1/ρ

0 Ω(s+1)
􏼐 􏼑, (25a)

Q
(s+1)

� Ψ0
λ2/ρ Π(s+1)
􏼐 􏼑 � Ψλ1/ρ

λ2/ρ
Ω(s+1)
􏼐 􏼑. (25b)

These two steps can be carried out efficiently with the use
of suitable extensions of soft-thresholding. It is possible to
compute the update in equation (25a) with the help of the
soft-thresholding operator ζλ1/ρ(Ω

(s+1)), which is stated as
follows:

ζλ(x) � sign(x)max(|x| − λ, 0). (26)

After that, we emphasize updating equation (25b), ef-
fectively equivalent to the computation of the proximal
operator for G2,1-norm. Specifically, the problem can be
jotted down as follows:

Q
(s+1)

� argmin
Q

λ2
ρ
‖Q‖

c
G2,1

+
1
2
Q−Π(s+1)
�����

�����􏼨 􏼩. (27)

Since group Gℓ put to use in our research work is
disjoint, equation (27) can be decoupled into

q
(s+1)
j. � arg min

qj.
ϕ qj.􏼐 􏼑 � arg min

qj.

1
2
qj. − π(s+1)j.

�����

�����
2
+
λ2
ρ
qj.

�����

�����􏼨 􏼩.

(28)

Because ϕ(qj.) is strictly convex, we conclude that q
(s+1)
j.

refers to its exclusive minimizer. After that, we provide the
introduction of the following lemma [32] for the solution of
equation (28).

Lemma 1. For any λ2 ≥ 0, we have

qj. �

max
���������

􏽐j∈Gl
πj.
�����

�����
2

2

􏽲

− λ2wl/ρ( 􏼁, 0􏼨 􏼩

���������

􏽐j∈Gl
πj.
�����

�����
2

2

􏽲 πj., (29)

where qj. is the j-th row of Qs+1.
Update Γ: the update for Γ efficiently requires solving the

problem as follows:

Γ(s+1) � arg min
Γ

ρ
2
Θ(s+1)

D− Γ
�����

�����
2
+ λ3‖Γ‖GF2,1 −〈V

(s)
, Γ〉,

(30)

which is efficiently equivalent to the computation of the
proximal operator for GFL-norm. Explicitly, the problem
can be stated as follows:

Γ(s+1) � arg min
Γ

λ3
ρ
‖Γ‖GF2,1 +

1
2
‖Γ −Z‖􏼨 􏼩, (31)

where Z(s+1) � Θ(s+1)D + (1/ρ)V(s). Equation (31) can be
decoupled into

c
(s+1)
Glt

� arg min
cGl t

ϕ cGlt
􏼐 􏼑

� arg min
cGl t

1
2
cGlt

− z(s+1)Glt

�����

�����
2
+
λ3
ρ

cGlt

�����

�����􏼨 􏼩.

(32)

Then, we introduce the following lemma [32].

Lemma 2. For any λ3 ≥ 0, we have

cGℓt
�
max zGℓt

�����

�����2
− λ3wℓ/ρ( 􏼁, 0􏼚 􏼛

zGℓt

�����

�����2

zGℓt
, (33)

where cGℓt
, zGℓt

are rows in group Gℓ for task t of Γ(s+1) and
Z(s+1), respectively.

Dual update forU and V: following the standard ADMM
dual update, the update for the dual variable for our setting is
presented as follows:

U
(s+1)

� U
(s)
+ ρ Θ(s+1) −Q(s+1)􏼐 􏼑, (34a)

V
(s+1)

� V
(s)
+ ρ Θ(s+1)

D− Γ(s+1)􏼐 􏼑. (34b)

It is possible to carry out the dual updates in an ele-
mentwise parallel way. Algorithm 1 provides a summary of
the entire algorithm. MATLAB codes of the proposed al-
gorithm are available at https://XIAOLILIU@bitbucket.org/
XIAOLILIU/gfl-sgl.

3.3. Convergence. The convergence of the Algorithm 1 is
shown in the following lemma.

Theorem 1. Suppose there exists at least one solution Θ∗ of
equation (11). AssumeGℓ is convex, λ1 > 0, λ2 > 0, λ3 > 0.Then
the following property for GFL-SGL iteration in Algorithm 1
holds:

lim
s⟶∞

L Θ(s)
􏼐 􏼑 + R

λ1
λ2
Θ(s)
􏼐 􏼑 + λ3 Θ

(s)
D

�����

�����GF2,1

� L Θ∗
( 􏼁 + R

λ1
λ2

Θ∗
( 􏼁 + λ3 Θ

∗
D

����
����GF2,1

.
(35)

Furthermore,

lim
s⟶∞

Θ(s) −Θ∗
�����

����� � 0, (36)
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whenever equation (11) has a unique solution.
The condition allowing the convergence in Theorem 1 is

very convenient to meet. λ1, λ2, and λ3 refer to the regu-
larization parameters, which are required to be above zero all
the time. The detailed proof is elaborated in Cai et al. [33].
Contrary to Cai et al., we do not need L(Θ) as differentiable,
in addition to explicitly treating the nondifferentiability of
L(Θ) through the use of its subgradient vector zL(Θ), which
shares similarity with the strategy put to use by Ye and Xie
[28].

4. Experimental Results and Discussions

In this section, we put forward the empirical analysis for the
demonstration of the efficiency of the suggested model
dealing with the characterization of AD progression with the
help of a dataset from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) [34]. The principal objective of
ADNI has been coping with testing if it is possible to
combine serial MRI, together with PET, other biological
markers, and medical and neuropsychological evaluations to
measure the progression of MCI as well as early AD. Ap-
proaches for the characterization of the AD progression are
expected to assisting both researchers and clinicians in
developing new therapies and monitoring their efficacies.
Besides, being capable of understanding the disease pro-
gression is expected to augment both the safety and effi-
ciency of the drug development, together with potentially
lowering the time and cost associated with the medical
experiments.

4.1. Experimental Setup. The ADNI project is termed as a
longitudinal research work, in which the chosen subjects are
classified into three baseline diagnostic cohorts that include
Cognitively Normal (CN), Mild Cognitive Impairment
(MCI), and Alzheimer’s Disease (AD), recurrently encom-
passing the interval of six or twelve months. Also, the date of
scheduling the subjects for performing the screening
emerges as the baseline (BL) after that approval; also, the
time point for the follow-up visits is indicated by the period
time that starts from the baseline. Moreover, we put to use
the notationMonth 6 (M6) to denote the time point half year
following the very first visit. Nowadays, ADNI possesses up

to Month 48 follow-up data that some patients can avail.
Nevertheless, some patients skip research work for several
causes.

The current work places emphasis on the MRI data.
Furthermore, theMRI attributes put to use in our assays are
made based on the imaging data from the ADNI database
that is processed with the help of a team from UCSF
(University of California at San Francisco), carrying out
cortical reconstruction as well as volumetric segmentations
using the FreeSurfer image analysis suite (http://surfer.
nmr.mgh.harvard.edu/). In the current investigation, we
eliminate the attributes that have over 10% missing entries
(concerning every patient as well as every time point),
besides excluding the patients, who do not have the
baseline MRI records and completing the missing entries
with the use of the average value. This yields a total of n �
788 subjects (173 AD, 390 MCI, and 225 CN) for baseline,
and for the M6, M12, M24, M36, and M48 time points, the
sample size is 718 (155 AD, 352MCI, and 211 CN), 662 (134
AD, 330MCI, and 198 CN), 532 (101 AD, 254MCI, and 177
CN), 345 (1 AD, 189 MCI, and 155 CN), and 91 (0 AD, 42
MCI, and 49 CN), respectively. In aggregate, forty-eight
cortical regions together with forty-four subcortical regions
are created after this preprocessing. Both Tables 1 and 2
[19, 21] shed light on the names of the cortical and sub-
cortical regions. For each cortical region, the cortical
thickness average (TA), standard deviation of thickness
(TS), surface area (SA), and cortical volume (CV) were
calculated as features. For each subcortical region, sub-
cortical volume was calculated as features. The SA of left and
right hemisphere and total intracranial volume (ICV) were
also included. This yielded a total of p � 319 MRI features
extracted from cortical/subcortical ROIs in each hemisphere
(including 275 cortical and 44 subcortical features). Details of
the analysis procedure are available at http://adni.loni.ucla.
edu/research/mri-post-processing/.

For predictive modeling, five sets of cognitive scores
[25, 35] are examined: Alzheimer’s Disease Assessment Scale
(ADAS), Mini-Mental State Exam (MMSE), Rey Auditory
Verbal Learning Test (RAVLT), Category Fluency (FLU),
and Trail Making Test (TRAILS). ADAS is termed as the gold
standard in the AD drug experiment concerning the cog-
nitive function evaluation that refers to the most famous
cognitive testing tool for the measurement of the seriousness
of the most pivotal signs of AD. Furthermore, MMSE

Input: X,Y, λ1, λ2, λ3, ρ, D.
Output Θ.

(1) Initialization: Θ(0)⟵ 0, Q(0)⟵ 0, Γ(0)⟵ 0, U(0)⟵ 0, V(0)⟵ 0.
(2) Compute the Cholesky factorization of F.
(3) repeat
(4) Update Θ(s+1) according to equation (17).
(5) Update Q(s+1) according to equation (23).
(6) Update Γ(s+1) according to equation (30).
(7) Update U(s+1), V(s+1) according to equation (34).
(8) Until Convergence.

ALGORITHM 1: ADMM optimization of GFL-SGL.
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measures cognitive damage, which includes orientation to
both time and place, coupled with the attention and cal-
culation, spontaneous and delayed recall of words, and
language and visuoconstructional attributes. RAVLT refers
to the measurement of the episodic memory and put to use
to diagnose memory interruptions, comprising eight recall
experiments as well as a recognition test. FLU refers to the
measurement of semantic memory (verbal fluency and
language). The subject is requested for naming varying
exemplars from a provided semantic classification. Fur-
thermore, TRAILS is termed as an array of processing speed
and executive attribute, comprising two components,
wherein the subject is directed for connecting a set of
twenty-five dots at the fastest possible, meanwhile per-
forming the maintenance of precision.The specific scores we
used are listed in Table 3. Note that the proposed GFL-SGL
models are trained to model progression for each of these
scores, with different time steps serving the role of distinct

tasks. Since the five sets of cognitive scores include a total of
ten different scores (see Table 3), results will be reported on
each of these ten scores separately.

Concerning all of the trials, 10-fold cross valuation is
employed for the evaluation of our framework, together with
carrying out the comparison. For all of the experiments, 5-
fold cross validation on the training set is carried out to
select the regularization parameters (hyperparameters)
(λ1, λ2, λ3).The approximated framework makes use of these
regularization parameters for the prediction on the

Table 1: Cortical features from the following 71 (� 35 × 2 + 1)
cortical regions generated by FreeSurfer.

ID ROI name Laterality Type
1 Banks superior temporal sulcus L, R CV, SA, TA, TS
2 Caudal anterior cingulate cortex L, R CV, SA, TA, TS
3 Caudal middle frontal gyrus L, R CV, SA, TA, TS
4 Cuneus cortex L, R CV, SA, TA, TS
5 Entorhinal cortex L, R CV, SA, TA, TS
6 Frontal pole L, R CV, SA, TA, TS
7 Fusiform gyrus L, R CV, SA, TA, TS
8 Inferior parietal cortex L, R CV, SA, TA, TS
9 Inferior temporal gyrus L, R CV, SA, TA, TS
10 Insula L, R CV, SA, TA, TS
11 Isthmus cingulate L, R CV, SA, TA, TS
12 Lateral occipital cortex L, R CV, SA, TA, TS
13 Lateral orbital frontal cortex L, R CV, SA, TA, TS
14 Lingual gyrus L, R CV, SA, TA, TS
15 Medial orbital frontal cortex L, R CV, SA, TA, TS
16 Middle temporal gyrus L, R CV, SA, TA, TS
17 Paracentral lobule L, R CV, SA, TA, TS
18 Parahippocampal gyrus L, R CV, SA, TA, TS
19 Pars opercularis L, R CV, SA, TA, TS
20 Pars orbitalis L, R CV, SA, TA, TS
21 Pars triangularis L, R CV, SA, TA, TS
22 Pericalcarine cortex L, R CV, SA, TA, TS
23 Postcentral gyrus L, R CV, SA, TA, TS
24 Posterior cingulate cortex L, R CV, SA, TA, TS
25 Precentral gyrus L, R CV, SA, TA, TS
26 Precuneus cortex L, R CV, SA, TA, TS
27 Rostral anterior cingulate cortex L, R CV, SA, TA, TS
28 Rostral middle frontal gyrus L, R CV, SA, TA, TS
29 Superior frontal gyrus L, R CV, SA, TA, TS
30 Superior parietal cortex L, R CV, SA, TA, TS
31 Superior temporal gyrus L, R CV, SA, TA, TS
32 Supramarginal gyrus L, R CV, SA, TA, TS
33 Temporal pole L, R CV, SA, TA, TS
34 Transverse temporal cortex L, R CV, SA, TA, TS
35 Hemisphere L, R SA
36 Total intracranial volume Bilateral CV
275 (� 34 × 2 × 4 + 1 × 2 × 1 + 1) cortical features calculated were analyzed
in this study. Laterality indicates different feature types calculated for L (left
hemisphere), R (right hemisphere), or Bilateral (whole hemisphere).

Table 2: Subcortical features from the following 44 (� 16 × 2 + 12)
subcortical regions generated by FreeSurfer.

Number ROI Laterality Type
1 Accumbens area L, R SV
2 Amygdala L, R SV
3 Caudate L, R SV
4 Cerebellum cortex L, R SV
5 Cerebellum white matter L, R SV
6 Cerebral cortex L, R SV
7 Cerebral white matter L, R SV
8 Choroid plexus L, R SV
9 Hippocampus L, R SV
10 Inferior lateral ventricle L, R SV
11 Lateral ventricle L, R SV
12 Pallidum L, R SV
13 Putamen L, R SV
14 Thalamus L, R SV
15 Ventricle diencephalon L, R SV
16 Vessel L, R SV
17 Brainstem Bilateral SV
18 Corpus callosum anterior Bilateral SV
19 Corpus callosum central Bilateral SV
20 Corpus callosum middle anterior Bilateral SV
21 Corpus callosum middle posterior Bilateral SV
22 Corpus callosum posterior Bilateral SV
23 Cerebrospinal fluid Bilateral SV
24 Fourth ventricle Bilateral SV
25 Nonwhite matter hypointensities Bilateral SV
26 Optic chiasm Bilateral SV
27 Third ventricle Bilateral SV
28 White matter hypointensities Bilateral SV
44 subcortical features calculated were analyzed in this study. Laterality
indicates different feature types calculated for L (left hemisphere), R (right
hemisphere), or Bilateral (whole hemisphere).

Table 3: Description of the cognitive scores considered in the
experiments.

Score name Description
ADAS Alzheimer’s disease assessment scale
MMSE Mini-mental state exam

RAVLT

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled

T30 30minute delay total number of words
recalled

RECOG 30minute delay recognition

FLU ANIM Animal total score
VEG Vegetable total score

TRAILS A Trail making test A score
B Trail making test B score
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experiment set. About the cross validation, concerning a
fixed set of hyperparameters, the use of four folds is made to
train, besides using one fold for assessment with the help of
nMSE. Concerning the hyperparameter choice, we take into
account a grid of regularization parameter values, in which
every regularization parameter varies between 10−1 and 103
in log scale. The data were z-scored before the application of
the regression methods. The reported findings constituted
the optimal findings of every method having the best pa-
rameter. Regarding the quantitative efficiency assessment,
we made use of the metrics of correlation coefficient (CC) as
well as root mean squared error (rMSE) between the
forecasted medical scores and the targeted medical scores for
all of the regression tasks. Besides, for the evaluation of the
overall efficiency on each task, the use of normalized mean
squared error (nMSE) [12, 24] and weighted R-value (wR)
[36] is made. The nMSE and wR are defined as follows:

nMSE(Y, 􏽢Y) �
􏽐
k
h�1 Yh − 􏽢Yh

����
����
2
2􏼒 􏼓/ σ Yh( 􏼁( 􏼁􏼒 􏼓

􏽐
k
h�1nh

,

wR(Y, 􏽢Y) �
􏽐
k
h�1Corr Yh, 􏽢Yh􏼐 􏼑nh

􏽐
k
h�1nh

,

(37)

where Y and 􏽢Y are the ground truth cognitive scores and the
predicted cognitive scores, respectively. A smaller (higher)
value of nMSE and rMSE (CC and wR) represents better
regression performance. We report the mean and standard
deviation based on 10 iterations of experiments on different
splits of data for all comparable experiments. We also
performed paired t-tests on the corresponding cross vali-
dation performances measured by the nMSE and wR be-
tween predicted and actual scores to compare the proposed
method and the other comparison methods [9, 24, 35, 37].
The p values were provided to examine whether these im-
proved prediction performances were significant. A signif-
icant performance has a low p value (less than 0.05 for
example).

Aimed at assessing the sensitivity of the three hyper-
parameters in the GFL-SGL formulation (equation (11)), we
investigated the 3D hyperparameter space, in addition to
plotting the nMSEmetric for all of the mixes of values, in the
way we had done in our recent investigation [19]. The
sensitivity research work is of importance for the study of the
impact of all the terms in the GFL-SGL formulation, together
with guiding on the way of appropriately setting the
hyperparameters. The definition of the hyperparameter
space is made as λ1, λ2, λ3 ∈ [0.1, 100]. The nMSE put for-
ward was calculated in the test set. Owing to the space
constraints, Figure 4 merely sheds light on the plots for
ADAS as well as MMSE cognitive scores. Observing the fact
is possible that, concerning all of the cognitive scores,
smaller values for λ3 resulted in the low regression efficiency,
which suggested that the temporal smooth penalization term
mainly contributes to the forecast and requires consider-
ation. Moreover, the bigger values for λ2 (linked to the task-
common group Lasso penalty) tends to enhance the findings
for smaller λ1. With the rise in λ1, we bring into force more

sparsity on θ parameters, accordingly breaking the group
structure that prevails in the data.

4.2. Prediction Performance Based on MRI Features. We
compare the performance of GFL-SGL with different re-
gression methods, including ridge regression [38] and Lasso
[39], which are applied independently to each time point,
and temporal group Lasso (TGL) [9] and convex fused
sparse group Lasso (cFSGL) [24], which are state-of-the-art
methods for characterizing longitudinal AD progression.
TGL incorporates three penalty terms to capture task re-
latedness, which contains two ℓ2-norms to prevent over-
fitting and enforce temporal smoothness, and one ℓ2,1-norm
to introduce joint feature selection. The optimal function is
formulated as minΘ L(Θ) + λ1‖Θ‖

2
F + λ2||RΘT||

2
F + λ3‖Θ‖2,1.

cFSGL allows the simultaneous selection of a common set of
biomarkers for multiple time points and specific sets of bio-
markers for different time points using the sparse group Lasso
(SGL, λ1||Θ||2,1 + λ2‖Θ‖1) penalty and in the meantime in-
corporates the temporal smoothness using the fused Lasso
penalty (􏽐k−1t�1 |θt. − θt+1.|). The downloading of the codes of
TGL and cFSGL is carried out from the authors’ websites,
whereas the AGM algorithm is put to use as the optimization
methodology. It is recalling the fact that every trial emphasizes
a particular cognitive score, having varying time points that
serve as different tasks for the multitask learning formulations.
Since, in aggregate, there are ten cognitive scores, we carry out
the trials, besides reporting the outcomes separately about all of
the scores. The calculation of the average and standard de-
viation of the efficiencymeasures is carried out with the help of
the 10-fold cross validation on the different splits of data,
summarized in Table 4.

The results show that multitask temporal smoothness
models (TGL, cFSGL, and GFL-SGL) are more effective
than single-task learning models (ridge and Lasso) in
terms of both nMSE and wR over all scores, especially for
the task at the later time points where the training
samples are limited. Both the norms of fused Lasso (TGL
and cFSGL) and group guided fused Lasso (GFL-SGL)
can improve performance, which demonstrates that
taking into account the local structure within the tasks
improves the prediction performance. Furthermore,
GFL-SGL achieved better performances than TGL and
cFSGL, which indicates that it is beneficial to simulta-
neously employ transform matrix taking into account all
the time points and group structure information among
the features. Two types of group penalties are used in our
model (Gc2,1-norm and GF2,1-norm). The former learns a
shared subset of ROIs for all the tasks, whereas the latter
learns a task-specific subset of Laplacian fused ROIs. Our
GFL-SGL model performs consistently better than TGL
and cFSGL, which further demonstrates that exploiting
the underlying dependence structure may be advanta-
geous, and exploiting the structure among tasks and
features simultaneously resulted in significantly better
prediction performance. The statistical hypothesis test
reveals that GFL-SGL is significantly better than the
contenders for most of the scores.
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We shed light on the scatter plots of the actual values
against the forecasted values on the test dataset. For lacking
the space, we just illustrated two scatter plots, which

included ADAS as well as MMSE in Figures 5 and 6, cor-
respondingly. Owing to the small sample size at M36 and
M48 time points, we indicate the scatter plots for the first
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Figure 4: Hyperparameter sensitivity analysis: hyperparameter λ3 associated with the GFL-SGL temporal smooth penalization termmainly
contributes to the forecast and requires consideration. Bigger values for λ2 (linked to the task-common group Lasso penalty) tends to
enhance the findings for smaller λ1. (a) ADAS (λ1 � 1). (b) ADAS (λ1 � 10). (c) ADAS (λ1 � 100). (d) MMSE (λ1 � 1). (e) MMSE (λ1 � 10).
(f ) MMSE (λ1 � 100).
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Table 4: Prediction performance results of ten cognitive scores of six time points based on MRI features.

Ridge Lasso TGL cFSGL GFL-SGL
Score: ADAS
nMSE 10.122± 1.4156∗ 6.7689± 0.7698∗ 6.2740± 0.7861 6.3092± 0.6991∗ 6.1389 ± 0.6951
wR 0.5638± 0.0509∗ 0.6237± 0.0541∗ 0.6628± 0.0561 0.6560± 0.0486∗ 0.6658 ± 0.0469
BL rMSE 7.6553± 0.5576 6.8217± 0.4238 6.7275± 0.4298 6.7151± 0.4275 6.6479 ± 0.5045
M6 rMSE 9.1778± 1.2467 7.9602± 0.8484 7.7637± 0.9345 7.6846 ± 0.9493 7.6994± 0.9357
M12 rMSE 9.7212± 1.0986 8.7050± 0.8651 8.3822 ± 0.9401 8.4646± 1.0594 8.4076± 1.0478
M24 rMSE 11.676± 1.6463 10.191± 1.2914 9.6773± 1.6308 9.7859± 1.6170 9.4808 ± 1.6224
M36 rMSE 12.772± 2.4262 9.4852± 1.3806 8.9110± 1.3356 8.9313± 1.3762 8.7939 ± 1.2987
M48 rMSE 20.433± 2.6163 9.0161± 2.3381 8.2041± 1.1869 8.6279± 2.0852 8.0947 ± 1.6669
Score: MMSE
nMSE 10.447± 1.4590∗ 2.5284± 0.2230∗ 2.4911± 0.1411∗ 2.5048± 0.1772∗ 2.3975 ± 0.2140
wR 0.4188± 0.0530∗ 0.5720± 0.0498∗ 0.5898± 0.0431∗ 0.5878± 0.0449∗ 0.5975 ± 0.0425
BL rMSE 2.6943± 0.1767 2.2001± 0.1349 2.2204± 0.1367 2.1729± 0.1505 2.1478 ± 0.1159
M6 rMSE 3.5136± 0.3413 2.8571± 0.2697 2.8260± 0.2875 2.8069± 0.2882 2.7682 ± 0.2470
M12 rMSE 3.9044± 0.2313 3.2128± 0.3301 3.1438± 0.3328 3.1558± 0.3650 3.1375 ± 0.3660
M24 rMSE 5.0192± 0.6956 3.8663± 0.6975 3.8171 ± 0.7064 3.8316± 0.6355 3.8371± 0.7620
M36 rMSE 5.7022± 0.5505 3.2518± 0.8592 3.2732± 0.8106 3.4828± 0.6365 3.1914 ± 0.8230
M48 rMSE 29.958± 0.7233 4.0539± 0.7097 4.0077± 0.8089 3.8018± 0.9474 3.5517 ± 0.6933
Score: RAVLT.TOTAL
nMSE 17.139± 1.2384∗ 9.7932± 0.9119∗ 9.1381± 0.8168∗ 8.9621± 0.9867 8.7825 ± 0.9241
wR 0.4059± 0.0510∗ 0.4989± 0.0587∗ 0.5390± 0.0603 0.5498± 0.0533 0.5512 ± 0.0558
BL rMSE 11.404± 0.7043 9.8789± 0.9286 9.6628± 0.9091 9.6980± 0.7418 9.5445 ± 0.6940
M6 rMSE 11.828± 1.1623 10.210± 1.2512 9.9696± 1.1915 10.079± 1.1682 9.8337 ± 1.2773
M12 rMSE 13.027± 0.9974 11.457± 0.9096 10.945± 1.1063 10.865± 1.3290 10.788 ± 1.2737
M24 rMSE 14.647± 1.4006 12.330± 1.4231 11.997± 1.5765 11.756± 1.6851 11.740 ± 1.5374
M36 rMSE 15.899± 2.2567 11.512± 1.5268 10.640± 1.2792 10.331± 1.5089 10.306 ± 1.5535
M48 rMSE 41.462± 3.4404 12.728± 1.5048 13.105± 2.8874 11.333± 2.0937 11.803 ± 2.5033
Score: RAVLT.TOT6
nMSE 3.9829± 0.4397∗ 2.9663± 0.1909∗ 2.8853± 0.2057∗ 2.8546± 0.1867 2.8198 ± 0.1772
wR 0.4528± 0.0703∗ 0.5213± 0.0803∗ 0.5412± 0.0682∗ 0.5458± 0.0687∗ 0.5541 ± 0.0730
BL rMSE 3.6885± 0.3741 3.2944± 0.2617 3.2949± 0.2611 3.2756± 0.2885 3.2540 ± 0.2390
M6 rMSE 3.4704± 0.3949 3.1592± 0.3443 3.1628± 0.2939 3.1386± 0.3116 3.1270 ± 0.2841
M12 rMSE 3.8384± 0.2676 3.4284± 0.2262 3.4271± 0.2632 3.4094± 0.2808 3.3763 ± 0.2575
M24 rMSE 4.0656± 0.3758 3.6252± 0.3469 3.5826± 0.3581 3.5894± 0.3360 3.5592 ± 0.3293
M36 rMSE 4.3074± 0.7174 3.5169± 0.3667 3.3890± 0.3799 3.3799± 0.3926 3.3557 ± 0.3799
M48 rMSE 7.4599± 1.0656 4.5834± 0.6969 3.7902± 0.7846 3.7275 ± 0.7056 3.7694± 0.7746
Score: RAVLT.T30
nMSE 3.9392± 0.3946∗ 3.0595± 0.2012∗ 2.9876± 0.1950 2.9706± 0.2044 2.9358 ± 0.1919
wR 0.4580± 0.0609∗ 0.5255± 0.0730∗ 0.5384± 0.0679 0.5422± 0.0647 0.5474 ± 0.0646
BL rMSE 3.7877± 0.3069 3.4076± 0.2595 3.4176± 0.2485 3.4034± 0.2806 3.3806 ± 0.2491
M6 rMSE 3.4750± 0.3531 3.1839± 0.3380 3.2095± 0.2593 3.1991± 0.2871 3.1496 ± 0.3013
M12 rMSE 3.9611± 0.4480 3.6673± 0.3242 3.6343± 0.3799 3.6173± 0.3800 3.5943 ± 0.3790
M24 rMSE 4.2027± 0.5011 3.8070± 0.4648 3.7570± 0.4051 3.7562± 0.4151 3.7389 ± 0.4429
M36 rMSE 4.2142± 0.5102 3.5049± 0.4595 3.3604± 0.4241 3.3473 ± 0.4327 3.3852± 0.4545
M48 rMSE 7.1834± 0.8145 4.5537± 0.6315 4.0102 ± 0.4413 4.0900± 0.5064 4.0727± 0.5386
Score: RAVLT.RECOG
nMSE 6.2754± 1.2306∗ 3.4921± 0.3325∗ 3.2186 ± 0.2953 3.2282± 0.2992 3.2314± 0.2654
wR 0.3496± 0.0851∗ 0.4583± 0.0793∗ 0.4993± 0.0779 0.5075 ± 0.0738 0.5058± 0.0799
BL rMSE 4.3887± 0.4210 3.6494± 0.2993 3.5990± 0.3647 3.5721± 0.3709 3.5653 ± 0.3386
M6 rMSE 4.4959± 0.3686 3.7470± 0.2412 3.6722± 0.2928 3.6616 ± 0.2995 3.6627± 0.2815
M12 rMSE 4.6874± 0.3574 3.7850± 0.2889 3.7034± 0.3521 3.7178± 0.2935 3.6942 ± 0.3141
M24 rMSE 4.8253± 0.4029 3.9168± 0.2251 3.7518 ± 0.2771 3.8103± 0.2391 3.8058± 0.2488
M36 rMSE 5.4178± 0.6548 3.8073± 0.2366 3.6448 ± 0.2966 3.6962± 0.1616 3.7372± 0.1837
M48 rMSE 12.411± 0.9035 5.1582± 1.0963 3.9023± 0.8880 3.7995 ± 0.8998 3.9423± 0.7025
Score: FLU.ANIM
nMSE 9.6435± 1.1387∗ 5.2513± 0.7213∗ 5.1293± 0.6597∗ 4.9992± 0.6243 4.9478 ± 0.6151
wR 0.2872± 0.0942∗ 0.3858± 0.0834∗ 0.4212± 0.0895∗ 0.4433 ± 0.0839 0.4406± 0.0840
BL rMSE 6.3878± 0.6423 5.2970± 0.5354 5.3535± 0.4841 5.1972 ± 0.5149 5.2026± 0.4857
M6 rMSE 6.1380± 0.5975 5.3040± 0.4995 5.3207± 0.4732 5.2175± 0.4797 5.1951 ± 0.4563
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four time points. As the scatter plots indicate, the forecasted
values, as well as the actual values scores, are similarly highly
correlated to both of these tasks. The scatter plots demon-
strate the fact that the prediction efficiency for ADAS is
better as compared with that of MMSE. Section 4.4 is going
to incorporate more modalities, which include not just PET
but also CSF and demographic information, aimed at im-
proving efficiency.

4.3. Identification ofMRIBiomarkers. In Alzheimer’s disease
research works, researchers have interest in the provision of
the improved cognitive scores forecast, besides identifying
which constitute the brain regions that are more impacted by
the disease that has the potential of helping perform the
diagnosis of the preliminary phases of the disease, besides its
way of dissemination. After that, we revert to analyzing the
identification of MRI biomarkers. Our GFL-SGL refers to a
group sparse framework, capable of identifying a compact
set of relevant neuroimaging biomarkers from the region
level for the group Lasso on the attributes, which is expected
to give us improved interpretability of the brain region. Due
to lack of space, we only show the top 30 ROIs for ADAS and
MMSE by obtaining the regression weights of all ROIs in

each hemisphere for six time points in Figure 7. The value of
each item (i, j) in the heat map indicates the weight of the i-
th ROI for the j-th time point and is calculated by
wi

���������
􏽐k∈Gi

‖θki‖2
􏽱

, where k is the k-th MRI feature. The larger
the absolute value of a coefficient is, the more important its
corresponding brain region is in predicting the corre-
sponding time point of that cognitive score. The figure il-
lustrates that the proposed GFL-SGL clearly presents
sparsity results across all time points, which demonstrates
that these biomarkers are longitudinally important due to
the advantage of smooth temporal regularization. We also
observe that different time points share similar ROIs for
these two cognitive measures, which demonstrates that there
exists a strong correlation among the multiple tasks of score
prediction at multiple time points.

Moreover, the top 30 selected MRI features and brain
regions (ROIs) for ADAS and MMSE are shown in Table 5.
We also show the brain maps of the top ROIs in Figures 8
and 9, including cortical ROIs and subcortical ROIs. Note
that the top features and ROIs are obtained by calculating
the overall weights for the six time points. From the top 30
features, we can examine the group sparsity of GFL-SGL
model at the ROI level. It can be seen clearly that many top
features come from the same ROI due to the consideration of

Table 4: Continued.

Ridge Lasso TGL cFSGL GFL-SGL
M12 rMSE 6.6219± 0.7800 5.7413± 0.8672 5.6134± 0.7977 5.5704± 0.8052 5.5303 ± 0.7929
M24 rMSE 7.2828± 0.9366 5.8387± 0.7492 5.7844± 0.6280 5.7839± 0.7570 5.6815 ± 0.7035
M36 rMSE 7.8427± 1.4361 5.6450± 0.6733 5.3599 ± 0.7423 5.3988± 0.8188 5.3655± 0.6841
M48 rMSE 20.613± 1.8524 6.2549± 1.6986 5.7005 ± 1.3167 5.7501± 1.5019 5.9240± 1.4382
Score: FLU.VEG
nMSE 6.6621± 0.8499∗ 3.5364± 0.3463∗ 3.4061± 0.2879 3.3593± 0.3146 3.3575± 0.2867
wR 0.3726± 0.0730∗ 0.4934± 0.0830∗ 0.5257± 0.0781 0.5357 ± 0.0746 0.5356± 0.0777
BL rMSE 4.4121± 0.3082 3.7115± 0.2221 3.6980± 0.2387 3.6464± 0.2179 3.6368 ± 0.2016
M6 rMSE 4.7036± 0.1969 3.8593± 0.2589 3.8617± 0.2075 3.8033± 0.2318 3.7892 ± 0.2294
M12 rMSE 5.0566± 0.4772 3.9568± 0.4941 3.9319± 0.4757 3.9226 ± 0.4542 3.9267± 0.4761
M24 rMSE 5.2146± 0.4402 4.2580± 0.4104 4.1408 ± 0.3444 4.1677± 0.4192 4.1908± 0.4275
M36 rMSE 6.4334± 0.7933 4.4230± 0.3982 4.2656± 0.3702 4.2445± 0.4263 4.2392± 0.3829
M48 rMSE 13.882± 1.4535 4.9607± 1.4253 3.9822 ± 1.3527 3.9887± 1.4023 4.0292± 1.4371
Score: TRAILS.A
nMSE 33.513± 3.8491∗ 23.711± 1.8805 22.756 ± 1.5155 23.151± 1.5754 23.349± 1.5768
wR 0.3572± 0.0769∗ 0.3740± 0.0658∗ 0.4219 ± 0.0682 0.4122± 0.0688 0.3965± 0.0704
BL rMSE 25.942± 3.8665 23.421± 4.0061 23.039 ± 3.6598 23.258± 3.7233 23.443± 3.8347
M6 rMSE 28.290± 4.4832 25.328± 3.6847 25.021 ± 3.3715 25.198± 3.5600 25.634± 3.3660
M12 rMSE 27.665± 3.8961 25.043± 3.4997 24.493 ± 3.3011 24.675± 3.3022 24.882± 3.2310
M24 rMSE 31.805± 4.1087 28.384± 3.0384 27.845 ± 3.2106 28.073± 3.1074 27.855± 3.0427
M36 rMSE 33.414± 8.1383 24.980± 7.0999 23.996 ± 5.2222 24.162± 5.9112 24.247± 6.0955
M48 rMSE 53.906± 14.730 28.256± 16.054 26.493 ± 12.132 26.870± 11.598 25.241± 11.862
Score: TRAILS.B
nMSE 94.882± 9.6015∗ 68.077± 6.4277∗ 64.789± 5.9269 63.707± 6.2629 63.604 ± 5.5813
wR 0.3837± 0.0509∗ 0.4383± 0.0618∗ 0.4845± 0.0565 0.4809± 0.0669 0.4858 ± 0.0595
BL rMSE 77.907± 6.5622 70.051± 4.5144 69.947± 4.9343 69.032 ± 3.8304 69.154± 4.0030
M6 rMSE 83.326± 7.1076 74.327± 4.2985 72.514± 3.4677 71.401 ± 4.4814 71.756± 4.9096
M12 rMSE 81.130± 8.9465 72.901± 6.0166 70.604 ± 5.8510 70.777± 6.4053 70.815± 5.7209
M24 rMSE 89.969± 13.035 77.722± 8.9225 73.456 ± 9.3979 73.950± 8.5186 73.460± 9.2281
M36 rMSE 100.25± 21.732 80.934± 26.923 78.130± 24.536 78.242± 27.867 77.639 ± 23.797
M48 rMSE 134.89± 29.881 67.923± 29.604 68.356± 11.968 65.858± 24.964 63.491 ± 18.188
Note that the best results are boldfaced.The superscript symbol “∗” indicates that GFL-SGL significantly outperformed that method on that score. Paired t-test
at a level of 0.05 was used.
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group property in features, such as L.Hippocampus,
L.MidTemporal, L.InfLatVent, and R.Entorhinal.

Some important brain regions are also selected by our
GFL-SGL, such as middle temporal [20,40–42], hippo-
campus [42], entorhinal [20], inferior lateral ventricle
[35, 43], and parahipp [44], which are highly relevant to the
cognitive impairment. These results are consistent with the
established understanding of the pathological pathway of
AD.These recognized brain regions have been figured out in
the recent literature besides having been presented as have a
high correlation with the medical functions. For instance,
the hippocampus is situated in the temporal lobe of the brain
that plays the part of the memory as well as spatial navi-
gation. The entorhinal cortex refers to the first region of the
brain being impacted; also, it is termed as the most severely
impaired cortex in Alzheimer’s disease [45]. Together with
that, there are some of the recent findings stressing the
significance of parahippocampal atrophy as a preliminary
biomarker of AD, owing to the fact parahippocampal vol-
ume makes better discrimination in comparison with the
hippocampal volume between the cases of healthy aging,
MCI, andmild AD, being specific, in the preliminary stage of
the disease [44]. In addition to that, the findings also reveal
the fact that the changing thickness of the inferior parietal
lobule takes place early while progressing from normal to
MCI, together with being associated with the neuro-
psychological efficiency [46].

4.4. Fusion of Multimodality. Clinical and research studies
commonly demonstrate that complementary brain images
can be more accurate and rigorous for assessment of the
disease status and cognitive function. The previous exper-
iments are conduced on the MRI, which measures the
structure of the cerebrum and has turned out to be an ef-
ficient tool for detecting the structural changes caused by AD
or MCI. Fluorodeoxyglucose PET (FDG-PET), a technique
for measuring glucose metabolism, can determine the
likelihood of deterioration of mental status. Each neuro-
imaging modality could offer valuable information, and
biomarkers from different modalities could offer comple-
mentary information for different aspects of a given disease
process [4, 14, 47–49].

Since the multimodality data of ADNI-1 are missing
seriously, the samples from ADNI-2 are used instead. The
PET imaging data are from the ADNI database processed by
the UC Berkeley team, who use a native-space MRI scan for
each subject that is segmented and parcellated with Free-
surfer to generate a summary cortical and subcortical ROI
and coregister each florbetapir scan to the corresponding
MRI and calculate the mean florbetapir uptake within the
cortical and reference regions. The procedure of image
processing is described in http://adni.loni.usc.edu/updated-
florbetapir-av-45-pet-analysis-results/. The amount of the
patients withMRI atM48 is small (29 subjects), and there are
no data with PET at M6; 4 time points’ data were used.
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Figure 5: Scatter plots of the actual ADAS against the forecasted values on the test dataset by GFL-SGL usingMRI features. High correlation
is observed for the ADAS score at each time point. (a) Baseline (ADAS BL R� 0.678). (b) Month 6 (ADAS M6 R� 0.657). (c) Month 12
(ADAS M12 R� 0.673). (d) Month 24 (ADAS M24 R� 0.693).
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Furthermore, there is no score measure for FLU.ANIM and
lack of samples for FLU.VEG and TRAILS, so we use ADAS,
MMSE, and RAVLTfor a total of 6 scores in this experiment.
We followed the same experimental procedure as described
in Section 4.1, which yields a total of n� 897 subjects for
baseline, and for the M12, M24, M36 time points, the sample
size is 671, 470, and 62, respectively.

To estimate the effect of combining multimodality data
with our GFL-SGL method and to provide a more com-
prehensive comparison of our group guided method and the
method without group structure, we further perform some
experiments, which are (1) employing only MRI modality,
(2) employing only PET modality, (3) combining two mo-
dalities: MRI and PET (MP), and (4) combining four mo-
dalities: MRI, PET, CSF, and demographic information
including age, gender, years of education, and ApoE gen-
otyping (MPCD). Note that, for the CSF modality, the
original three measures (i.e., Aß42, t-tau, and p-tau) are
directly used as features without any feature selection step.
We compare the performance of TGL, cFSGL, and GFL-SGL
on the fusing multimodalities for predicting the disease
progression measured by the clinical scores (ADAS-Cog,
MMSE, and RAVLT). For TGL and cFSGL, the features from
multimodalities are concatenated into long vector features,
while for our GFL-SGL, the features from same modality are
considered as a group.

The prediction performance results are shown in Table 6.
It is clear that the methods with multimodality outperform
the methods using one single modality of data.This validates
our assumption that the complementary information among
different modalities is helpful for cognitive function pre-
diction. Especially, when two modalities (MRI and PET) are
used, the performance is improved significantly compared to
using the unimodal (MRI or PET) information. Moreover
when four modalities (MRI, PET, CSF, and demographic
information) are used, the performance is further improved.
Regardless of two or four modalities, the proposed multitask
learning GFL-SGL achieves better performance than TGL
and cFSGL.This justifies the motivation of learning multiple
tasks simultaneously with considering the group of variables
regardless of the ROI structure or the modality structure.

5. Conclusion

In this paper, we investigated the progression of longitudinal
Alzheimer’s disease (AD) by means of multiple cognitive
scores and multimodality data. We proposed a multitask
learning formulation with group guided regularization that
can exploit the correlation of different time points and the
importance of ROIs or multiple modalities for predicting the
cognitive scores. Alternating directionmethod of multipliers
(ADMM) method is presented to efficiently tackle the
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Figure 6: Scatter plots of the actual MMSE against the forecasted values on the test dataset by GFL-SGL using MRI features. High
correlation is observed for the MMSE score at each time point. (a) Baseline (MMSE BL R � 0.574). (b) Month 6 (MMSE M6 R � 0.572).
(c) Month 12 (MMSE M12 R � 0.609). (d) Month 24 (MMSE M24 R � 0.662).
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Figure 7: Longitudinal heat maps of regression coefficients generated by GFL-SGL for ADAS andMMSE using 10 trials on different splits of
data. The larger the value is, the more important the ROI is. (a) ADAS. (b) MMSE.

Table 5: Top 30 selected MRI features and ROIs by GFL-SGL on the prediction ADAS and MMSE measures.

Num.
ADAS MMSE

Features Groups Features Groups
1 SV of L.HippVol L.Hippocampus SV of L.HippVol L.Hippocampus
2 TA of L.MidTemporal L.MidTemporal TA of L.MidTemporal L.InfLatVent
3 TA of R.Entorhinal L.InfLatVent TA of R.Entorhinal L.MidTemporal
4 CV of R.Entorhinal R.Entorhinal CV of R.Entorhinal R.Entorhinal
5 SV of L.InfLatVent L.CerebellCtx SV of L.InfLatVent R.InfLatVent
6 SV of L.CerebellCtx L.Thalamus CV of L.MidTemporal L.InfParietal
7 TA of L.InfTemporal L.Pallidum TA of L.InfParietal CC_Ant
8 TS of L.Parahipp CC_Ant SV of R.InfLatVent WMHypoInt
9 TA of R.InfParietal R.InfParietal TS of L.Parahipp R.InfParietal
10 CV of L.Precentral L.Precentral TS of R.RostAntCing L.Parahipp
11 TA of L.Precuneus L.InfTemporal TA of R.InfParietal R.RostAntCing
12 SV of L.ThalVol L.Precuneus CV of L.InfParietal Brainstem
13 TS of L.ParsTriang R.Precentral SV of CC_Ant L.Supramarg
14 SV of L.PallVol L.Parahipp CV of R.InfParietal R.Precentral
15 CV of R.Precentral L.ParsTriang SV of WMHypoInt 4thVent
16 SA of L.Supramarg L.Supramarg TA of R.TransvTemporal R.TransvTemporal
17 TA of L.Postcentral L.Postcentral TS of L.InfParietal R.BanksSTS
18 CV of R.InfParietal CSF SA of L.Supramarg L.InfTemporal
19 SV of CC_Ant OpticChiasm CV of L.Supramarg L.Precentral
20 SA of L.RostAntCing L.TemporalPole SA of R.InfParietal R.Cuneus
21 TA of R.Precentral R.TransvTemporal SA of L.MidTemporal L.Amygdala
22 CV of L.TemporalPole L.LatOrbFrontal TA of L.Parahipp OpticChiasm
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Table 5: Continued.

Num.
ADAS MMSE

Features Groups Features Groups
23 CV of L.LatOrbFrontal L.RostAntCing TA of R.Precentral L.MedOrbFrontal
24 CV of R.TransvTemporal R.CerebWM TA of L.InfTemporal L.IsthmCing
25 TS of L.SupFrontal R.SupParietal SA of L.Parahipp L.ParsOper
26 TS of R.Parahipp L.SupFrontal CV of R.Precentral L.CerebellCtx
27 CV of R.SupParietal R.AccumbensArea CV of R.TransvTemporal L.ParsTriang
28 CV of L.MidTemporal R.Cuneus TA of R.BanksSTS R.ParsOper
29 TS of L.Precentral 3rdVent SA of L.InfParietal L.Precuneus
30 TS of L.InfTemporal L.IsthmCing CV of L.Precentral R.Fusiform

(a) (b)

(c) (d)

(e) (f)

Figure 8: Continued.

18 Computational and Mathematical Methods in Medicine



(g)

Figure 8: Brain maps of the top 30 ROIs selected by GFL-SGL for ADAS. (a)–(d) are cortical ROIs selected; (e)–(g) are subcortical
ROIs selected. (a) Left hemisphere (outside). (b) Left hemisphere (inside). (c) Right hemisphere (outside). (d) Right hemisphere
(inside). (e) Coronal view. (f ) Horizontal view. (g) Sagittal view.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Continued.
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(g)

Figure 9: Brain maps of the top 30 ROIs selected by GFL-SGL for MMSE. (a)–(d) are cortical ROIs selected; (e)–(g) are subcortical ROIs
selected. (a) Left hemisphere (outside). (b) Left hemisphere (inside). (c) Right hemisphere (outside). (d) Right hemisphere (inside).
(e) Coronal view. (f ) Horizontal view. (g) Sagittal view.

Table 6: Prediction performance results of ten cognitive scores of four time points based on multimodality features.

Method TGL cFSGL GFL-SGL TGL cFSGL GFL-SGL
Score: ADAS

MRI PET
nMSE 4.5264± 0.6382∗ 4.4109± 0.5918∗ 4.6987± 0.7419∗ 4.6438± 0.6733∗ 4.4061± 0.6413∗ 4.4294± 0.6974∗
wR 0.6806± 0.0877∗ 0.6806± 0.0853∗ 0.6692± 0.0897∗ 0.6792± 0.0716∗ 0.6940± 0.0755∗ 0.6997± 0.0842∗
BL rMSE 6.3971± 1.1270 6.3670± 1.0509 6.5227± 1.3104 6.5252± 1.4146 6.3755± 1.3076 6.3614± 1.3953
M12 rMSE 5.8845± 1.1703 5.8519± 1.0680 6.0360± 1.1920 6.0747± 1.2560 5.8881± 1.0507 5.8035± 1.0189
M24 rMSE 5.2531± 0.9237 5.2829± 0.9966 5.4175± 0.9846 5.4755± 1.0622 5.2970± 1.0386 5.2901± 0.9836
M36 rMSE 5.6362± 1.4445 4.5437± 1.5677 5.0457± 1.8708 4.4315± 1.8231 4.2938± 1.5977 5.0727± 2.0042
Score: ADAS

MP MPCD
nMSE 4.3771± 0.8225∗ 4.0380± 0.5282∗ 3.8140± 0.7056∗ 4.1169± 0.5791∗ 3.9251± 0.4846∗ 3.7255 ± 0.6441
wR 0.7140± 0.0756∗ 0.7178± 0.0717∗ 0.7400± 0.0942 0.7222± 0.0633∗ 0.7267± 0.0633∗ 0.7477 ± 0.0842
BL rMSE 6.1640± 1.0841 6.1365± 1.0937 5.9200± 1.0238 6.0910± 1.1327 6.0447± 1.1147 5.8632 ± 1.0630
M12 rMSE 5.6180± 0.9929 5.5713± 0.9659 5.2731± 0.7940 5.5036± 1.0018 5.5110± 0.9877 5.2172 ± 0.7874
M24 rMSE 5.3149± 0.9609 5.0187± 0.9873 4.7865± 0.7474 5.1299± 1.0265 4.9841± 1.0004 4.7442 ± 0.7253
M36 rMSE 6.1291± 1.7931 4.3765± 1.5989 5.1638± 1.6369 5.4648± 1.8165 4.2363 ± 1.2992 5.0341± 1.5739
Score: MMSE

MRI PET
nMSE 1.9059± 0.3673∗ 1.5544± 0.1589∗ 1.5446± 0.1709∗ 2.0863± 0.9497∗ 1.8916± 0.4145∗ 1.5699± 0.1326∗
wR 0.4737± 0.1132∗ 0.5449± 0.1009∗ 0.5383± 0.1014∗ 0.4988± 0.0906∗ 0.5233± 0.0813∗ 0.5270± 0.0843∗
BL rMSE 1.9866± 0.2782 1.8715± 0.3253 1.9085± 0.3409 2.0294± 0.3362 1.9772± 0.3649 1.8974± 0.3600
M12 rMSE 1.9969± 0.4054 1.7781± 0.2863 1.7843± 0.2764 1.9950± 0.4867 1.9040± 0.2725 1.8229± 0.2912
M24 rMSE 1.8220± 0.4220 1.6044± 0.2843 1.5656± 0.3140 1.9738± 0.7546 1.7230± 0.2846 1.5950± 0.2976
M36 rMSE 1.9900± 1.0439 1.6339± 0.5279 1.4005± 0.4729 1.9142± 0.8379 2.3950± 2.0477 1.3472± 0.4827
Score: MMSE

MP MPCD
nMSE 1.7323± 0.3153∗ 1.5056± 0.1055∗ 1.4386± 0.1310∗ 1.7428± 0.4059∗ 1.5697± 0.2846∗ 1.3881 ± 0.1132
wR 0.5128± 0.0950∗ 0.5763± 0.0969∗ 0.5743± 0.0996∗ 0.5352± 0.0931∗ 0.5961 ± 0.1005 0.5899± 0.0882
BL rMSE 1.9714± 0.3393 1.8456± 0.3451 1.8486± 0.3119 1.9487± 0.3099 1.8780± 0.3308 1.8185 ± 0.3082
M12 rMSE 1.8040± 0.2961 1.7277± 0.2223 1.7144± 0.2366 1.8753± 0.4289 1.7615± 0.2122 1.6804 ± 0.2269
M24 rMSE 1.7497± 0.4408 1.5849± 0.2728 1.4954± 0.2847 1.7516± 0.4781 1.5927± 0.2903 1.4702 ± 0.2631
M36 rMSE 1.8481± 0.8608 1.5549± 0.5338 1.3110± 0.3568 1.6768± 0.8175 1.5542± 0.5532 1.2835 ± 0.4067
Score: RAVLT.TOTAL

MRI PET
nMSE 8.0525± 0.8185∗ 7.7486± 0.8179∗ 7.6082± 0.6860∗ 7.9924± 0.5839∗ 7.8193± 0.8231∗ 7.6544± 0.7192∗
wR 0.5989± 0.0863∗ 0.6094± 0.0843∗ 0.6091± 0.0790∗ 0.6060± 0.0847∗ 0.6003± 0.0879∗ 0.6114± 0.0853∗
BL rMSE 9.9809± 0.4439 9.8006± 0.4509 9.7251± 0.4688 9.8305± 0.5759 9.7743± 0.5324 9.6843± 0.5663
M12 rMSE 9.8284± 0.6685 9.6394± 0.7234 9.5819± 0.7833 9.8347± 0.7366 9.7590± 0.8969 9.6180± 0.8630
M24 rMSE 9.4549± 0.7243 9.2849± 0.7749 9.2384± 0.6425 9.8301± 0.9371 9.4391± 0.9715 9.4183± 0.9896
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Table 6: Continued.

Method TGL cFSGL GFL-SGL TGL cFSGL GFL-SGL
M36 rMSE 9.3364± 2.2043 8.9823± 1.7996 8.5631± 1.9444 7.8316± 3.0020 8.6391± 2.9697 8.3481± 2.5665
Score: RAVLT.TOTAL

MP MPCD
nMSE 7.4966± 0.9717∗ 7.2046± 0.8326∗ 7.0655± 1.1493 7.1461± 0.8736∗ 6.7422± 1.0602 6.6873 ± 0.6733
wR 0.6350± 0.0878∗ 0.6474± 0.0888∗ 0.6484± 0.0880∗ 0.6617± 0.0839 0.6785 ± 0.0777 0.6749± 0.0631
BL rMSE 9.6097± 0.5299 9.4845± 0.4346 9.4516± 0.6709 9.4001± 0.4595 9.1793 ± 0.4505 9.2208± 0.5886
M12 rMSE 9.6195± 0.8968 9.2463± 0.8042 9.1269± 0.8163 9.3194± 0.8020 8.8950± 0.8305 8.8526 ± 0.6871
M24 rMSE 9.1631± 1.0479 8.9473± 0.9751 8.7158± 0.9721 9.0133± 1.1389 8.7459± 1.2098 8.5530 ± 0.8763
M36 rMSE 7.7625± 2.4338 8.2418± 2.4518 7.9290± 2.6269 7.5097 ± 2.0572 7.5204± 1.9360 7.8103± 1.9563
Score: RAVLT.TOT6

MRI PET
nMSE 2.8868± 0.2822∗ 2.6401± 0.3055∗ 2.6064± 0.2727∗ 2.8255± 0.2411∗ 2.7979± 0.3045∗ 2.6485± 0.2487∗
wR 0.5500± 0.0947∗ 0.5910± 0.0924∗ 0.5944± 0.0903∗ 0.5577± 0.0894∗ 0.5599± 0.0931∗ 0.5890± 0.0806∗
BL rMSE 3.4094± 0.2020 3.2999± 0.1986 3.2783± 0.1890 3.3321± 0.1612 3.3348± 0.2227 3.2591± 0.2057
M12 rMSE 3.3799± 0.2517 3.2278± 0.2236 3.2090± 0.2246 3.3612± 0.1926 3.3499± 0.2158 3.2439± 0.2019
M24 rMSE 3.3710± 0.2493 3.1341± 0.3127 3.1229± 0.2896 3.3609± 0.3845 3.2712± 0.3592 3.2008± 0.3248
M36 rMSE 3.1387± 0.9838 2.9726± 0.8134 2.9418± 0.8377 3.1407± 0.5365 3.2738± 0.5865 3.1430± 0.6435
Score: RAVLT.TOT6

MP MPCD
nMSE 2.7875± 0.3857∗ 2.4537± 0.3621 2.4498± 0.3377 2.6628± 0.3559∗ 2.4224± 0.3332∗ 2.3788 ± 0.3278
wR 0.5778± 0.1049∗ 0.6233± 0.0978 0.6234± 0.0970∗ 0.5975± 0.0924∗ 0.6322± 0.0941∗ 0.6385 ± 0.0945
BL rMSE 3.3512± 0.1991 3.1895± 0.2325 3.1879± 0.2241 3.2930± 0.1280 3.1716± 0.1708 3.1401 ± 0.1625
M12 rMSE 3.3006± 0.2932 3.1072± 0.2349 3.0973± 0.2367 3.2311± 0.3066 3.0928± 0.2264 3.0549 ± 0.2382
M24 rMSE 3.2935± 0.3180 2.9931± 0.3542 2.9989± 0.3644 3.2161± 0.3336 2.9747± 0.3850 2.9621 ± 0.3640
M36 rMSE 3.1544± 0.9584 2.8170± 0.6229 2.8485± 0.6632 2.8216± 0.9254 2.7400 ± 0.5987 2.7649± 0.6387
Score: RAVLT.T30

MRI PET
nMSE 3.0202± 0.2655∗ 2.8297± 0.3403∗ 2.7928± 0.3498∗ 2.9929± 0.4670∗ 2.9441± 0.4039∗ 2.9405± 0.4265∗
wR 0.5590± 0.0615∗ 0.5861± 0.0742∗ 0.5930± 0.0721∗ 0.5551± 0.0787∗ 0.5692± 0.0808∗ 0.5663± 0.0780∗
BL rMSE 3.5917± 0.2374 3.5116± 0.2514 3.4962± 0.2530 3.5711± 0.2889 3.5457± 0.3032 3.5681± 0.3175
M12 rMSE 3.5622± 0.2249 3.4155± 0.2275 3.3880± 0.2550 3.4596± 0.3294 3.4806± 0.2565 3.4492± 0.2890
M24 rMSE 3.5364± 0.2177 3.3545± 0.2571 3.3244± 0.2403 3.5668± 0.3435 3.4654± 0.3094 3.4536± 0.3149
M36 rMSE 2.8940± 1.0197 2.8383± 1.1163 2.8168± 1.1970 3.2296± 1.0962 3.2096± 1.0170 3.2185± 1.1173
Score: RAVLT.T30

MP MPCD
nMSE 2.8661± 0.4574∗ 2.6653± 0.4271 2.6191± 0.4000 2.8335± 0.4235∗ 2.6732± 0.5128 2.5605 ± 0.3929
wR 0.5811± 0.0777∗ 0.6213± 0.0828 0.6241± 0.0806 0.5955± 0.0752∗ 0.6229± 0.0907 0.6369 ± 0.0820
BL rMSE 3.5165± 0.2941 3.4327± 0.2917 3.4035± 0.2899 3.4891± 0.2710 3.4373± 0.2959 3.3650 ± 0.2547
M12 rMSE 3.4078± 0.3479 3.3028± 0.2590 3.2698± 0.2802 3.4073± 0.3256 3.3030± 0.3404 3.2280 ± 0.2819
M24 rMSE 3.4425± 0.2763 3.1974± 0.3307 3.1882± 0.2826 3.4122± 0.2822 3.1894± 0.4132 3.1638 ± 0.3322
M36 rMSE 2.9862± 1.1763 2.7979± 1.0262 2.7246± 1.0379 2.9526± 1.1659 2.7488± 1.0675 2.6291 ± 0.9136
Score: RAVLT.RECOG

MRI PET
nMSE 2.7632± 0.2634∗ 2.6598± 0.2204∗ 2.6003± 0.3379∗ 2.8033± 0.5374∗ 2.6547± 0.4051∗ 2.6324± 0.4138∗
wR 0.4662± 0.1014∗ 0.4728± 0.1037∗ 0.5035± 0.1158∗ 0.4830± 0.1530∗ 0.4955± 0.1426∗ 0.5053± 0.1311∗
BL rMSE 3.1427± 0.2787 3.1581± 0.3301 3.0909± 0.3185 3.1383± 0.3398 3.0983± 0.3626 3.0782± 0.3718
M12 rMSE 3.0770± 0.4168 3.0286± 0.3795 2.9733± 0.3981 3.0581± 0.4946 2.9974± 0.3816 2.9664± 0.3816
M24 rMSE 2.9060± 0.3237 2.7350± 0.2852 2.7274± 0.2901 2.9088± 0.2768 2.7838± 0.3548 2.7737± 0.3809
M36 rMSE 2.5846± 0.7415 2.2824± 0.5062 2.4006± 0.5876 2.7997± 0.7357 2.5641± 0.3984 2.5969± 0.8513
Score: RAVLT.RECOG

MP MPCD
nMSE 2.7116± 0.3045∗ 2.5529± 0.4180 2.4729± 0.3549 2.7455± 0.2660∗ 2.5057± 0.3914 2.4583 ± 0.3645
wR 0.4849 ± 0.1114∗ 0.5279± 0.1193 0.5376± 0.1176 0.4926±0.1136∗ 0.5351± 0.1247 0.5419 ± 0.1240
BL rMSE 3.1454± 0.2630 3.0738± 0.3404 3.0246± 0.3262 3.1666± 0.2885 3.0441± 0.3272 3.0206 ± 0.3336
M12 rMSE 3.0863± 0.4539 2.9311± 0.3865 2.8867± 0.3795 3.0925± 0.4455 2.9022± 0.4169 2.8690 ± 0.3839
M24 rMSE 2.7858± 0.3400 2.6819± 0.2855 2.6470± 0.2954 2.8290± 0.3699 2.6632± 0.3016 2.6380 ± 0.3253
M36 rMSE 2.3208± 0.7000 2.2783± 0.4832 2.3415± 0.5395 2.3693± 0.6535 2.2978 ± 0.4541 2.3546± 0.4869
Note that the best results are boldfaced.The superscript symbol “±” indicates that GFL-SGL significantly outperformed that method on that score. Paired t-test
at a level of 0.05 was used.
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associated optimization problem. Experiments and com-
parisons of this model, with the baseline and temporal
smoothness methods, illustrate that GFL-SGL offers con-
sistently better performance than other algorithms on both
MRI features and multimodality data.

In the current work, group guided information is only
considered for each cognitive score separately with multiple
tasks corresponding to the same cognitive score across
multiple time points. And the group guided information
used in this work is predefined; there is no ability to au-
tomatically learn the feature groups. Since the cognitive
scores are used in different ways to measure the same un-
derlying medical condition and the features have different
structures, we expect that a more general group guided
framework that learns group information automatically will
be considered for all cognitive scores across all time points
simultaneously. While the current study illustrates the
power of our proposed method, we expect to perform more
general experiments to validate the effectiveness in our
future work. All of the regions processed by UCSF are used
in this work. We will consider the medical background and
screen these features. In order to compare the significant
performance of the methods more effectively, we will ran-
domly split the subjects into train and test. This will be
repeated many times to obtain enough scores for statistical
analysis.
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