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a b s t r a c t 

The classification of mild cognitive impairment (MCI), which is a early stage of Alzheimer’s disease and 

is associated with brain structural and functional changes, is still a challenging task. Recent studies have 

shown great promise for improving the performance of MCI classification by combining multiple struc- 

tural and functional features, such as grey matter volume and clustering coefficient. However, extracting 

which features and how to combine multiple features to improve the performance of MCI classification 

have always been challenging problems. To address these problems, in this study we propose a new 

method to enhance the feature representation of multi-modal MRI data by combining multi-view in- 

formation to improve the performance of MCI classification. Firstly, we extract two structural features 

(including grey matter volume and cortical thickness) and two functional features (including clustering 

coefficient and shortest path length) of each cortical brain region based on automated anatomical labeling 

(AAL) atlas from both T1w MRI and rs-fMRI data of each subject. Then, in order to obtain features that 

are more helpful in distinguishing MCI subjects, an improved multi-task feature selection method, namely 

MTFS-gLASSO-TTR, is proposed. Finally, a multi-kernel learning algorithm is adopted to combine multi- 

ple features to perform the MCI classification task. Our proposed MCI classification method is evaluated 

on 315 subjects (including 105 LMCI subjects, 105 EMCI subjects and 105 NCs) with both T1w MRI and 

rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental results 

show that our proposed method achieves an accuracy of 88.5% and an area under the receiver operating 

characteristic (ROC) curve (AUC) of 0.897 for LMCI/NC classification, an accuracy of 82.7% and an AUC of 

0.832 for EMCI/NC classification, and an accuracy of 79.6% and an AUC of 0.803 for LMCI/EMCI classifica- 

tion, respectively. In addition, by comparison, the accuracy and AUC values of our proposed method are 

better than those of some existing state-of-the-art methods in MCI classification. Overall, our proposed 

MCI classification method is effective and promising for automatic diagnosis of MCI in clinical practice. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Alzheimer’s disease (AD) is a common neurodegenerative dis-

order. Its clinical manifestations are decreased memory, persistent

cognitive decline, motor impairment and so on. As of 2006, there

are 26.6 million AD patients worldwide, and by 2050, one in ev-

ery 85 people worldwide is expected to have AD [1] . As the world

is developing into an aging society, the negative impact of AD on

families and society will become more and more significant. Mild

cognitive impairment (MCI) is an intermediate process in the con-

version of normal people to AD, with up to 15% of people with MCI
∗ Corresponding author. 
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eing converted to AD each year [2–4] . At present, there is no ac-

urate diagnosis and effective treatment for AD. Most researchers

ope that patients can be discovered in time when they are in the

tage of MCI, and then take effective measures to prevent further

eterioration of the disease. Therefore, accurate early classification

f MCI subjects is very important for human health. 

Since magnetic resonance imaging (MRI) can noninvasively

easure brain structural and functional changes related to brain

isorder development in vivo , in recent years it has been widely

sed in the study of brain disorders, such as AD/MCI [5,6] ,

chizophrenia [7,8] , autism [9,10] and so on. Therefore, MRI can

rovide phenotypes that can be used to diagnose such disorders.

RI falls into two broad categories: structural MRI (such as T1

RI, T2 MRI and so on.) and functional MRI (such as rs-fMRI,

s-fMRI and so on.). Brain structure is typically measured using

https://doi.org/10.1016/j.neucom.2020.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.03.006&domain=pdf
mailto:jxwang@mail.csu.edu.cn
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Fig. 1. An overall flowchart for MCI classification by combining multi-view information from multi-modal MRI data, which consists of three main steps: (1) image prepro- 

cessing and feature representation, (2) multi-task feature selection (MTFS), and (3) multi-kernel SVM classification. 

s  

s  

t  

a  

c  

f  

p  

F  

s  

a  

w  

b  

g  

i  

s

 

t  

m  

e  

a  

W  

j  

i  

t  

t  

t  

o  

c  

m

b  

f  

s  

t  

a  

s  

a  

n  

e  

s  

k  

c  

t  

o  

f  

s  

[  

t  

p  

t  

n  

v  

t  

[  

v  

t  

n  

u  

b  

t  

t  

r

 

p  

v  

F  

i  

a  

s  

A  

a  

c  

s  
tructural MRI, which can provide relatively high-definition brain

tructure in grey matter and white matter. There are many metrics

o measure brain structure, and most of them have been widely

pplied in the study of AD and MCI, such as grey matter volume,

ortical thickness, texture properties and so on [11–15] . Brain

unction is typically measured using functional MRI, which can

rovide changes in hemodynamics caused by neuronal activity.

unctional connectivity between brain regions is a common mea-

ure of brain function. Also, brain networks based on brain regions

nd functional connectivity between brain regions have been

idely used for feature representation in the study of various

rain disorders. In the past years, brain function analysis based on

raph theory has shown a powerful role in exploring functional

mpairment of brain disorders, and has been widely used in the

tudy of AD and MCI [16–19] . 

In the past decade, whether structural MRI-based brain struc-

ure metrics or functional MRI-based brain function metrics, these

etrics were mainly used separately in the studies with MCI. For

xample, Karas et al. [11] found that the MCI subjects showed

 decrease in grey matter volume in the medial temporal lobe.

ang et al. [18] constructed functional brain networks of MCI sub-

ects and found that the length of the shortest path increased

n MCI subjects compared with NCs; Zhang et al. [20] first ex-

racted functional connectivity between brain regions from func-

ional MRI data of each subject as feature representation, and

hen trained a L2-regularized logistic regression classifier based

n these functional connectivity features to perform MCI classifi-

ation. Therefore, many researchers believe that different metrics

ay contain different-yet-complementary information, and com- 

inations of these metrics may improve MCI classification per-

ormance over separate metrics. In fact, recent studies have also

hown great promise for improving the accuracy of MCI classifica-

ion by combining multiple structural and functional metrics, such

s grey matter volume, clustering coefficient, cortical thickness and

o on. For example, Wee et al. [21] first used both structural MRI

nd functional MRI data of each subject to construct multiple brain
etworks for each subject, and then extracted local clustering co-

fficient from each brain network of each subject as feature repre-

entation to perform the MCI classification task by using a multi-

ernel learning algorithm; De Marco et al. [22] used multiple ma-

hine learning models based on different metrics from both struc-

ural MRI and functional MRI data to investigate the performance

f MCI classification; Tripathi et al. [23] proposed an unsupervised

ramework for the classification of EMCI and LMCI by combining

hape and voxel-based features from 12 brain regions; Jie et al.

24] proposed a feature combination framework to combine both

emporal and spatial features of dynamic functional networks to

erform automatic classification of EMCI and LMCI. Recently, with

he development of deep learning [25–28] , especially convolutional

eural networks [29–31] , some researchers have begun to use con-

olutional neural networks to directly extract features from struc-

ural MRI and functional MRI images for AD or MCI classification

32–34] . For example, Islam and Zhang [32] proposed a deep con-

olutional neural network for AD classification using brain struc-

ural MRI images; Sarraf and Tofighi [33] employed a convolutional

eural network to distinguish an AD brain from a healthy brain

sing functional MRI images. So far, although some results have

een achieved for the classification of MCI subjects based on struc-

ural and functional MRI data, extracting which features and how

o combine multiple features to improve MCI classification accu-

acy have always been difficult problems. 

In order to try to address these two problems, in this study we

ropose a new method for MCI classification by combining multi-

iew information from multi-modal MRI data, which is shown in

ig. 1 . Firstly, we measure two regional structural features includ-

ng grey matter volume and cortical thickness based on automated

natomical labeling (AAL) atlas [35] from T1w MRI data for each

ubject. Then, we construct an individual brain network based on

AL atlas for rs-fMRI data of each subject, and adopt brain network

nalysis method to compute two regional functional features in-

luding clustering coefficient and the shortest path length for each

ubject. Therefore, we can obtain four feature sets including two
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Table 1 

Demographic information of the subjects in this study from ADNI database. 

Group Number Age Gender (M/F) MMSE 

NC 105 77.1 ± 6.3 54/51 29.1 ± 1.1 

EMCI 105 76.3 ± 5.4 49/56 27.5 ± 1.8 

LMCI 105 75.8 ± 6.3 35/70 26.6 ± 2.2 
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regional structural feature sets from T1w MRI data and two re-

gional functional feature sets from rs-fMRI data for each subject.

Next, in order to obtain features that are as effective as possi-

ble for MCI classification, an improved multi-task feature selection

method, denoted as MTFS-gLASSO-TTR, is proposed and applied to

the above-mentioned four feature sets. Finally, in order to perform

the MCI classification task, a multi-kernel learning algorithm is ap-

plied to combine the selected four feature sets. Our proposed MCI

classification method is evaluated on 315 subjects (including 105

LMCI subjects, 105 EMCI subjects and 105 NCs) with T1w MRI and

rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database ( http://adni.loni.usc.edu/ ). 

2. Materials and method 

2.1. Subjects 

A subset of the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [36] is used to evaluate our proposed MCI classification

method. This subset includes 315 subjects with both T1w MRI and

rs-fMRI data, which are composed of 105 subjects with late mild

cognitive impairment (LMCI), 105 subjects with early mild cogni-

tive impairment (EMCI), and 105 normal controls (NCs). All T1w

MRI and rs-fMRI data are acquired on 3.0 Tesla Philips medical sys-

tem scanners at multiple sites, and the slice thickness of T1w MRI

data and rs-fMRI data is 1.2 mm and 3.0 mm, respectively. Fur-

thermore, rs-fMRI data of each subject contain 140 volumes. The

demographic information of the studied subjects is presented in

Table 1 , where MMSE is the abbreviation of Mini Mental State Ex-

amination, and the front and back of ± represent mean and stan-

dard deviation, respectively. For more details with these subjects

from ADNI, please see http://adni.loni.usc.edu/ . 

2.2. Method 

2.2.1. Image preprocessing and feature representation 

Fig. 1 shows the procedures of image preprocessing and feature

representation for both T1w MRI and rs-fMRI data. As can be seen

from Fig. 1 , the procedures of image preprocessing and feature rep-

resentation mainly include two aspects: T1w MRI data preprocess-

ing and feature representation, and rs-fMRI data preprocessing and

feature representation. These two aspects are briefly introduced as

follows. 

Firstly, a standard preprocessing procedure is applied to T1 MRI

data of each subject using a standard FreeSurfer pipeline ( https:

//surfer.nmr.mgh.harvard.edu ) [37] , including motion correction,

non-uniform intensity normalization, talairach transform compu-

tation, skull removal, volumetric segmentation, cortical surface

reconstruction and so on. After this standard preprocessing pro-

cedure, we can obtain two boundaries: the white surface bound-

ary (i.e., grey matter-white matter interface) and the pial surface

boundary (i.e., grey matter-cerebrospinal fluid interface) from T1w

MRI data of each subject, which are shown in Fig. 1 . Based on

these two boundaries of grey matter, we can measures morpho-

logical information on the grey matter of each subject, such as grey

matter volume (GMV), cortical thickness (CT) and so on. Previous

studies have shown that GMV and CT have been widely applied

in the morphological analysis of MCI and AD [38,39] . For those
easons, in this study we extract these two regional morphological

easures based on each cortical region of the AAL atlas as struc-

ural feature representation from T1w MRI data for each subject.

ll cortical regions of the AAL atlas are shown in Table 2 . There-

ore, we can obtain two regional morphological feature sets from

1w MRI data for each subject, which are denoted as F GMV and F CT ,

espectively. It is worth mentioning that these two regional mor-

hological feature sets are all 78-dimensional vectors. 

Secondly, as can be seen from Fig. 1 , a standard preprocess-

ng procedure is also applied to rs-fMRI data of each subject using

he pipeline provided by the Analysis of Functional NeuroImages

AFNI) software ( https://afni.nimh.nih.gov/ ) [40] , including remov-

ng the first 10 rs-fMRI volumes, slice timing, head motion correc-

ions, spatial smoothing, band-pass filtering (0.01–0.1 Hz), nuisance

ignal regression, and Montreal Neurological Institute (MNI) space

ormalization and so on. After this standard preprocessing proce-

ure, in this study we parcellate the resulted rs-fMRI data of each

ubject into 78 cortical regions (as shown in Table 2 ) according to

he AAL atlas. Therefore, we can obtain the average rs-fMRI time

eries of each cortical region for each subject. In order to consider

unctional connectivity between each two cortical regions for each

ubject, in this study the pairwise Pearson correlation coefficients

etween cortical regions i and j are defined and calculated by the

ollowing formula, i.e., 

 c ( i, j ) = 

cov 
(
s i , s j 

)
σs i σs j 

(1)

here F c ( i, j ) denotes the connectivity weight between two cortical

egions i and j , cov ( ·, ·) denotes the covariance between two vec-

ors, s i and s j denote the average rs-fMRI time series of cortical re-

ions i and j , respectively, and σs i and σs j denote the standard de-

iation of vectors s i and s j , respectively. So far, we can construct an

ndividual brain network, which consists of 78 cortical regions ac-

ording to the AAL atlas and functional connectivity between each

wo cortical regions, to represent rs-fMRI data of each subject. 

At present, brain network analysis based on graph theory

41,42] plays an important role in the study of complex brain

iseases, and is widely used in various brain diseases [43] , such

s AD/MCI, schizophrenia, Parkinson and so on. Many brain dis-

ases have been found to be associated with the abnormal topo-

ogical properties (such as clustering coefficient (CC) and short-

st path length (SPL)) of brain networks, which have been widely

sed to brain disease diagnosis. For example, Yao et al. [44] found

reater CC in MCI group compared with NC group, and Wang et al.

18] found increased SPL in MCI group compared with NC group.

he small-world networks first proposed by Watts and Strogatz

45] have both high CC similar to regular networks and shorter

PL similar to random networks. In other words, The small-world

etworks combine the respective topological advantages of both

egular networks and random networks to ensure the efficiency of

nformation transmission at both local and global levels. Many re-

earchers believe that brain diseases may destroy the small-world

ature of brain networks, i.e. abnormal CC or SPL, or even both. For

hat reason, in this study we compute two regional network prop-

rties including CC and SPL based on individual brain network of

ach subject from rs-fMRI data, which are regarded as functional

eature representation. These two regional network properties are

riefly introduced as follows. 

• The regional CC proposed by Onnela et al. [46] quantifies the

presence of clusters that reflects functional segregation among

nodes. A larger regional CC implies more functional segrega-

tion that allows the corresponding node and its neighbors for

specialized information processing. When calculating the re-

gional CC, in this study we only consider triplets of nodes. The

regional CC based on a weighted undirected network can be

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://surfer.nmr.mgh.harvard.edu
https://afni.nimh.nih.gov/
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Table 2 

Cortical regions in the AAL atlas. 

No. (L/R) Regions Abbr. No. (L/R) Regions Abbr. 

1/2 Precentral gyrus PrCG 3/4 Superior frontal gyrus SFG 

5/6 Superior frontal gyrus, orbital part SFGorb 7/8 Middle frontal gyrus MiFG 

9/10 Middle frontal gyrus, orbital part MFGorb 11/12 Inferior frontal gyrus, pars opercularis IFGope 

13/14 Inferior frontal gyrus, pars triangularis IFGtri 15/16 Inferior frontal gyrus, pars orbitalis IFGorb 

17/18 Rolandic operculum ROL 19/20 Supplementary motor area SMA 

21/22 Olfactory cortex OLF 23/24 Medial frontal gyrus MeFG 

25/26 Medial orbitofrontal cortex MOC 27/28 gyrus rectus REC 

29/30 Insula INS 31/32 Anterior cingulate gyrus ACG 

33/34 Middle cingulate gyrus MCG 35/36 Posterior cingulate gyrus PCG 

37/38 Parahippocampal gyrus PHG 39/40 Calcarine sulcus CAL 

41/42 Cuneus CUN 43/44 Lingual gyrus LING 

45/46 Superior occipital gyrus SOG 47/48 Middle occipital gyrus MOG 

49/50 Inferior occipital gyrus IOG 51/52 Fusiform gyrus FFG 

53/54 Postcentral gyrus PoCG 55/56 Superior parietal lobule SPG 

57/58 Inferior parietal lobule IPL 59/60 Supramarginal gyrus SMG 

61/62 Angular gyrus ANG 63/64 Precuneus PCUN 

65/66 Paracentral lobule PCL 67/68 Transverse temporal gyrus TTG 

69/70 Superior temporal gyrus STG 71/72 Superior temporal pole STP 

73/74 Middle temporal gyrus MTG 75/76 Middle temporal pole MTP 

77/78 Inferior temporal gyrus ITG 

Fig. 2. Illustration of CC and SPL in a simple weighted undirected network. 
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defined as 

C C w ( i ) = 

2 

k i ( k i − 1 ) 

∑ 

j,h 

(
w i j w ih w jh 

)1 / 3 
(2) 

where w ij , w ih , and w jh are the connection weights be-

tween nodes i and j , between nodes i and h , and be-

tween nodes j and h , respectively. The weights w i j , w ih 

and w jh have been scaled, namely w i j ← w i j /max (w ) , w ih ←
w ih /max (w ) , w jh ← w jh /max (w ) , max ( w ) denotes the maxi-

mum connectivity weight in the brain network. The number

of edges connected to node i is represented by k i . For ex-

ample, in Fig. 2 , the CC of node B is calculated by C C w (B ) =
2 

6( 6 −1 ) 
( 

( w BA w BE w AE ) 
1 / 3 

max { w BA , w BE , w AE } + 

( w BF w BG w F G ) 
1 / 3 

max { w BF , w BG , w F G } ) . 
• The SPL plays an important role in the information transmission

of a brain network, and it is a very important metric to describe

the internal structure of the brain network. Meanwhile, the SPL

is a measure of functional integration, which can measure the

ability to rapidly combine pieces of specialized information. The

shorter SPL can transmit the information more quickly and re-

duce brain consumption. In a weighted undirected network, a

path between nodes i and j with the minimum weight of edges

is called the shortest path between these two nodes, and its

length SPL ( i, j ) is denoted as 

SP L w ( i, j ) = 

∑ 

w pq ∈ SP i ↔ j 

w pq (3) 

where SP i ↔ j is the shortest path between nodes i and j . For

example, in Fig. 2 , the SPL between nodes H and D is calcu-

lated by SP L w ( H, D ) = w HB + w BC + w CD . The SPL of node i can

be represented by the average SPL between node i and all other
nodes, and is denoted as SPL w ( i ): 

SP L w ( i ) = 

1 

N − 1 

∑ 

j � = i 
SP i → j (4) 

Therefore, we can obtain two regional network feature sets

rom rs-fMRI data for each subject, and denoted as F CC and F SPL ,

espectively. It is worth mentioning that these two regional net-

ork feature sets are also all 78-dimensional vectors. 

From the above, we can obtain four regional feature sets from

oth T1w MRI and rs-fMRI data for each subject, including two

tructural feature sets: F GMV and F CT , and two functional feature

ets: F CC and F SPL . These four regional feature sets are taken as the

riginal features of each subject. 

.2.2. Multi-task feature selection (MTFS) 

LASSO (Least Absolute Shrinkage and Selection Operator) [47] is

 regression analysis method and has been widely applied in

eature selection. In the process of feature selection, the LASSO

ethod can be formulated as 

in 

w 

(‖ 

y − X w ‖ 

2 
2 + λ‖ 

w ‖ 1 

)
(5) 

here X = 

[
x 1 , x 2 , . . . , x i , . . . , x N 

]′ 
∈ 
 

N×P denotes all training sub-

ects, x i denotes the i th training subject, N denotes the number

f the training subjects, P denotes the number of features of each

raining subject, y = [ y 1 , y 2 , . . . , y i , . . . , y N ] 
′ ∈ 
 

N denotes the labels

f all training subjects, w ∈ 
 

P is the discriminant vector whose

alue indicates the contribution of each feature, ‖ w ‖ 1 denotes the

 1 -norm of w , and λ > 0 is a parameter to balance the loss func-

ion (i.e., ‖ y − Xw ‖ 2 2 ) and the regularization term (i.e., ‖ w ‖ 1 ). The

arger the λ value, the greater the penalty for the parameters in

he model, resulting in higher model sparsity, that is, more param-

ters are trained to zero. 

Suppose there are T feature selection tasks similar to Eq. (5) ,

hese T feature selection tasks can be performed by Eq. (6) as fol-

ows, 

in 

w t 

(‖ 

y t − X t w t ‖ 

2 
2 + λ‖ 

w t ‖ 1 

)
, t = 1 , 2 , . . . , T . (6)

here X t = 

[
x 1 t , x 

2 
t , . . . , x 

i 
t , . . . , x 

N 
t 

]′ 
∈ 
 

N×P denotes all training sub-

ects in the tth task, y t = [ y 1 t , y 
2 
t , . . . , y 

i 
t , . . . , y 

N 
t ] 

′ ∈ 
 

N denotes the

abels of all training subjects in the tth task, and w t ∈ 
 

P is the

iscriminant vector whose value indicates the contribution of each

eature in the tth task. However, although this strategy can solve T
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learning tasks separately, it ignores the relationship between these

feature selection tasks. In general, the feature selection methods in

which tasks are usually learned independently of each other are

called single-task feature selection (STFS) methods. 

To further consider the relationship between different feature

selection tasks, the different feature selection tasks should be

learned jointly, which is often called multi-task feature selection

(MTFS). At present, the group LASSO-based MTFS method (denoted

as MTFS-gLASSO) [48] is a common feature selection method, and

has been widely used in various feature selection tasks. The MTFS-

gLASSO method can be formulated as follows, 

min 

W 

( 

T ∑ 

t=1 

‖ 

y t − X t w t ‖ 

2 
2 + λ‖ 

W ‖ 2 , 1 

) 

(7)

where W = [ w 1 , w 2 , . . . , w i , . . . , w T ] ∈ 
 

P×T is a discriminant ma-

trix, ‖ W ‖ 2,1 denotes the l 2,1 -norm of W . However, Eq. (7) only

considers the joint selection of the same features across different

tasks, but the relationship between tasks themselves is still not

taken into account. To address this problem, Wang et al. [10] pro-

posed a regularizer based on task-task relationship (TTR), which is

formulated as follows: 

R t−t ( W ) = 

1 

2 

T ∑ 

i � = j 
g i, j 

∥∥w i − w j 

∥∥2 

2 
(8)

g i, j = exp 

( 

−2 

∥∥x i − x j 
∥∥2 

2 

σ 2 

) 

(9)

σ 2 = 

T ∑ 

i =1 

T ∑ 

j=1 

∥∥x i − x j 
∥∥2 

2 

T 2 
(10)

where x i is the average vector of all training subjects in the i th

task, and x j is similar to x i . By incorporating the TTR regularization

into Eq. (7) , we can obtain the following MTFS model, which is

denoted as MTFS-gLASSO-TTR: 

min 

W 

(
T ∑ 

t=1 

‖ 

y t − X t w t ‖ 

2 
2 + λ‖ 

W ‖ 2 , 1 + β
T ∑ 

i = j 
g i, j 

∥∥w i − w j 

∥∥2 

2 

)
(11)

where β is also a regularization parameter, and β > 0. It is worth

mentioning that λ is used to control the number of selected fea-

tures from the original features, while β is used to get more dis-

criminative features from the selected features. 

In this study, the MTFS-gLASSO-TTR method is used to select

the more discriminant features from the above four regional fea-

ture sets (i.e., F GMV , F CT , F CC and F SPL ) for MCI classification as

shown in Fig. 1 . After this MTFS step, we can obtain four selected

feature sets for each training subject, which are denoted as F GMVS ,

F CTS , F CCS and F SPLS . Meanwhile, the selected structural and func-

tional feature sets (i.e., F GMVS , F CTS , F CCS and F SPLS ) for each training

subject are used as inputs to train classifiers for MCI classification.

2.2.3. Multi-kernel SVM classification 

Support vector machine (SVM) [49] is a classifier method based

on kernel function, and has been widely used in various classifica-

tion tasks. In this study we also use SVM as classifier. We first cal-

culate four kernel matrices using the four selected feature sets (i.e.,

F GMVS , F CTS , F CCS or F SPLS ) across different training subjects based on

a linear kernel function as follows, 

k 
(
x i , x j 

)
= 

(
x i 
)′ 

x j (12)

where x i denotes the selected feature vector from the i th training

subjects, and x j is similar to x i . Then, since multi-kernel SVM (MK-

SVM) classification methods can effectively combine multiple fea-

tures [24,50] , in this study a MK-SVM classification method is also
dopted to combine these four different kernel matrices to train

lassifiers for MCI classification as shown in Fig. 1 . The MK-SVM

lassification method can be formulated as follows, 

 M 

(
x i , x j 

)
= 

M ∑ 

m =1 

αm 

k m 

(
x i m 

, x j m 

)
(13)

here M denotes the number of kernel matrices, k m 

( x i m 

, x 
j 
m 

) de-

otes the m th kernel matrix that has been calculated, and αm 

de-

otes the combining weight on the m th kernel matrix. Obviously,

n this study M = T = 4 . Finally, a SVM classifier with k M 

is used to

erform the MCI classification task. 

. Experiments and results 

.1. Experimental settings 

To investigate the performance of our proposed MCI classifica-

ion method, three classification tasks in MCI classification are con-

ucted as follows: 

• T1: LMCI/NC classification, where LMCI is negative subjects and

NC is positive subjects. 

• T2: EMCI/NC classification, where EMCI is negative subjects and

NC is positive subjects. 

• T3: LMCI/EMCI classification, where LMCI is negative subjects

and EMCI is positive subjects. 

In this study, a nested 5-fold cross-validation strategy is

dopted in the above three classification tasks. The nested 5-fold

ross-validation mainly contains two aspects: an external 5-fold

ross-validation and an internal 5-fold cross-validation. The exter-

al 5-fold cross-validation is to randomly divide all experimental

ubjects into 5 subsets without overlapping, one of which is left

s the test set, and the remaining subsets are used for training.

n each training procedure, an internal 5-fold cross-validation is

dopted to determine the parameters (such as λ, β and αm 

) of

ur proposed MCI classification method. The internal 5-fold cross-

alidation is to randomly divide the training subjects into 5 subsets

ithout overlapping, one of which is left as the validation set, and

he remaining subsets are used for training. The purpose of each

nternal 5-fold cross-validation is to find the optimal parameters,

hich are used to generate an optimal classifier for each classi-

cation task via a grid search method. The optimal classifier for

ach classification task is used to distinguish the subjects in the

orresponding testing set. To avoid the bias caused by randomly di-

iding the subjects in the cross-validation, the nested 5-fold cross-

alidation is repeated 50 times in T1, T2 and T3, respectively. In

his study we only report the average of 50 repeated experiments

n T1, T2 and T3, respectively. 

In this study, the two parameters, λ and β in the feature se-

ection procedure are set to [0, 100] with a step size of 5, and the

arameters, αm 

in the classification procedure are set to [0, 1] with

 step size of 0.1, and are constrained to 
∑ M 

m =1 αm 

= 1 . In addition,

he SVM classifier in the classification procedure is implemented

y using LIBSVM toolbox [51] , and C = 1. 

To quantitatively evaluate the performance of our proposed MCI

lassification method, in this study the three metrics are computed

s follows: 

CC = 

T P + T N 

T P + T N + F P + F N 

(14)

EN = 

T P 

T P + F N 

(15)

P E = 

T N 

T N + F P 
(16)

here TP, TN, FP, and FN represent the numbers of true posi-

ive, true negative, false positive, and false negative, respectively;
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Table 3 

Summary of the methods for comparison. 

Data Methods Abbr. 

T1w MRI F GMV + LASSO + L-SVM M1 

F CT + LASSO + L-SVM M2 

( F GMV + F CT ) + LASSO + L-SVM M3 

(( F GMV + LASSO) + ( F CT + LASSO)) + L-SVM M4 

(( F GMV + LASSO) ‖ ( F CT + LASSO)) + MK-SVM M5 

( F GMV ‖ F CT ) + MTFS-gLASSO + L-SVM M6 

( F GMV ‖ F CT ) + MTFS-gLASSO-TTR + L-SVM M7 

( F GMV ‖ F CT ) + MTFS-gLASSO + MK-SVM M8 

( F GMV ‖ F CT ) + MTFS-gLASSO-TTR + MK-SVM M9 

rs-fMRI F CC + LASSO + L-SVM M10 

F SPL + LASSO + L-SVM M11 

( F CC + F SPL ) + LASSO + L-SVM M12 

(( F CC + LASSO) + ( F SPL + LASSO)) + L-SVM M13 

(( F CC + LASSO) ‖ ( F SPL + LASSO)) + MK-SVM M14 

( F CC ‖ F SPL ) + MTFS-gLASSO + L-SVM M15 

( F CC ‖ F SPL ) + MTFS-gLASSO-TTR + L-SVM M16 

( F CC ‖ F SPL ) + MTFS-gLASSO + MK-SVM M17 

( F CC ‖ F SPL ) + MTFS-gLASSO-TTR + MK-SVM M18 

T1w 

MRI + rs-fMRI 

( F GMVS + F CTS + F CCS + F SPLS ) + L-SVM M19 

( F GMVS ‖ F CTS ‖ F CCS ‖ F SPLS ) + MK-SVM M20 
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ccuracy (ACC), sensitivity (SEN), and specificity (SPE) represent

he ratio of subjects that are correctly identified, the ratio of pos-

tive subjects that are correctly identified, and the ratio of nega-

ive subjects that are correctly identified, respectively. In addition,

o quantitatively evaluate the overall performance of our proposed

CI classification method, the area under receiver operating char-

cteristic (ROC) curve (AUC) value [52] is also reported. It is worth

entioning that the greater the values of the four metrics are, the

etter the classification performance of the method is. 

.2. Methods for comparison 

We conducted comparative experiments to validate the effec-

iveness of our proposed MCI classification method. Table 3 sum-

arizes the methods under comparisons, which are denoted

s M1–M20. Obviously, M20 is our proposed MCI classification

ethod in this study. As can be seen from Table 3 , these com-

arison methods mainly contain three categories: T1w MRI data-

ased methods (i.e., M1–M9), rs-fMRI data-based methods (i.e.,
able 4 

esults of 20 methods in three classification tasks, i.e., T1, T2 and T3, respectively. 

Methods T1 T2 

ACC(%) SEN(%) SPE(%) AUC(%) ACC(%) SEN(%

M1 69.9 72.4 67.5 70.1 64.8 67.5 

M2 68.8 70.1 66.6 69.2 63.5 66.8 

M3 72.4 68.5 73.7 72.5 66.9 64.8 

M4 73.3 69.6 74.1 73.3 68.8 70.5 

M5 74.5 75.2 71.1 74.8 70.4 69.5 

M6 78.7 81.3 75.2 78.9 74.2 71.1 

M7 80.7 76.8 85.4 80.4 75.1 73.9 

M8 82.2 84.7 80.1 82.8 76.8 75.4 

M9 83.7 80.5 85.1 83.3 78.1 82.2 

M10 71.4 74.3 68.4 72.8 65.1 63.6 

M11 72.5 69.3 74.8 73.4 65.9 64.9 

M12 73.4 70.5 75.1 73.9 67.5 69.9 

M13 73.9 77.5 69.5 74.1 69.1 65.2 

M14 75.8 78.5 71.2 76.5 70.8 72.8 

M15 79.2 76.4 80.7 79.9 74.5 77.8 

M16 81.4 82.6 77.3 82.4 77.1 78.5 

M17 84.5 85.5 81.7 84.8 77.3 75.6 

M18 84.9 87.7 82.4 85.6 78.9 76.3 

M19 85.4 82.9 88.7 86.7 80.3 78.2 

M20 88.5 86.3 90.3 89.7 82.7 79.4 
10–M18), and both T1w MRI and rs-fMRI data-based methods

i.e., M19–M20). These 20 methods are briefly introduced as fol-

ows. 

For T1w MRI data-based methods, the process of M1 is that

 GMV is used as feature representation, the LASSO method is used

o feature selection, and a linear SVM classifier (L-SVM) is applied

o perform the MCI classification task. The only difference between

2 and M1 is that the feature representation of M2 is F CT , and the

nly difference between M3 and M1 is that the feature representa-

ion of M3 is the concatenation of F GMV and F CT . The process of M4

s that concatenating the selected features from both M1 and M2

re used as feature representation, and a standard L-SVM classifier

s used to perform the MCI classification task. In M5, we first cal-

ulate two kernels based on the features selected by M1 and the

eatures based on M2 selection. Then the MK-SVM method is used

o combine these two kernels to generate a new kernel, and train

 SVM classifier with the new kernel to perform the MCI classifi-

ation task. In M6, we first select features from F GMV and F CT us-

ng MTFS-gLASSO. Then the selected features are concatenated as

nput of a standard L-SVM classifier to perform the MCI classifica-

ion task. The only difference between M7 and M6 is that the fea-

ure selection method of M7 is MTFS-gLASSO-TTR. In M8, we first

elect two feature subsets from F GMV and F CT using MTFS-gLASSO.

hen the MK-SVM method is used to combine these two kernels

o generate a new kernel, and train a SVM classifier with the new

ernel to perform the MCI classification task. The only difference

etween M9 and M8 is that the feature selection method of M9 is

TFS-gLASSO-TTR. 

For rs-fMRI data-based methods, these methods are similar

ith T1w MRI data-based methods. If F GMV is replaced by F CC and

 CT is replaced by F SPL , M1–M9 and M10–M18 are in one-to-one

orrespondence. 

For M19 and M20, the four feature subsets: F GMVS , F CTS , F CCS and

 SPLS selected by using the MTFS-gLASSO-TTR method from F GMV ,

 CT , F CC and F SPL , respectively, are used as feature representation.

he only difference between the two methods is that M19 is to

oncatenate the four selected feature subsets as input of a stan-

ard L-SVM classifier to perform the MCI classification task, while

20 is first to calculate four kernels based on these four selected

eature subsets, and then a standard SVM classifier with the new

ernel, which is a mixed kernel by combining these four kernels

sing MK-SVM, is used to perform the MCI classification task. 
T3 

) SPE(%) AUC(%) ACC(%) SEN(%) SPE(%) AUC(%) 

62.4 65.8 58.9 57.8 60.5 60.1 

61.3 64.2 59.7 55.5 62.8 61.2 

69.6 67.2 61.6 60.2 63.4 62.8 

67.1 69.8 63.7 61.5 65.1 64.4 

73.3 71.2 64.6 62.2 65.7 65.6 

75.8 74.4 68.2 65.3 70.9 69.4 

76.5 75.5 70.5 68.6 72.8 71.1 

79.3 77.1 72.4 70.5 74.1 73.2 

75.1 78.8 73.5 70.9 75.8 74.4 

67.2 66.2 60.5 61.1 58.8 60.9 

67.3 66.8 61.7 63.3 60.7 62.5 

65.9 68.4 62.8 65.1 60.8 63.2 

72.8 69.5 64.2 67.5 61.8 64.8 

68.9 71.5 65.9 67.8 64.4 66.6 

71.8 75.1 71.5 75.9 68.3 72.3 

76.3 77.4 74.5 76.6 70.2 75.1 

80.8 77.8 75.4 77.5 72.3 75.9 

82.9 79.1 77.2 80.1 73.8 77.7 

82.1 79.6 78.5 80.3 75.3 78.9 

83.9 83.2 79.6 83.8 76.8 80.3 



328 J. Liu, Y. Pan and F.-X. Wu et al. / Neurocomputing 400 (2020) 322–332 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) T1-ACC

0 20 40 60 80 100

0

20

40

60

80

100 50

60

70

80

90

(b) T2-ACC

0 20 40 60 80 100

0

20

40

60

80

100 50

60

70

80

90

(c) T3-ACC

0 20 40 60 80 100

0

20

40

60

80

100 50

60

70

80

90

Fig. 3. Results achieved by our proposed MCI classification method (i.e., M20) 

based on different values of λ and β in T1, T2 and T3, respectively. 
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3.3. Classification performance 

The classification performance of T1, T2 and T3 achieved by

the above-mentioned 20 methods (i.e., M1–M20 in Table 3 ) are

summarized in Table 4 . From Table 4 , we can observe that our

proposed MCI classification method (i.e., M20) consistently out-

performs the comparative methods in T1, T2 and T3, respectively.

For example, our proposed MCI classification method achieves the

ACC of 88.5%, 82.7% and 79.6% in T1, T2 and T3, respectively,

while the best ACC achieved by other comparative methods is only

85.4%, 80.3% and 78.5% in T1, T2 and T3, respectively. Furthermore,

our proposed MCI classification method achieves the AUC value of

0.897, 0.832 and 0.803 in T1, T2 and T3, respectively, while the best

AUC value achieved by other comparative methods is only 0.867,

0.796 and 0.789 in T1, T2 and T3, respectively. These results shows

that our proposed method is efficient and advanced in MCI classi-

fication. 

In addition, as can be seen from Table 4 , the classification per-

formance of the methods based on multiple feature sets (i.e., M3–

M9 and M12–M20) is better than the classification performance

of the methods based on single feature set alone (i.e., M1, M2,

M10 and M11) in T1, T2 and T3, respectively. This result implies

that different feature sets contain complementary information for

MCI classification, and thus should be reasonably combined to im-

prove the performance of MCI classification. Also, the classifica-

tion performance of both T1w MRI and rs-fMRI data-based meth-

ods (i.e., M19–M20) is better than the classification performance of

single-modal data-based (T1w MRI or rs-fMRI) methods (i.e., M1–

M18) in T1, T2 and T3, respectively. This result shows that different

modal data contain complementary information for MCI classifica-

tion, and thus should also be reasonably combined to improve the

performance of MCI classification. Furthermore, the classification

performance of the methods based on regional functional features

(i.e., M10–M18) is better than the classification performance of the

methods based on regional structural features (i.e., M1–M9) in T1,

T2 and T3, respectively. To some extent, this result shows that re-

gional functional features can better express differences than re-

gional structural features for MCI classification. 

4. Discussion 

4.1. Effects of regularization parameters 

In this study, we propose an improved multi-task feature se-

lection method, namely MTFS-gLASSO-TTR, to select discriminative

features for MCI classification. The MTFS-gLASSO-TTR method con-

tains two regularization items, i.e., gLASSO regularizer and TTR reg-

ularizer, which are balanced by two regularization parameters, λ
and β . To investigate the effects of the two regularization param-

eters, λ and β for MCI classification, we select different values of

λ and β to perform three different classification tasks, i.e., T1, T2

and T3. In the three different classification tasks, the two regular-

ization parameters, λ and β are set to [0, 100] with a step size of

5. It is worth mentioning that when λ = 0 , β = 0 , that is, our pro-

posed MCI classification method does not include the feature se-

lection step; when λ > 0 and β = 0 , the feature selection step of

our proposed MCI classification method is the MTFS-gLASSO-based

method. Fig. 3 shows the classification accuracies based on differ-

ent values of λ and β in T1, T2 and T3. 

From Fig. 3 , we can see that the classification accuracies of the

methods with feature selection (i.e., λ > 0) are better than that of

the method without feature selection (i.e., λ = 0 ) in T1, T2 and T3,

respectively. This result implies that the feature selection step can

obtain more discriminative features for MCI classification. Also, the

classification accuracies of the method with TTR regularizer (i.e.,

β > 0) are better than that of the method without TTR regularizer
i.e., β = 0 ) in T1, T2 and T3, respectively. This result suggests that

dding TTR regularizer into the MTFS-gLASSO-based method can

btain more discriminative features for MCI classification. In addi-

ion, we can also see that the classification accuracies are greatly

ffected by different values of λ and β in T1, T2 and T3, respec-

ively. This result indicates that it is very important to balance the

wo regularization parameters, λ and β for MCI classification. 

.2. Effects of different classifiers 

In this subsection, we investigate the effects of different classi-

ers in T1, T2 and T3, respectively. For this purpose, we have done

 series of experiments using different classifiers including radial

asis function kernel-support vector machine (RBF-SVM), random

orest (RF) [53] , Xgboost [54] and multiple RBF-SVM (M-RBF-SVM)
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Fig. 4. The accuracy of our proposed method using different classifiers for T1, T2 and T3, respectively. 

Table 5 

The best ACC of MCI classification based on different combination weights in T1, T2 

and T3, respectively. 

Tasks Q1 Q2 Q3 Q4 

T1 88.5 86.3 85.2 73.6 

T2 82.7 80.8 79.5 67.7 

T3 79.6 78.1 77.6 64.3 
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t  
n our proposed method. The input of the first three classifiers is a

oncatenation of the four selected feature sets obtained after fea-

ure selection for each classification task. The last classifier is sim-

lar to our proposed MK-SVM method, and the only difference be-

ween them is that the RBF is used instead of the linear kernel. It

s worth mentioning that these classifiers with the default param-

ters are implemented by the Scikit-learn library [55] . In addition,

or fair comparisons, the experimental data used by each classifier

s the same for the same classification task. The accuracy of our

roposed method using different classifiers is shown in Fig. 4 for

1, T2 and T3, respectively. 

As can be seen from Fig. 4 , the ACC of MK-SVM in our proposed

ethod is the best for T1, T2 and T3, respectively. The comparative

esults further demonstrate that our proposed method is effective

nd has certain advantages for MCI classification. 

.3. Effects of different combination weights 

In this subsection, we investigate the effects of different combi-

ation weights αm 

, m ∈ {1, 2, 3, 4} in T1, T2 and T3, respectively.

ince the values of αm 

are [0, 1] with a step size of 0.1, and are

onstrained to 
∑ M 

m =1 αm 

= 1 , there are many combination of αm 

.

n this subsection, we only report the best ACC of MCI classifica-

ion when none of the αm 

values is 0 (denoted as Q1), one of the

m 

values is 0 (denoted as Q2), two of the αm 

values are 0 (de-

oted as Q3), and three of the αm 

values are 0 (denoted as Q4)

n each combination in T1, T2 and T3, respectively. Table 5 shows

he best ACC of MCI classification based on different combination

eights in T1, T2 and T3, respectively. 

As can be seen from Table 5 , the best ACC of Q1 is better than

hat of the other three cases (i.e., Q2, Q3 and Q4) in T1, T2 and

3, respectively. This result indicates that our proposed MCI classi-

cation method is effective. In addition, the best ACC of Q4 is bet-

er than that of single feature set-based classification method (i.e.,

1, M2, M10 and M11) in T1, T2 and T3, respectively. This result
mplies that compared with STFS method, for a specific original

eature set, MTFS method can select more discriminant features in

1, T2 and T3, respectively, which may be due to considering the

elationship between tasks. 

.4. Important regional features 

In this subsection, we report the important regional features

xtracted from both T1w MRI and rs-fMRI data by our proposed

CI classification method in T1, T2 and T3, respectively. In gen-

ral, the features used for training classifier after feature selection

n each fold cross-validation are different in a specific classifica-

ion task. Therefore, in this study we define the features that ap-

ear in the features used for training classifier in each fold cross-

alidation as important regional features in each MCI classification

ask. Tables 6 , and–8 show the important regional features ob-

ained by our proposed MCI classification method in T1, T2 and

3, respectively. Furthermore, we also report p -value of each im-

ortant regional feature via a standard two-sample t -test to reveal

heir discriminative power in T1, T2 and T3, respectively. 

As can be seen from Tables 6 , and–8 , most important brain re-

ions, such as PHG, INS and MTP, obtained by our proposed MCI

lassification method have been reported in previous MCI stud-

es [21,38,56] . This result indicates that our proposed MCI classi-

cation method can detect brain regions related to MCI, and is

ffective for MCI classification. Meanwhile, we also can see that

mportant regional features contain both structural and functional

eatures. This result implies that both structural and functional fea-

ures are important for MCI classification, and MCI is associated

ith brain structural and functional changes. Furthermore, there

re more important functional features than important structural

eatures in T1, T2 and T3, respectively. This result explains to some

xtent that the classification performance of the methods only us-

ng functional features is better than the classification performance

f the methods only using structural features, which is shown in

able 4 . In addition, most important regional features have a p -

alue of less than 0.05. This result indicates that the important

rain features obtained by our proposed MCI classification method

ave good discriminative power for MCI classification. 

As can be seen from Tables 6 and 7 , more important regional

eatures are involved in T1, compared with those in T2. This re-

ult indicates that more brain region changes are produced with

he development of disease progression (i.e., NC → EMCI → LMCI).
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Table 6 

Important regional features involved in T1.L = Left,.R = Right. 

No. Feature types Cortical regions p -values 

1 GMV INS.L < 0.001 

2 GMV PrCG.R 0.009 

3 GMV MTP.R 0.015 

4 GMV MOC.R 0.018 

5 GMV PHG.L 0.024 

6 GMV LING.R 0.029 

7 GMV INS.L 0.034 

8 GMV STG.R 0.048 

9 GMV SOG.L 0.086 

10 CT CUN.R < 0.001 

11 CT IOG.R 0.002 

12 CT INS.L 0.012 

13 CT REC.R 0.014 

14 CT ANG.L 0.036 

15 CT MTP.R 0.047 

16 CT PCUN.L 0.061 

17 CC IPL.L < 0.001 

18 CC CAL.L < 0.001 

19 CC CUN.R 0.008 

20 CC PHG.L 0.013 

21 CC SOG.R 0.017 

22 CC PCL.R 0.023 

23 CC REC.R 0.029 

24 CC INS.R 0.039 

26 CC PrCG.L 0.042 

27 CC STP.L 0.053 

28 CC LING.R 0.077 

29 SPL PHG.L < 0.001 

30 SPL LING.R 0.014 

31 SPL REC.L 0.022 

32 SPL PrCG.L 0.026 

33 SPL IOG.L 0.038 

34 SPL PCL.R 0.042 

36 SPL INS.L 0.078 

37 SPL ROL.R 0.094 

Table 7 

Important regional features involved in T2.L = Left,.R = Right. 

No. Feature types Cortical regions p -values 

1 GMV PHG.L 0.031 

2 GMV PrCG.R 0.038 

3 GMV INS.L 0.041 

4 GMV MTP.R 0.046 

5 GMV STG.R 0.055 

6 CT REC.R 0.022 

7 CT INS.L 0.028 

8 CT CUN.L 0.037 

9 CT ANG.L 0.048 

10 CC CUN.R 0.017 

11 CC MTP.R 0.023 

12 CC PHG.L 0.025 

13 CC IPL.L 0.032 

15 CC PoCG.R 0.041 

16 CC CAL.L 0.048 

17 SPL PHG.L 0.015 

18 SPL REC.L 0.031 

19 SPL MTP.L 0.034 

20 SPL LING.R 0.047 

21 SPL IPL.R 0.061 

 

 

 

 

 

 

Table 8 

Important regional features involved in T3.L = Left,.R = Right. 

No. Feature types Cortical regions p -values 

1 GMV PoCG.R 0.018 

2 GMV STP.R 0.047 

3 CT MCG.L 0.032 

4 CT PHG.R 0.038 

5 CT ANG.L 0.042 

6 CC ITG.R 0.015 

7 CC MeFG.L 0.027 

8 CC IFGorb.R 0.033 

9 CC SFG.L 0.039 

10 SPL REC.L 0.035 

11 SPL PCG.R 0.041 

12 SPL ROL.L 0.048 

Table 9 

Comparison with four state-of-the-art methods in T1, T2 and T3, respectively. 

Tasks Methods ACC(%) SEN(%) SPE(%) AUC(%) p -values 

T1 Sarraf and Tofighi [33] 82.9 86.1 79.9 84.2 < 0.05 

Tripathi et al. [23] 85.9 83.4 87.9 86.3 < 0.05 

Islam and Zhang [32] 87.1 85.2 88.9 88.3 < 0.05 

Jie et al. [24] 86.8 84.5 89.7 87.8 < 0.05 

Our proposed 88.5 86.3 90.3 89.7 

T2 Sarraf and Tofighi [33] 77.4 78.8 75.6 78.6 < 0.05 

Tripathi et al. [23] 75.8 74.2 76.7 76.2 < 0.05 

Islam and Zhang [32] 81.1 77.5 83.7 81.9 < 0.05 

Jie et al. [24] 79.5 82.6 77.2 80.1 < 0.05 

Our proposed 82.7 79.4 83.9 83.2 

T3 Sarraf and Tofighi [33] 73.7 77.2 70.5 74.4 < 0.05 

Tripathi et al. [23] 71.9 77.6 66.7 72.7 < 0.05 

Islam and Zhang [32] 76.9 80.7 75.3 77.7 < 0.05 

Jie et al. [24] 78.1 74.7 80.9 78.5 < 0.05 

Our proposed 79.6 83.8 76.8 80.3 
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Meanwhile, as can be seen from Tables 7 and 8 , less important re-

gional features are involved in T3, compared with those in T2. This

result indicates that the early stage of disease progression is faster,

but the medium term is relatively slow with the development of

disease progression (i.e., NC → EMCI → LMCI). Such results indi-

cate that early classification of MCI is very important for human

health. 
.5. Comparisons with state-of-the-art methods 

To demonstrate the superiority of our proposed MCI classifica-

ion method, we also compare four existing state-of-the-art meth-

ds in the field including traditional machine learning methods

23,24] and deep learning methods [32,33] . In our comparative

xperiments, all methods are repeated 50 times for 5-fold cross-

alidation, and the average classification performance in T1, T2

nd T3, respectively, are reported in Table 9 . In order to statisti-

ally verify that the performance of our proposed MCI classifica-

ion method is better than that of other four existing state-of-the-

rt methods, we also report the p -values of the proposed method

nd other methods in terms of ACC, which is shown in Table 9 . 

From Table 9 , we can see that our proposed MCI classification

ethod obtains the best classification ACC and AUC values in T1,

2 and T3, respectively. Although Jie et al. [24] method obtains the

est SEN in T2, and the best SPE in T3, the other three metrics of

his method in T2 and T3 are lower than those of our proposed

ethod, respectively. In addition, as the statistical p -value is less

han 0.05, our proposed MCI classification method is significantly

etter than other four existing state-of-the-art methods. 

.6. Limitations 

While addressing some challenges, we have also identified a

umber of limitations in our proposed method. Firstly, the sub-

ects used in our work are only a portion of the ADNI database,

hich may not represent the pathological characteristics of large

CI populations. Applying our proposed method to a larger sample

ize might reveal more convincing results. Secondly, as the brain

tlas is an influential factor to classification accuracy, more proper

artitioning would probably lead to better results. As the future
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ork, we will test the classification performance of our proposed

CI classification method based on different atlas. In addition, our

roposed method uses only two structural features and two func-

ional features. However, using more features may obtain better

lassification accuracy. Therefore, future work will try to combine

ore structural and functional features for our proposed method. 

. Conclusion 

In this study, we propose a new method to enhance the fea-

ure representation of multi-modal MRI data by combining multi-

iew information to improve the performance of MCI classification.

irstly, we perform image preprocessing and feature representation

or both T1w MRI and rs-fMRI data of each subject. After this step,

e obtain four feature sets including two structural feature sets

nd two functional feature sets for each subject. Then, an improved

ulti-task feature selection method, namely MTFS-gLASSO-TTR, is

roposed to select the optimal structural and functional features

rom these four feature sets for MCI classification. Finally, a MK-

VM classification method is adopted to combine these four se-

ected structural and functional feature sets to perform the MCI

lassification task. Experimental results on 315 subjects from ADNI

atabase demonstrate that our proposed method is effective in MCI

lassification. This method paves the way to discriminative imaging

arkers for computer-aided classification of MCI. 
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