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It is highly desirable to predict the progression of Alzheimer's disease (AD) of patients
[e.g., to predict conversion of mild cognitive impairment (MCI) to AD], especially
longitudinal prediction of AD is important for its early diagnosis. Currently, most existing
methods predict different clinical scores using differentmodels, or separately predict
multiple scores at different future time points. Such approaches prevent coordinated
learning of multiple predictions that can be used to jointlypredict clinical scores at
multiple future time points. In this paper, we propose a joint learning method for predicting
clinical scores of patients using multiple longitudinal prediction models for various future
time points. Three important relationships among trainingsamples, features, and clinical
scores are explored. The relationship among different longitudinal prediction models is
captured using a common feature set among the multiple prediction models at different
time points. Our experimental results based on the Alzheimer's disease neuroimaging
initiative (ADNI) database shows that our method achieves considerable improvement
over competing methods in predicting multiple clinical scores.

Keywords: Alzheimer's disease (AD), longitudinal analysis , feature selection, joint learning, prediction

INTRODUCTION

Alzheimer's disease (AD) imposes heavy social-economic burdens on society (Fan et al., 2008;
Alzheimer's Association, 2014; Shi et al., 2015), and patients experience tremendous cognitive
decline throughout progression of the AD disease. Tremendous e�ort have been devoted
to improve the understanding and monitoring of AD progression(Brookmeyer et al., 2007;
Hinrichs et al., 2009; Liu M. et al., 2014; Wang et al., 2014; Jieet al., 2015; Lei et al.,
2015a; Liu et al., 2015; Lei et al., 2016; Zhuo et al., 2016). Modeling disease progression
based on cognitive decline in longitudinal analysis has beenwidely investigated in the
neuroimaging �eld (Fan et al., 2008; Davatzikos et al., 2010; Stonnington et al., 2010; Wang
et al., 2010; Hinrichs et al., 2011). In recent decades, neuroimaging-based longitudinal studies
have proven to be an important research direction in characterizing the neurodegenerative
process of AD, where data at multiple time points are often used (Teipel et al., 2007;
Vemuri et al., 2009; Jack et al., 2010; Cuingnet et al., 2011). It has been reported that
researchers are able to study the cognitive decline due to the neurodegenerative property of AD
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with traditional structural magnetic resonance imaging (MRI)
(Davatzikos et al., 2001, 2008; Dickerson et al., 2001; Gaser
et al., 2001; Leow et al., 2006; Jack et al., 2008; Vemuri et al.,
2008; Frisoni et al., 2010; Stonnington et al., 2010; Wang etal.,
2016a), di�usion-weighted MRI (Jin et al., 2015, 2017; Daianu
et al., 2016; Wang et al., 2016b; Wu et al., 2016), and functional
MRI (Yang et al., 2016). In addition, cognitive decline in
the neurodegenerative cognitive measures, e.g., the Alzheimer's
disease assessment scale cognitive subscale (ADAS-Cog) and the
mini mental state examination (MMSE), can be used to partially
reveal AD progression (Davatzikos et al., 2001, 2008; Dickerson
et al., 2001; Gaser et al., 2001; Leow et al., 2006; Jack et al.,
2008; Vemuri et al., 2008; Frisoni et al., 2010). However, accurate
prediction of AD progression still remains a challenging taskdue
to the complicated characteristic of AD progression.

The �rst challenge in longitudinal studies for AD diagnosis
is dimensionality of the data, which is usually much higher
than the available number of samples. To address this issue,
researchers have developed various feature selection modelsfor
di�erent clinical scores (e.g., ADAS-Cog and MMSE) to identify
disease-related biomarkers among multiple time points (Yuan
and Lin, 2006; Zhang et al., 2012; Zhou et al., 2013). Among these
methods, Lasso and its variants are the most popular techniques
for feature selection (Tibshirani, 1996; Guyon et al., 2002; Guyon
and Elissee�, 2003; Yuan and Lin, 2006; Wang et al., 2010). For
instance, (Wang et al., 2010), linear regression models are applied
in high-dimensional pattern recognition problems not only to
estimate the stage of AD, but also to construct a stable model.
Adaptive regional feature extraction is applied to this model for
the prediction of regression variables.

The second challenge is understanding the underlying
relationship between features, subjects, and clinical scores at
di�erent time points. This relationship is seldom consideredeven
though many longitudinal studies show promising predictive
power in AD progression prediction. This relationship could
provide inherent high-level information that is useful for
studying AD. Therefore, modeling and utilizing this relationship
could enhance the learning performance in predicting AD
progression.

To tackle the above-mentioned challenges, several methods
such as the group Lasso (Yuan and Lin, 2006), the temporally
constrained group Lasso (TGL,Caroli and Frisoni, 2010;
Jack et al., 2010), and the convex fused sparse group Lasso
(cFSGL,Zhou et al., 2013) incorporated cognitive progression
information into linear regression models to predict disease
progression. Evidently, multi-task learning methods using
intrinsic information achieve better performance than single-
task learning methods (Liu et al., 2012, 2015; Zhu et al., 2014a;
Jie et al., 2015), and this learning framework has shown great
success in predicting ADAS-Cog and MMSE due to its good
generalization capabilities (Zhang et al., 2011; Zhu et al., 2014a).
For example, Zhang and Shen (Zhang et al., 2011) proposed
a joint regression and classi�cation scheme to understand the
mechanism of AD. This method was further improved by Zhu
et al. using a feature and variable graph matching method to
jointly identify AD status and predict clinical scores (Zhu et al.,
2014a). The inter-modality constraints described by Liu et al.

were also included in a multi-task learning framework for AD
diagnosis (Liu F. et al., 2014). Despite promising performance
achieved by these methods, most existing methods fail to take
advantage of the cognitive progression from multiple time points
among features, subjects, and clinical scores. This missionis
undesirable in longitudinal analysis and follow-up studies.

To incorporate cognitive progression relationships,
longitudinal analysis has been widely explored to model
cognitive progression and to exploit the associated imaging
markers and cognitive changes across all time points (Misra
et al., 2009; Davatzikos et al., 2010; Stonnington et al., 2010;
Hinrichs et al., 2011; Zhang et al., 2012; Zhang and Shen,
2012; Zhou et al., 2013). For instance,Zhou et al. (2013)
integrated temporal smoothness into their method using multi-
task learning techniques to identify biomarkers for disease
progression. Remarkable performance is achieved based on
temporal-relational constraints and later-time constraints,
in which each task is treated separately using a single baseline
feature for predicting future-time-point score.Huang et al. (2015,
2016)proposed an improved random forest framework and took
advantage of the longitudinal information at multiple time points
to further improve the accuracy of AD score prediction. Using
complementary information, such as MRI data and clinical
scores, is desirable as it might uncover important imaging
biomarkers. Zhang et al. found that longitudinal analysis is
e�ective for mild cognitive interference (MCI) prediction
(Zhang and Shen, 2012) and proposed the utilization of MRI
features at multiple time points with temporal smoothness
regularization (Zhang et al., 2012). This method outperformed
competing methods, because the disease pattern is better
revealed by comprehensive cognitive progression information
as compared to methods using only the baseline features. In
addition, the AD progression prediction problem inWang
et al. (2012)was addressed by a high-order multi-task learning
method that exploits the temporal correlations in imaging
and cognitive data with a structured sparsity inducing term.
Promising predictive power is achieved via multiple time point
features, and the clinical scores are learned independently. This
arrangement is undesirable as correlation of the clinical score is
ignored.

Most existing methods ignore the relationship among
di�erent features, subjects, and clinical scores. Furthermore, the
relational information is seldom studied even though thereis
a strong correlation between the clinical scores and MRI data
(Gaser et al., 2001; Leow et al., 2006). Moreover, most of the
previous studies only focused on one or two types of relationships
without considering the cognitive decline at di�erent time points.
The integration of this type of information would better identify
the spatial patterns of brain atrophy because the associated
feature patterns and the speci�c patterns of the neighboring
time points are highly correlated. It has been also demonstrated
in literature (Zhu et al., 2014a; Jie et al., 2015) that multiple
relationships between feature-feature and subject-subjectboost
diagnosis performance.

Intuitively, information from clinical scores and subjects at
multiple time-points can play an important role in identifying
temporal patterns in longitudinal analysis. In this paper, a
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new multi-task joint feature learning method is developed to
exploit the intrinsic relation of the data to boost performance of
disease prediction. Manifold learning and discriminative learning
theories have achieved remarkable performance by incorporating
(Stanciu et al., 2014; Zhu et al., 2014b; Jie et al., 2015; Lei
et al., 2015b; Zhou et al., 2015). Therefore, we explore temporal
smoothness and multi-relation graphs among di�erent patterns
and cognitive measures to uncover human brain variations for
better diagnosis of AD progression. Speci�cally, we de�ne a
novel objective function to impose multi-relation information.
A group sparsity regularizer is used to jointly select a small
number of speci�c features across di�erent time points. We also
incorporate multi-relation smoothness regularization to capture
the relationship among features, subjects, and clinical scores.
After the selection of longitudinal feature, the �nal selected brain
regions are employed for clinical score prediction using multi-
kernel support vector regression (SVR,Chang and Lin, 2011). To
the best of our knowledge, there is no existing sparse model that
incorporates multi-relation smoothness in its objective function
to estimate the clinical scores (e.g., ADAS-Cog and MMSE). In
addition, our method focuses on multiple relationships, which
has obvious advantages over existing methods that only exploit
feature or sample relationships. It is worth noting that we
need to observe the behavioral changes in patients' condition
over time in order to model disease progression. However, it
is di�cult to extract huge amount of information from data
that is collected from multiple time points. Therefore, we utilize
the aforementioned relational constraints to build a robust
regression model by selecting the best and most relevant features
to predict patient's clinical behavior at multiple future time
points.

In this paper, we propose a joint learning procedure
for multiple longitudinal predictions of AD progression by
exploiting their inherent relationships. In particular, we propose
three novel regularization terms (each modeling a set of
crucial relationships at di�erent time points), and incorporate
these regularizers in a multi-task sparse feature selection
model. We also introduce a speci�cally designed loss function
to jointly predict the patients' clinical scores at multiple
future time points, thus condensing the common information
shared by data from di�erent time points and permitting
the selection of the most meaningful features for multiple
prediction tasks. We evaluate our method using the Alzheimer's
disease neuroimaging initiative (ADNI) (http://adni.loni.usc.
edu/) database (Alzheimer's Association, 2014), and our method
achieves promising results in estimating multiple clinical scores
at multiple future time points using only baseline data. For the
ADNI baseline, a total of 445 subjects—91 with AD, 202 with
mild cognitive impairment (MCI), and 152 cognitively normal
controls (NCs) are investigated in our study to predict the ADAS-
Cog/MMSE scores for the next 2 years because the subjects
already have completed MRI and clinical score data. In this work,
we focus on only using suitable data instead of all the data from
the ADNI database to study of disease progression.

Our extensive experimental results show that the proposed
joint learning framework obtains state-of-the-art performance
for future ADAS-Cog/MMSE score prediction. We observe that

the hippocampal formation, amygdala, temporal pattern, and
uncus demonstrate the most de�nitive patterns in predicting
clinical scores at all-time points.

MATERIALS AND METHODS

Materials
Our investigation is based on data obtained from the ADNI
database (Alzheimer's Association, 2014), which was created and
updated since 2004. This 6-year study is funded $60 million
from the public and private sectors, which include the National
Institute on Aging, the National Institute of Biomedical Imaging,
and Bioengineering, and the Food and Drug Administration.
The principle goal of ADNI is to verify that serial MRI and
positron emission tomography (PET) images, along with other
biological markers, clinical, and neuropsychological assessment
can be used to measure the progression of MCI and early AD.
The determination of sensitive and speci�c markers of very early
AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their e�ectiveness, as well as
to lessen the time and cost of clinical trials. ADNI is the collective
e�ort of many co-investigators from a broad range of academic
institutions and private corporations, and subjects have been
recruited from over 50 sites across the US and Canada. 800 adults
aged 55–90 were recruited to participate in this research, which
includes approximately 200 cognitively normal older individuals
followed for 3 years, 400 people with MCI followed for 3 years,
and 200 people with early AD followed for 2 years. For up-to-date
information, please refer to http://www.adni-info.org.

Subjects and Pre-processing
The general eligibility criteria of ADNI are brie�y described
in the following. Subjects between 55 and 90 years of
age who have a study partner to provide an independent
evaluation of functioning were selected. Patients taking certain
psychoactive medications were excluded. There are three general
inclusion/exclusion criteria: (1) The range of MMSE scores of
healthy subjects (non-depressed, non-MCI, and non-demented)
is 24–30; (2) The range of MMSE scores of MCI subjects
is also between 24 and 30. The subjects having objective
memory loss were measured with education adjusted scores
using the Wechseler memory scale logical memory II, a CDR
of 0.5, an absence of signi�cant levels of impairment education
adjusted scores fall between 20 and 26, and satisfy the National
Institute of Neurological and Communicative Disorders and
Stroke, and the Alzheimer's Disease and Related Disorders
Association (NINCDS/ADRDA) criteria for probable AD. The
study subjects gave written informed consent at the time of
enrollment for imaging and genetic sample collection and
completed questionnaires approved by each participating site

TABLE 1 | Statistical information of clinical scores.

Clinical scores Mean Median Min Max

MMSE 12.02 10 0 59

ADAS-Cog 26.27 28 5 30
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Institutional Review Board (IRB).Table 1 gives the detailed
ADAS-Cog and MMSE information of the subjects used in our
study.

The pre-processing of feature extracted from the ROI regions
have been widely applied in the literature (Liu et al., 2012, 2015;
Zhu et al., 2014a; Jie et al., 2015). For our method, pre-processing
was �rst applied to the T1-weighted MRI brain images of each
subject, and then skull stripping was performed to clean the skull.
The cerebellum was removed by warping a labeled Jacob atlas to
the skull-stripped image (Wang et al., 2014). Segmentation by the
FAST method (Zhang et al., 2001) was then applied to segment
the brain images into three tissues, which include white matter
(WM), gray matter (GM), and cerebrospinal �uid (CSF). After
segmentation, the brain image was nonlinearly registered with a
HAMMER tool (Shen and Davatzikos, 2002). The features used in
this study include the volume intensity extracted from the region
of interest (ROI) of di�erent brain regions (Zhang et al., 2011).
Speci�cally, the brain image of each subject was partitioned into
93 ROIs by atlas warping, and the volume of GM tissue of each
ROI was extracted as a feature. Similar to the study inWee et al.
(2012), the obtained features were normalized to facilitate disease
diagnosis and prognosis.

Notation and Problem Statement
For this work, capital bold letters denote matrices, small bold
letters denote vectors, and non-bold letters denote regular
variables. Let X2 RS� F denote the data ofSdi�erent subjects,
where each subject is represented by anF-dimensional feature
vector from the baseline MRI image. Let X denote the data
generated from baseline time point. We denote xu,: and x:,v as the
u-the row vector and thev-th column vector of X, respectively.
Let Y D

�
Y. t/ 2 RS� C, t D 1,: : : ,T

	
denoteC types of clinical

cognitive scores (e.g., ADAS-Cog and MMSE) forS subjects

at T time points, where Y(t) 2 RS� C is the corresponding
clinical scores at thet-th time point for S subjects. LetW D�
W. t/ 2 RF� C, t D 1,: : : ,T

	
as denote the set of weight matrices

that map the original features to clinical scores, where W(t)

represents the weight matrix for thet-th time point.
Our goal is to create a linear regression model to reveal the

longitudinal associations between the original features and the
cognitive trajectories through time, and predict the clinical scores
at multiple future time points from the baseline data (t D 1). This
is illustrated inFigure 1. Each subject's features are assigned as a
row in the matrix X. By learning the weight vectors in each W(t),
we can reconstruct the corresponding clinical scores in each Y(t),
as explained below.

To simplify the problem and design the objective function,
we unfolded the projected weight matrix by concatenating all
W(t) s as bW D

�
W.1/ , W.2/ , � � � , W. t/ , � � � , W.T/

�
2 RF� CT.

Hence, the model parameters can be incorporated in the objective
function to extract the common features across di�erent time
points. This unfolded simpli�ed weighting matrix is shown
in Figure 2.

Methodology
A key advantage of longitudinal studies is the ability to observe
the patients' changes through time, and to e�ectively utilizethe
shared common information in di�erent time points to select
the best set of features for monitoring the progression of MCI
patients and thereafter predicts their future status. There are
three di�erent aspects in which this common information could
be leveraged, i.e., the relationships among features, subjects,
and clinical scores. Intuitively, the pairwise similaritiesamong
features, subjects, and clinical scores should be preservedin
the predictions via the regression model. In this section, we
introduce a method to incorporate such relation informationinto

FIGURE 1 | An illustration of the proposed regression model us ing longitudinal data. X is the input baseline MRI data,Y is the target tensor data, andW is
the weight model projection. For the inputX, x-axis represents the features, andy-axis denotes the subjects. For the target tensor dataY, x-axis represents clinical
scores, y-axis represents the subjects, andz-axis denotes the time points. For the model parametersW, x-axis plots the clinical scores,y-axis represents the
features, andz-axis denotes the time points. We want to establish a linear model W between the inputX and output Y.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 March 2017 | Volume 9 | Article 6

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Lei et al. Longitudinal Analysis for Disease Progression

a multi-task learning framework. Speci�cally, we de�ne a linear
regression model for each time point using the baseline data as
a single task, and then formulate the global regression model in
a multi-task learning framework with al2,1 sparsity constraint,
where the above three relational aspects are incorporated
as regularization terms.Figure 3 shows the �owchart of the
proposed method.

To clearly illustrate the relationship among features, subjects,
and clinical scores, we adopted a graph matching technique in
our proposed method, where the feature-feature, subject-subject
and clinical score-clinical score relationships are represented
in terms of graph (shown inFigure 4). In Figure 4A, a
node represents one feature and an edge represents the

FIGURE 2 | The illustration of the unfolded weight matrices. Each row is
correponding to a speci�c feature vector among different time points, and
each column is corresponding to a clinical score vector at one time point.

relationship between the connected nodes.Figures 4B,Cshow
the relationship among subjects and among clinical scores,
respectively. In these graphs, the length of an edge between
features (subjects or clinical scores) represents the similarity
among features (subjects or clinical scores), where the similarity
increases with the length of the edge. These graphs are built
based on the information of training data, which are then
used as regularization terms for subsequent multi-task learning
procedure.

Previous studies (e.g.,Zhou et al., 2013) revealed the
associations among imaging features and cognitive scores at each
time point separately, under the assumption that each task at each
time point is independent. However, this assumption does not
always hold because clinical scores possess temporal correlation.
In fact, harnessing the temporal correlation could potentially
help predict the clinical cognitive scores. This motivates us to
use a joint learning regression model across all time points,
which would help identify the most relevant imaging markers
for the prediction of cognitive scores. Speci�cally, we seek to
learn the weight coe�cient matrices to uncover the clinical scores
progression, through which the information from each learning
task and the common structures among multiple time points can
be jointly discovered.

To select the most relevant and discriminant features at each
time point, a correlation-induced sparsity model with a least-
squares loss function is proposed. The loss function controlsthe
prediction error, while the sparsity assumption leads to the least
number of contributing features. As a result, for each time point,
we would select the features that are most correlated with the
actual clinical scores. A general form of the proposed objective
function is de�ned as below:

min
fW(t),t D 1,..,Tg

X T

t D 1
k Y(t) � XW(t) k

2
F

C � 1

X T

t D 1
8

�
W(t)

�
C � 2kbWk2,1, (1)

FIGURE 3 | Flowchart of the proposed method. The MRI data and clinical scores are extracted for longitudinal feature selection, with smoothness regularization
(i.e., feature-feature, subject-subject, and clinical score-clinical score relation guided regularizers) and a group sparsity induced regularization. After longitudinal feature
selection, the feature dimension is reduced, and the selected features are employed to build ADAS-Cog and MMSE regression models for prediction.
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FIGURE 4 | Illustration of relations among (A) features, (B) subjects, and
(C) clinical scores, where a node means a vector of(A) feature, (B) subject,
(C) clinical score, respectively, and an edge denotes the distance between the
nodes.

where k � k 2
F is the Frobenius norm of a matrix,W is

the coe�cient weight matrix, � 1 and � 2 are the regularization
parameters. The last term in Equation (1) is a group regularizer
to uncover the correlation among di�erent features and jointly
select features for multiple tasks, which is de�ned ask bW k2,1DP F

i D 1 k bwi,:k2, wherebwi,: is thei-th row vector ofbW, andk � k 2
F

is l2,1-norm. It is worth noting thatl2,1 -norm computes the sum
of the l2 -norm of each row ofbW, which enforces many rows to
be zero, and hence it is suitable for feature selection. Features
corresponding to those non-zero rows inbW are regarded as
the most predictive features in subsequent learning models.
The second term8 (W(t)) is our proposed regularizer, which is
comprised of multiple parts corresponding to three relationships
among features, among subjects, and among clinical scores.To
de�ne the proposed regularization term,8 (W(t)), the “feature-
feature,” the “subject-subject,” and the “clinical score-clinical
score” relationships at each di�erent time point are incorporated.
We use the idea of Laplacian matrices and graphs to obtain the
similarity in the local structures (Belkin and Niyogi, 2003). In
the rest of this section, we explain it in detail and discuss all its
characteristics.

The “feature-feature” relation information is imposed as the
relationship between columns of the input matrix X, and is
re�ected in the relation between corresponding rows in the
coe�cients weight matrix W(t). Hence, the widely used graph
Laplacian (Hinrichs et al., 2009; Wang et al., 2012; Zhu et al.,
2013) is leveraged. To measure the similarity between theu-th
and thev-th features of X. in the original feature space, we use
the heat kernel de�ned as below:

fuv D exp
�
� k x:,u � x:,v k2

2
�

, (2)

where x:,u is the u-th column of the input dataX. Based on
the similarity, we develop the �rst feature-feature relation based
regularization term as

Rf

�
W. t/

�
D

X F

u,v D 1
fuv k w(t)

u,: � w(t)
v,: k 2

2, (3)

wherew(t)
u,: is theu-th row of W(t) at time pointt. Thus, the highly

correlated features produce large weights in the above sparsity
regularization.

The second regularization is based on the “subject-subject”
relation graph. We know that the output clinical scores of similar

subjects should be similar. Therefore, similar to the previous
term, we use a heat kernel to exploit the “subject-subject”
similarities and de�ne the similarity between them-th and the
n-th subject as

� mn D exp
�
� k xm,: � xn,:k2

2
�

, (4)

wherexm,: is the m-th row of input X. Here, “subject-subject”
relation regularizer is de�ned as

Rs

�
W. t/

�
D

X S

m,n D 1
� mn kxm,:W

(t) � xn,:W
(t)k2

2. (5)

The last regularization is based on the “clinical score-clinical
score” relation. For each subject's feature vector xp,: in our
regression framework, di�erent sets of weight coe�cients are
used to regress the output clinical scores y(t)

:,p. In other words, the
elements in each column of W(t) are related to the elements in
each column of Y(t) through the feature vectors. As a result, if two
clinical scores are correlated, the corresponding weight columns
in matrix W(t) should be correlated too. Similarly, we use a heat
kernel to exploit the “clinical score-clinical score” relation. The
similarity between thep-th clinical score and theq-th clinical
score is de�ned using a heat kernel as

 pqt D exp
�
� k y(t)

:,p � y(t)
:,qk2

2

�
, (6)

wherey(t)
:,p is thep-th column vector ofY(t). To this end, we de�ne

the clinical score relational regularization term as

Rc

�
W. t/

�
D

X C

p,q D 1
 pqtkw(t)

:,p � w(t)
:,qk2

2. (7)

Therefore, our proposed joint learning model using the relation
information, as discussed above, is

min
fW(t),t D 1,..,Tg

X T

t D 1
k Y. t/ � XW(t) k2

F C � 1

X T

t D 1

�
Rf

�
W. t/

�

C Rs

�
W. t/

�
C Rc

�
W. t/

��
C � 2 kbW k2,1. (8)

Using Equation (8), we incorporate three types of relationship
data at multiple time points into a uni�ed objective function.This
method is referred as the simultaneous multi-relation temporally
constrained learning (SMTL). To the best of our knowledge,
this is the �rst work to simultaneously incorporate multi-
relation information such as “feature-feature,” “subject-subject,”
and “clinical score-clinical score” in fused regularizations, which
is di�cult to solve in current sparse models. In addition, no
previous studies jointly apply the multi-relation information
across multiple time points as additional regularizers.

Motivated byZhu et al. (2013), the optimization problem in
Equation (8) could be solved in an alternative way (i.e., �nding
the optimal solution for one variable while the others are �xed).
The optimization steps are discussed in the following section.
After selecting the most meaningful features, we use a SVR model
to predict the clinical scores of patients at multiple future time
points. Considering how AD changes over time, our algorithm
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bene�ts from a joint multi-task learning framework, in which
multiple relationships are introduced as regularization terms
to take advantage of the local structure similarity in the data.
Because of the sparsity property of thel2,1 -norm regularization
on weight vectors, the optimal weights contain some zero or close
to zero row vectors. Structured sparsity is then imposed through
penalizing all the regression coe�cients corresponding to each
single feature, at multiple time points. Thus, the most distinctive
and predictive features will have similar large weights across all
time points.

Optimization Algorithms
Although our objective function is convex, it is di�cult to solve
because regularization terms are based on non-smooth sparsity-
inducing norms in the objective function (Zhu et al., 2013,
2014a). l2,1 norm minimization is more challenging to solve
than the l1 -norm minimization problem. As most existing
optimization algorithms are too computation costly to solve our
problem (Wee et al., 2012; Zhang and Shen, 2012), an e�cient
iterative algorithm is developed in this work.

In the similarity measurement, a Laplacian graph at each time
point is built based on a diagonal matrix and formulated as:
Df D fuv, Ds D � mn, D(t)

c D  pqt. LetSf , Ss andS(t)
c denote the

summation of the diagonal entry ofDf ,Ds, andD(t)
c , respectively.

The graph LaplacianLf for the feature space at each time point
is: Lf D Df � Sf . Similarly, we have the Laplacian graph for the

subject and clinical score,Ls D Ds � Ss and L(t)
c D D(t)

c � S(t)
c ,

respectively. As any regularization termRs(W(t)) can be

reformulated as Rf (W(t)) D Tr
�
(W(t))

T
Lf W

(t)
�
,Rs(W(t)) D

Tr
�
(W(t))

T
LsW

(t)
�
,Rc(W(t)) D Tr

�
(W(t))

T
L(t)

c W(t)
�
.

Assuming LD is Laplacian graph built based on a diagonal
matrix of bW, the objective is �rst reformulated as:

J(W(t)) D min
fW(t),t D 1,..,Tg

X T

t D 1
k Y(t) � XW(t)k2

F

C � 1

X T

t D 1
Tr

�
(W(t))

T
Lf W(t) C

�
XW(t)

� T
Ls XW(t)

C W(t)L(t)
c (W(t))

T �
C � 2Tr

�
bWTLD

bW
�

, (9)

whereLD is Laplacian graph built based on a diagonal matrix
of bW. The optimal solution of W(t) is obtained by taking the
derivative of the objective function with respect to W(t).

By taking the derivative of the objective function in Equation
(8) with respect to W(t) and set to 0, we obtain:

XTX � X(Y(t))
T

C � 1

�
Lf W(t) C XTLs XW(t) C W(t)L(t)

c

�

C � 2LD W(t) D 0. (10)

We can rewrite Equation (10) as

(XTX C � 1Lf C � 1XTLs X C � 2LD)W(t) C W(t)
�
� 1L(t)

c

�

D X
�
Y(t)

� T
. (11)

This equation is regarded as Sylvester equation and solvable in
the closed formZhu et al. (2014a)using

AW(t) C W(t)B D Q, (12)

whereA D XTX C � 1Lf C � 1XTLs X C � 2LD, B D � 1L(t)
c and

Q is X(Y(t))
T

, W(t), (1 � t � T) can be obtained by solving the
Sylvester equations (Zhu et al., 2014a) when the timet changes
from 1 toT.

SinceLf , Ls, L(t)
c , and LD are obtained from W(t) and are

dependent of W(t), an iterative optimization is proposed to
e�ciently obtain the global solutions of W(t), (1 � t � T) (Zhu
et al., 2013). The solution of W(t) for1 � t � T is summarized
in Algorithm 1 . The iterative optimization method updates W(t)

until the objective function converged.

EXPERIMENTAL RESULTS

A 10-fold cross validation strategy is employed to avoid any bias
introduced in the data and experiments. A set of 445 subjects
comprising of 91 NC, 202 patients with MCI, and 152 AD
patients are included in our study. We also used subjects from
the ANDI database with T1-weighted MRI data from a 1.5 T
scanner. The entire set of subjects is equally partitioned into
10 subsets, and the subjects of one subset are selected as the
testing samples and the subjects in the remaining nine subsets
are used for training regression models. In our experiments, the
regression model is implemented using the LIBSVM toolbox
with default parameters, and a linear kernel is adopted after
normalizing each feature vector into a unit norm. In the pre-
processing step, the features are z-normalized by removing their
mean and dividing the result by its standard deviation. The two
cognitive measurements, ADAS-Cog and MMSE, are computed

Algorithm 1 | An iterative algorithm to solve the optimizatio n problem in
Equation (8)

Input: Baseline MRI training data ofS subjects and F dimensional feature:
X 2 RS� F

T time points clinical scores ofS subjects and C dimensional clincial
score vector: Y D

n
Y. t/ 2 RS� C, t D 1, : : : , T

o
Parameters:

regularization paramters and iteration times

Output: Weight projection matrix:W D
n
W. t/ 2 RF� C, t D 1, : : : , T

o

Set iterationr D 0 and initializeW(t) 2 RF� C according to the linear
model for each time point;

Initialization:bW(0) D [W(1), W(2), : : : , W(t), : : : , W(T)]

Repeat

for t D 1 to T

CalculateLf , Ls , L (t)
c and LD , according to the above de�nitions;

Update bW(t)
r by solving the Sylvester problem in equation (13);

End for
bW(t)

rC1 D [W(1), W(2), : : : , W(t), : : : , W(T)];

r D rC1;

until (r D 50 or bW � W2 < 10–6)

Return W(t), (1 � t � T)
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from the MRI data collected at four di�erent time points.
The experimental setup fromZhou et al. (2013)is adopted.
The regularization parameters in the feature-selection model of
Equation (8) (i.e.,� 1 and � 2) are determined by performing
another round of cross-validation on the training data.

Figure 5summarizes the objective function values at di�erent
iterations. The objective function values monotonically decrease
as the number of iterations increases, which is consistent with
our convergence analysis. The objective value quickly converged
after a few iterations, which demonstrates the e�ectivenessof the
proposed optimization method and the e�cacy of our feature
selection algorithms.

Extensive experiments are performed to evaluate the
e�ectiveness of the proposed feature selection method. Two
regression tasks are constructed to predict the changes in ADAS-
Cog and MMSE for the baseline and a two-year follow-up study.
The widely used Pearson's correlation coe�cient (Corr) and
root-mean-square error (RMSE) metrics are used to measure
performance (Duchesne et al., 2009; Ito et al., 2010; Stonnington
et al., 2010; Zhou et al., 2013).

ADAS-cog and MMSE Prediction Results
Figure 6 shows the scatter plots of the estimated ADAS-Cog
scores vs. the actual ADAS-Cog scores obtained with the
proposed method at baseline, 6, 12, and 24 months.Figure 7
shows the scatter plots of the predicted MMSE vs. the actual
MMSE scores obtained with the proposed method at baseline, 6,
12, and 24 months. The linear model adopted in the proposed
method is illustrated with a red line, and the perfect regression
method is shown by a green line for comparison. Although
predicting future clinical scores is quite challenging, it is evident
that our proposed method achieves remarkable results in terms
of Corr and RMSE results. Similar to the previous studies (Zhang
and Shen, 2012; Zhang et al., 2012; Zhou et al., 2013), we observed
that predicting early and changes of MCI up to 1 year is more
di�cult than later time points as less distinct information is
available to separate early MCI. The low correlation values in
the early time periods are mainly due to the failure to detect
progression from MCI to early AD, and it is even harder to
uncover essential changes of brain regions in early MCI. Our
experimental results show that the proposed multiple time point

FIGURE 5 | Scatter plots of predicted vs. actual ADAS-Cog val ues at different time points; (A) Baseline(B) 6 Months (C) 12 Months (D) 24 Months. The red
line in each �gure is a reference of perfect correlation. The green line is the regression line by the proposed model. The closer between the regression line and
reference line, the better performance the proposed methodcan achieve. A high correlation is observed for ADAS-Cog prediction at each time point.
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FIGURE 6 | Scatter plots of predicted vs. actual MMSE values a t different time points; (A) Baseline(B) 6 Months (C) 12 Months (D) 24 Months. The red line
in each �gure is a reference of perfect correlation. The greenline is the regression line with the proposed model. The closer between the regression line and reference
line, the better prediction the proposed model can achieve.A high correlation is observed for MMSE prediction at each time point.

joint learning with multiple relationships information is better
at predicting ADAS-Cog and MMSE scores than single-task
learning and the separate learning methods. We also address
the problem of predicting the future cognitive decline of MCI
subjects.

Algorithm Comparison
A comparison of our proposed method with three feature
selection methods, namely, Lasso, temporal group Lasso (TGL,
Zhang et al., 2012), and convex fused temporally constrained
group Lasso (cFSGL,Zhou et al., 2013) is performed.Figure 8
shows the performance of these methods on predicting ADAS-
Cog/MMSE scores at baseline (T1), 6 months (T2), 12 months
(T3), and 24 months (T4). We also present the detailed
algorithm comparison results in terms of Corr and RMSE in
Table 2. Our experimental results demonstrate that the proposed
method performs better than the separate learning method in
predicting ADAS-Cog and MMSE scores. We observed that the
prediction of the changes of early and �rst year clinical score

is signi�cantly harder than the later time points since there
is less distinct information available for the earlier prediction,
which was also con�rmed by previous studies (Zhang et al.,
2012; Zhou et al., 2013). The main reason for low correlation
in the early time frame is that there is not su�cient time for
MCI to progress to early AD, thus it is more challenging to
uncover the essential changes of brain regions in early MCI.
Our proposed method achieves stable and promising results
for both ADAS-Cog and MMSE prediction, and outperforms
several state-of-the-art methods (Zhang et al., 2012; Zhou
et al., 2013). From the experimental results, the promising
prediction results clearly suggest the e�ectiveness of the proposed
method.

Next, we compare di�erent sub-groups containing all subjects
including AD, MCI, NC (ALL), and only MCI patients
(MCI). Figure 9 presents the detailed comparison results of
the di�erent sub-groups for ADAS-Cog and MMSE prediction.
Since our method is jointly learned, better results are observed
from the ALL group. This group provides the opportunity
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for the proposed algorithm to discover multi-relationship
information using multi-task learning.Table 3shows the detailed
comparison of the state-of-the-art methods. The proposed

FIGURE 7 | Objective value as a function of the iteration number on the
ADNI dataset.

method with multi-relationship information obtains remarkable
results, especially for the prediction of later time points forboth
ADAS-Cog and MMSE, which are consistent with the �ndings in
the previous publications as well (Zhang et al., 2012; Zhou et al.,
2013).

Top Selected Brain Regions
The hippocampus plays an important role in identifying brain
conditions through AD modeling and measuring the cognitive
outcomes such as ADAS-Cog and MMSE. By extracting features
from the associated brain regions, the multi-task mechanism
accounts for the hippocampus region's sensitivity in cognitive
score prediction via MRI baseline data. MCI is characterized by
the temporal lobe neocortical regions during dementia decline.
Therefore, it is of great signi�cance to �nd biomarkers for
the diagnosis of AD. In this section, we investigate multiple
regression variables and their relationships with brain variables
such as ADAS-Cog and MMSE. Based on the cross validation,
the top predictive regions were selected in terms of the frequency
of feature appearance.Figure 10shows the top 30 most predictive
brain regions with the highest weights for ADAS-Cog and MMSE
predictions of our proposed and cFSGL methods, where darker
colors denote larger weights and vice versa. The most predictive

FIGURE 8 | Comparison of ADAS-Cog and MMSE prediction results by our proposed SMTL method and three feature selection methods : Lasso, TGL,
and cFSGL, using Corr and RMSE measurement; (A) ADAS-Cog prediction results in terms of Corr(B) ADAS-Cog prediction results in terms of RMSE(C) MMSE
prediction results in terms of Corr.(D) MMSE prediction results in terms of RMSE.
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Table 2 | Comparison of ADAS-Cog and MMSE prediction results b y our proposed SMTL method and three feature selection methods: Lasso, TGL, and
cFSGL, using Corr and RMSE measurement.

ADAS–Cog MMSE

Lasso TGL cFSGL SMTL Lasso TGL cFSGL SMTL

Baseline Corr 0.32� 0.08 0.49 � 0.08 0.58 � 0.08 0.77 � 0.05 0.51 � 0.09 0.56 � 0.12 0.64 � 0.08 0.75 � 0.08

M06 Corr 0.48 � 0.07 0.50 � 0.07 0.59 � 0.05 0.78 � 0.04 0.49 � 0.07 0.48 � 0.10 0.63 � 0.10 0.79 � 0.10

M12 Corr 0.46 � 0.12 0.52 � 0.09 0.62 � 0.05 0.79 � 0.04 0.52 � 0.06 0.57 � 0.08 0.64 � 0.12 0.79 � 0.12

M24 Corr 0.57 � 0.08 0.53 � 0.08 0.69 � 0.05 0.84 � 0.04 0.61 � 0.05 0.58 � 0.05 0.65 � 0.05 0.83 � 0.06

Baseline RMSE 5.19� 0.33 5.53 � 0.32 5.20 � 0.33 3.81 � 0.45 2.25 � 0.20 2.30 � 0.24 2.24 � 0.21 1.75 � 0.20

M06 RMSE 5.48� 0.62 5.90 � 0.65 5.48 � 0.63 4.36 � 0.46 2.75 � 0.31 2.85 � 0.33 2.76 � 0.32 2.31 � 0.29

M12 RMSE 6.25� 0.58 6.74 � 0.63 6.24 � 0.59 4.91 � 0.56 3.42 � 0.49 3.59 � 0.52 3.42 � 0.50 2.48 � 0.40

M24 RMSE 7.95� 1.20 7.81 � 1.39 7.96 � 1.23 6.00 � 1.00 4.05 � 0.58 4.48 � 0.82 4.04 � 0.58 3.00 � 0.38

FIGURE 9 | Comparison of ADAS-Cog and MMSE prediction models in terms of both Corr and RMSE for all subjects including AD, MCI, a nd NC (ALL)
and only MCI patients (MCI); (A) ADAS-Cog prediction results in terms of Corr(B) ADAS-Cog prediction results in terms of RMSE(C) MMSE prediction.

brain regions, namely, the hippocampus and amygdala, are
commonly selected for regression tasks. Most of the commonly
selected top regions such as hippocampal formation, amygdala,
and uncus regions proved to be sensitive and provides AD
biomarkers in many studies (Zhang et al., 2012; Zhou et al.,
2013).

Biomarkers from di�erent time-points are consistently
identi�ed, and important MRI patterns are localized, which
suggest that the MRI biomarkers are able to predict the ADAS-
Cog and MMSE results e�ectively. The distinctive and important
biomarkers selected in our study included the hippocampal
formation, amygdala, middle temporal lobe, uncus, and corpus
callosum. The hippocampus is the most important region
a�ecting AD as it possesses signi�cant structural lesions (Convit
et al., 2000; Laakso et al., 2000; Wolf et al., 2003; Del Sole
et al., 2008; Knafo et al., 2009; Der�inger et al., 2011; Poulin

et al., 2011; Ota et al., 2014). Both cFSGL and proposed method
selected the important biomarkers for AD diagnosis, while our
proposed method identi�es more stable and related features
for the clinical score measurement. Moreover, the distinctive
information selected by the proposed method is more promising
for AD modeling than the cFSGL method, due to the joint
learning adopted in a multi-task framework, and weights for
both ADAS-Cog and MMSE are considered jointly, rather than
separately. The common and shared high-level information
of ADAS-Cog and MMSE scores can be further explored for
disease progression modeling. As a result, the most predictive
brain regions such as the hippocampus, amygdala, and temporal
patterns are commonly selected in our regression models. The
identi�ed brain regions are consistent across multiple time
points. The weights for ADAS-Cog and MMSE have similar
patterns as well. Moreover, our proposed method con�rms that
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Table 3 | Algorithm comparisons of the proposed method with the related works for ADAS-Cog and MMSE prediction.

Method Target Subject Feature Result (Corr)

Duchesne et al., 2009 M12 MMSE 75 NC, 49 MCI, 75 AD Baseline MRI,
age, gender, years of education

MMSE: 0.31 (p D 0.03)

Stonnington et al., 2010 Baseline
ADAS-Cog and
MMSE

Set 1:73 AD, 91 NC
Set 2: (ADNI) 113 AD, 351 MCI,
122 NC

BaselineMRI, CSF MMSE Set1: 0.7 (p < 10e-5)
Set 2: 0.48 (p < 10e-5) ADAS-Cog
Set 2: 0.57 (p < 10e-5)

Zhang et al., 2012 Baseline,M06,M12,M24
ADAS-Cog, MMSE

ADNI: 91 AD, 202 MCI, 152 NC Baseline,M06, M12, M24 MRI Average MMSE: 0.613 (p < 10e-5)
Average ADAS-Cog: 0.639 (p < 10e-5)

Proposed Baseline, M06, M12, M24
ADAS-Cog, MMSE

ADNI: 91 AD, 202 MCI, 152 NC Baseline MRI Average MMSE: 0.7538 (p < 10e-5)
Average ADAS-Cog: 0.7875 (p < 10e-5)

AD, MCI, and NC denote Alzheimer's disease patients, mild cognitive impairment patients, and normal controls, respectively.

FIGURE 10 | The most predictive regions identi�ed by (A) Proposed and (B) cFSGL method (Zhou et al., 2013). Note that the proposed method learns
ADAS-Cog/MMSE jointly, while cFSGL learns them separately.

the hippocampus and amygdala are highly important for studies
on AD.

In general, higher weights lead to the selection of better
features, namely, large weight values correspond to the

e�ectiveness of features to characterize the brain atrophy through
quantitative measurements. The experiments on progression
from MCI to AD produce similar results from predicting AD
and NC in the training steps. ADAS-Cog and MMSE predictions
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FIGURE 11 | The probability feature map for predicting the score s.

share common e�ective information. Other feature selection
methods such as cFSGL demonstrate di�erent patterns. As shown
in the stable feature selection results, our method generally
obtains more stable features for predicting both ADAS-Cog and
MMSE scores at multiple time points. In general, our method
outperforms the competing methods, which is also demonstrated
in the probability map shown inFigure 11. The probability map
further con�rms that the hippocampus and amygdala are highly
correlated with AD. The features extracted from these regions
have high predictive power for the ADAS-Cog and MMSE
prediction.

As illustrated in Figure 12, the most e�ective features for
predicting ADAS-Cog and MMSE across all time points are,
namely, angular R, right hippocampal formation, right temporal
lobe WM, left uncus, left middle temporal, right periirhinal
cortex, left periirhinal cortex, left inferior temporal, and left
temporal. Our �ndings are consistent with many previous
studies which determined the amygdala, hippocampal formation,
angular, and uncus are the most predictive biomarkers for AD
characterization (Convit et al., 2000; Laakso et al., 2000; Wolf

et al., 2003; Del Sole et al., 2008; Knafo et al., 2009; Der�inger
et al., 2011; Poulin et al., 2011; Ota et al., 2014).

DISCUSSIONS AND CONCLUDING
REMARKS

These relationships could provide inherent high-level
information on AD progression, therefore modeling and
utilizing such relationship information can enhance the learning
performance of AD progression prediction. Although there are
a myriad of progression models available, such as regression
and survival model (Wang et al., 2010), we used a popular SVR
model due to its desirable properties. The accurate predictionof
ADAS-Cog and MMSE scores is essential in modeling disease
progression of AD, and to assist clinical assessment. It is shown
that clinical scores are highly correlated with ventricle change,
shape, hippocampal, and gray matter volume loss. Because
the medial temporal lobe and brain atrophy pattern are highly
related to MMSE, the correlation should be utilized for clinical
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FIGURE 12 | Top 10 most predictive brain regions for predicting the cognitive measurements.

score prediction. Apart from feature selection, clinical model
and statistical analysis extract diagnostic information and learn
large-scale medical imaging based features. The advantages of
our models include discrete timestamps at irregular intervals
for modeling the disease progression of AD, and the greater
interpretability of our model due to the improvement in the
selection of distinct features.

Even though promising prediction results were obtained in
our study, there are still some limitations in the proposed feature
selection method. First, only a single modality is used. If multiple
modalities were available (such as PET, DTI, APOE, and CSF),the
predictive power could be possibly enhanced. Second, all subjects
should have complete feature values with no missing data. This
would be challenging to achieve with larger experiments and
more subjects. Future research can be conducted to investigate
the issues associated with missing data. Third, we only investigate
the ADAS-Cog and MMSE predictions. It is possible to extend
this method to predict the sub-scores of clinical tests and other
regression variables, such as the clinical dementia ratingscale
sum of boxes (CDR-SOB) and the auditory verbal learning test
(AVLT) for cognitive measurement.

A problem that is often referred to as the curse of
dimensionality, where the large size (i.e., large number of
dimensions) of features for modeling AD progression makes it
di�cult to perform various numerical analyses on the data. This

problem led to increased di�culty to draw consistent conclusions
from the dataset. The feature selection method addressed this
problem by leveraging the sparse learning technique to model
the AD progressive and predict AD progression using the
temporal priors and hippocampus. Apart from feature selection,
the clinical model and statistical analysis extracted diagnostic
information and learned large-scale medical imaging basedon
features. By merging fused multi-task learning together with
the temporal smoothing of the parametric hippocampus surface,
clinical scores, and subjects, promising prediction resultsfor
future ADAS-Cog and MMSE prediction were obtained.

The main challenge is to identify task-speci�c features and
signi�cant biomarkers to model AD, as well as locating a
common set of features using the learned model. Previous works
showed that performance decreases with a smaller training set
(Stonnington et al., 2010), but the trend and relative performance
remain comparable. An interesting direction is to add constraints
to �nd similar parametric surfacesto determine more similarand
smoother weights, and hence better and more consistent results
can be obtained. This work illustrated that the extraction of the
volumetric information from parametric surface could aid in
the prediction of AD progression, which could be also extended
to fMRI studies. Because the dimensionality problem still exists
when the number of voxel and vertex points increases, feature
selection is generally a plausible approach to leverage prior
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information and explore sparsity and smoothness as well. Sparse
learning is a powerful tool to identify useful features and reduce
feature dimension. Although there are a number of feature
selection algorithms available, the features from these algorithms
often lack biological meanings and reasonable interpretations.
A method that is capable of locating desirable features with
reasonable feature dimension is highly desirable.

Directions for future work include understanding the
behavior of weights across the parametric surface space and
time. Previous works shown that stability selection (Zhou
et al., 2013) may be a good �t for analyzing the feature
weights on the model. Future works including the stability
analysis of weights which might provide more information
on the relationship between the deformation of hippocampal
sub�elds and other clinical indicators, such as AVLT duringAD
progression. The longitudinal information on brain structure is
highly correlated to disease progression. Hippocampal atrophic
rates and ventricular changes are assessed statistically with the
surface change. The resulting maps are sensitive to longitudinal
changes in brain structure as the disease progresses. Additional
maps to localize atrophic change regions are linked to cognitive
decline. Additional maps for hippocampal atrophy and clinical
deterioration are also helpful for understanding AD progression.
These quantitative, dynamic visualizations of hippocampal
atrophy and ventricular expansion rates in aging and AD may
provide a promising measure to track AD progression in drug
trials. Furthermore, it would be interesting to investigate the
feasibility of extending our joint learning method to modeland
predict other diseases, such as Parkinson's disease or Autism
disorder.

In this paper, we proposed a novel longitudinal prediction
model which incorporates multiple relation information of data
in a uni�ed objective function. We applied our proposed model
for AD progression prediction at multiple future time points,
using the baseline data only. Speci�cally, we developed a novel
multi-task sparse feature selection model by considering the
relationships between features, subjects, and clinical scores. The

feature selection procedure selects the most relevant features
for the task of clinical scores prediction at multiple future
time points, followed by the use of regression models for
predictions. Our experimental results of the proposed method
based on the ADNI database demonstrated promising results in
estimating the clinical cognitive scores at multiple future time
points.
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