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It is highly desirable to predict the progression of Alzheier's disease (AD) of patients
[e.g., to predict conversion of mild cognitive impairment MICI) to AD], especially
longitudinal prediction of AD is important for its early dgnosis. Currently, most existing
methods predict different clinical scores using differentmodels, or separately predict
multiple scores at different future time points. Such appraches prevent coordinated
learning of multiple predictions that can be used to jointlypredict clinical scores at
multiple future time points. In this paper, we propose a joirlearning method for predicting
clinical scores of patients using multiple longitudinal pdiction models for various future
time points. Three important relationships among trainingamples, features, and clinical
scores are explored. The relationship among different lorigidinal prediction models is
captured using a common feature set among the multiple predtion models at different
time points. Our experimental results based on the Alzheinmis disease neuroimaging
initiative (ADNI) database shows that our method achievesoasiderable improvement
over competing methods in predicting multiple clinical scres.

Keywords: Alzheimer's disease (AD), longitudinal analysis , feature selection, joint learning, prediction

INTRODUCTION

Alzheimer's disease (AD) imposes heavy social-economidems on societyHan et al., 2008;
Alzheimer's Association, 2014; Shi et al., 20Hnd patients experience tremendous cognitive
decline throughout progression of the AD disease. Tremesdewrt have been devoted
to improve the understanding and monitoring of AD progressi¢arookmeyer et al., 2007;
Hinrichs et al., 2009; Liu M. et al., 2014; Wang et al., 2014;etlial., 2015; Lei et al.,
2015a; Liu et al., 2015; Lei et al., 2016; Zhuo et al.,)2M6deling disease progression
based on cognitive decline in longitudinal analysis has beeédely investigated in the
neuroimaging eld ¢an et al., 2008; Davatzikos et al., 2010; Stonnington e2@10; Wang
et al., 2010; Hinrichs et al., 2011n recent decades, neuroimaging-based longitudinadlist
have proven to be an important research direction in charaziey the neurodegenerative
process of AD, where data at multiple time points are often useédipel et al., 2007;
Vemuri et al., 2009; Jack et al., 2010; Cuingnet et al., )20ilhas been reported that
researchers are able to study the cognitive decline duegm#urodegenerative property of AD
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with traditional structural magnetic resonance imaging (MRI were also included in a multi-task learning framework for AD
(Davatzikos et al., 2001, 2008; Dickerson et al., 2001; Gashagnosis I(iu F. et al., 2014 Despite promising performance
et al., 2001; Leow et al., 2006; Jack et al., 2008; Vemuri, et achieved by these methods, most existing methods fail to take
2008; Frisoni et al., 2010; Stonnington et al., 2010; Warad. et advantage of the cognitive progression from multiple time pgint
20163, diusion-weighted MRI (Jin et al., 2015, 2017; Daianu among features, subjects, and clinical scores. This midsion
et al., 2016; Wang et al., 2016b; Wu et al., 30dad functional undesirable in longitudinal analysis and follow-up stuslie
MRI (Yang et al., 2006 In addition, cognitive decline in To incorporate cognitive progression relationships,
the neurodegenerative cognitive measures, e.g., the iklene  longitudinal analysis has been widely explored to model
disease assessment scale cognitive subscale (ADAS-GTdf@iean cognitive progression and to exploit the associated imaging
mini mental state examination (MMSE), can be used to partiallynarkers and cognitive changes across all time poissi@a
reveal AD progressiordavatzikos et al., 2001, 2008; Dickersoret al., 2009; Davatzikos et al., 2010; Stonnington et al0;20
et al.,, 2001; Gaser et al., 2001; Leow et al., 2006; Jack etHihrichs et al., 2011; Zhang et al., 2012; Zhang and Shen,
2008; Vemuri et al., 2008; Frisoni et al., 2DHbwever, accurate 2012; Zhou et al., 20)3For instance,Zhou et al. (2013)
prediction of AD progression still remains a challenging tdske  integrated temporal smoothness into their method using multi
to the complicated characteristic of AD progression. task learning techniques to identify biomarkers for disease
The rst challenge in longitudinal studies for AD diagnosis progression. Remarkable performance is achieved based on
is dimensionality of the data, which is usually much highertemporal-relational constraints and later-time constraints,
than the available number of samples. To address this issue, which each task is treated separately using a single baselin
researchers have developed various feature selection nfodels feature for predicting future-time-point scoreluang et al. (2015,
di erent clinical scores (e.g., ADAS-Cog and MMSE) to identify2016)proposed an improved random forest framework and took
disease-related biomarkers among multiple time pointsign  advantage of the longitudinal information at multiple time pts
and Lin, 2006; Zhang et al., 2012; Zhou et al., 0AMong these to further improve the accuracy of AD score prediction. Using
methods, Lasso and its variants are the most popular techniquesmplementary information, such as MRI data and clinical
for feature selectionI({bshirani, 1996; Guyon et al., 2002; Guyonscores, is desirable as it might uncover important imaging
and Elissee , 2003; Yuan and Lin, 2006; Wang et al., R(Adr  biomarkers. Zhang et al. found that longitudinal analysis i
instance, (Vang et al., 2010linear regression models are appliede ective for mild cognitive interference (MCI) prediction
in high-dimensional pattern recognition problems not only to (Zhang and Shen, 20)&and proposed the utilization of MRI
estimate the stage of AD, but also to construct a stable moddeatures at multiple time points with temporal smoothness
Adaptive regional feature extraction is applied to this model f regularization Zhang et al., 2092 This method outperformed
the prediction of regression variables. competing methods, because the disease pattern is better
The second challenge is understanding the underlyingevealed by comprehensive cognitive progression informatio
relationship between features, subjects, and clinicatescat as compared to methods using only the baseline features. In
di erent time points. This relationship is seldom considereen  addition, the AD progression prediction problem iiVang
though many longitudinal studies show promising predictiveet al. (2012was addressed by a high-order multi-task learning
power in AD progression prediction. This relationship could method that exploits the temporal correlations in imaging
provide inherent high-level information that is useful for and cognitive data with a structured sparsity inducing term.
studying AD. Therefore, modeling and utilizing this retatiship ~ Promising predictive power is achieved via multiple time point
could enhance the learning performance in predicting ADfeatures, and the clinical scores are learned independerttig

progression. arrangement is undesirable as correlation of the clinicatesés
To tackle the above-mentioned challenges, several methodgored.
such as the group Lasst'i{an and Lin, 200y the temporally Most existing methods ignore the relationship among

constrained group Lasso (TGLCaroli and Frisoni, 2010; dierent features, subjects, and clinical scores. Furtheemnthe
Jack et al., 20)Pand the convex fused sparse group Lassecelational information is seldom studied even though thése
(cFSGL,Zzhou et al., 2013incorporated cognitive progression a strong correlation between the clinical scores and MRI data
information into linear regression models to predict diseasdGaser et al., 2001; Leow et al., 200Moreover, most of the
progression. Evidently, multi-task learning methods usingprevious studies only focused on one or two types of relatigrsh
intrinsic information achieve better performance than deyg without considering the cognitive decline at di erent time pds.
task learning methods_(u et al., 2012, 2015; Zhu et al., 2014aThe integration of this type of information would better idéfyt

Jie et al., 20)5and this learning framework has shown greatthe spatial patterns of brain atrophy because the associated
success in predicting ADAS-Cog and MMSE due to its goodeature patterns and the specic patterns of the neighboring
generalization capabilitie¥lang et al., 2011; Zhu et al., 20).4a time points are highly correlated. It has been also demongirate
For example, Zhang and Shedhang et al., 20)1proposed in literature (Zhu et al., 2014a; Jie et al., 2p1hat multiple

a joint regression and classi cation scheme to understdmel t relationships between feature-feature and subject-sulbjeost
mechanism of AD. This method was further improved by Zhudiagnosis performance.

et al. using a feature and variable graph matching method to Intuitively, information from clinical scores and subjects a
jointly identify AD status and predict clinical scoresh(u et al., multiple time-points can play an important role in identifying
20149. The inter-modality constraints described by Liu et al.temporal patterns in longitudinal analysis. In this paper, a
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new multi-task joint feature learning method is developed tothe hippocampal formation, amygdala, temporal pattern, and
exploit the intrinsic relation of the data to boost performa&naf uncus demonstrate the most de nitive patterns in predicting
disease prediction. Manifold learning and discriminatigarining  clinical scores at all-time points.
theories have achieved remarkable performance by incoripgrat
(Stanciu et al., 2014; Zhu et al., 2014b; Jie et al., 2015; I'MIATER|ALS AND METHODS
et al., 2015b; Zhou et al., 2Q1F herefore, we explore temporal
smoothness and multi-relation graphs among di erent patternsMaterials
and cognitive measures to uncover human brain variatiorrs foOur investigation is based on data obtained from the ADNI
better diagnosis of AD progression. Speci cally, we de ne aatabaseAlzheimer's Association, 20),4vhich was created and
novel objective function to impose multi-relation informati.  updated since 2004. This 6-year study is funded $60 million
A group sparsity regularizer is used to jointly select a smafrom the public and private sectors, which include the Natibna
number of speci ¢ features across di erent time points. We alsdnstitute on Aging, the National Institute of Biomedical Iigiag,
incorporate multi-relation smoothness regularization @pture  and Bioengineering, and the Food and Drug Administration.
the relationship among features, subjects, and clinicatesc  The principle goal of ADNI is to verify that serial MRI and
After the selection of longitudinal feature, the nal seled brain  positron emission tomography (PET) images, along with other
regions are employed for clinical score prediction using finult biological markers, clinical, and neuropsychological aseest
kernel support vector regression (SMEjang and Lin, 20)1To  can be used to measure the progression of MCI and early AD.
the best of our knowledge, there is no existing sparse moadg! thThe determination of sensitive and speci c markers of venjyea
incorporates multi-relation smoothness in its objectivedtion ~ AD progression is intended to aid researchers and clinicians t
to estimate the clinical scores (e.g., ADAS-Cog and MMSE). Idevelop new treatments and monitor their e ectiveness, dsage
addition, our method focuses on multiple relationships, whic to lessen the time and cost of clinical trials. ADNI is the octilee
has obvious advantages over existing methods that only ixpl@ ort of many co-investigators from a broad range of academic
feature or sample relationships. It is worth noting that weinstitutions and private corporations, and subjects have been
need to observe the behavioral changes in patients' comditiorecruited from over 50 sites across the US and Canada. 80Gadul
over time in order to model disease progression. However, iaged 55-90 were recruited to participate in this researchchwhi
is dicult to extract huge amount of information from data includes approximately 200 cognitively normal older indivédisl
that is collected from multiple time points. Therefore, welimgé  followed for 3 years, 400 people with MCI followed for 3 years,
the aforementioned relational constraints to build a robustand 200 people with early AD followed for 2 years. For up-to-date
regression model by selecting the best and most relevanirésa  information, please refer to http://www.adni-info.org.
to predict patients clinical behavior at multiple future time . .
points. Subjects and Pre-processing

In this paper, we propose a joint learning procedureThe general eligibility criteria of ADNI are briey descride
for multiple longitudinal predictions of AD progression by in the following. Subjects between 55 and 90 years of
exploiting their inherent relationships. In particular, we puse age who have a study partner to provide an independent
three novel regularization terms (each modeling a set ofvaluation of functioning were selected. Patients takiegain
crucial relationships at di erent time points), and incorpoeat Psychoactive medications were excluded. There are threeajene
these regularizers in a multi-task sparse feature selectidAclusion/exclusion criteria: (1) The range of MMSE scores of
model. We also introduce a speci cally designed loss fumctio healthy subjects (non-depressed, non-MCI, and non-denwnte
to jointly predict the patients' clinical scores at multiple is 24-30; (2) The range of MMSE scores of MCI subjects
future time points, thus condensing the common informationis also between 24 and 30. The subjects having objective
shared by data from dierent time points and permitting memory loss were measured with education adjusted scores
the selection of the most meaningful features for multipleusing the Wechseler memory scale logical memory I, a CDR
prediction tasks. We evaluate our method using the Alzhesnerof 0.5, an absence of signi cant levels of impairment edacati
disease neuroimaging initiative (ADNI) (http://adni.lansc. adjusted scores fall between 20 and 26, and satisfy thernatio
edu/) databaseXzheimer's Association, 20),4and our method Institute of Neurological and Communicative Disorders and
achieves promising results in estimating multiple cliniczdres ~ Stroke, and the Alzheimer's Disease and Related Disorders
at multiple future time points using only baseline data. Foe th Association (NINCDS/ADRDA) criteria for probable AD. The
ADNI baseline, a total of 445 subjects—91 with AD, 202 wittstudy subjects gave written informed consent at the time of
mild cognitive impairment (MCI), and 152 cognitively normal enroliment for imaging and genetic sample collection and
controls (NCs) are investigated in our study to predict theA®  completed questionnaires approved by each participating site
Cog/MMSE scores for the next 2 years because the subjects
already have completed MRI and clinical score data. In this work . ] -
we focus on only using suitable data instead of all the datanfr TABLE 1| Statistical information of clinical scores.

the ADNI database to study of disease progression. Clinical scores Mean Median Min Max
Our extensive experimental results show that the proposed

joint learning framework obtains state-of-the-art perfoamce = MMSE 12.02 10 0 59

for future ADAS-Cog/MMSE score prediction. We observe that\DAS-Cog 26.27 28 5 30
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Institutional Review Board (IRB)Table 1 gives the detailed at T time points, where ¥ 2 RS C is the corresponding
ADAS-Cog and MMSE information of the subjects used in ourclinical scores at thé-th time point for S subjects. LeWw D
study. W2 RF CtD1,:::,T asdenote the set of weight matrices
The pre-processing of feature extracted from the ROI regionghat map the original features to clinical scores, wherdw
have been widely applied in the literaturleii{ et al., 2012, 2015; represents the weight matrix for theth time point.
Zhuetal.,, 2014a; Jie et al., 2R For our method, pre-processing  Our goal is to create a linear regression model to reveal the
was rst applied to the T1-weighted MRI brain images of eachongitudinal associations between the original featunes the
subject, and then skull stripping was performed to clean thélsku cognitive trajectories through time, and predict the cliiseores
The cerebellum was removed by warping a labeled Jacob atlasgianultiple future time points from the baseline date 1). This
the skull-stripped image/{/ang et al., 2014 Segmentation by the s illustrated inFigure 1 Each subject's features are assigned as a
FAST method Zhang et al., 20Q1was then applied to segment row in the matrix X. By learning the weight vectors in eacl\v
the brain images into three tissues, which include whiteterat we can reconstruct the corresponding clinical scores in edeh Y
(WM), gray matter (GM), and cerebrospinal uid (CSF). After as explained below.
segmentation, the brain image was nonlinearly registereid svi To simplify the problem and design the objective function,
HAMMER tool (Shen and Davatzikos, 200The features used in we unfolded the projected weight matrix by concatenating all
this study include the volume intensity extracted from tlegion  w® s asww D w¥, w?,  wtv,  wT 2 RFCT
of interest (ROI) of di erent brain regionsghang et al., 20)1  Hence, the model parameters can be incorporated in the obgecti
Speci cally, the brain image of each subject was partitiomed i function to extract the common features across di erent time

93 ROIs by atlas warping, and the volume of GM tissue of eaghoints. This unfolded simplied weighting matrix is shown
ROI was extracted as a feature. Similar to the study/ire et al. in Figure 2

(2012) the obtained features were normalized to facilitate diseas
diagnosis and prognosis.

Methodology

A key advantage of longitudinal studies is the ability to erive
Notation and Problem Statement the patients' changes through time, and to e ectively utilihe
For this work, capital bold letters denote matrices, smaldbo shared common information in di erent time points to select
letters denote vectors, and non-bold letters denote regulahe best set of features for monitoring the progression of MCI
variables. Let X2 RS F denote the data oS di erent subjects, patients and thereafter predicts their future status. There a
where each subject is represented byFadimensional feature three di erent aspects in which this common information could
vector from the baseline MRI image. Let X denote the datde leveraged, i.e., the relationships among features, cdspje
generated from baseline time point. We denofeand x , asthe  and clinical scores. Intuitively, the pairwise similarit@siong
u-the row vector and the-th column vector of X, respectively. features, subjects, and clinical scores should be presenved
LetY D YY2RSCtD1,:::,T denoteC types of clinical the predictions via the regression model. In this section, we
cognitive scores (e.g., ADAS-Cog and MMSE) ®subjects introduce a method to incorporate such relation informatiiorio

Clinical score: C Feature: F
P Clinical score: C

X

Q
Feature: F'
A

Subject: S
|7

Subject: S

\

Output prediction Y Input feature X Model parameter W

/
N

FIGURE 1 | An illustration of the proposed regression model us ing longitudinal data. X is the input baseline MRI datay is the target tensor data, andW is
the weight model projection. For the inputX, x-axis represents the features, andy-axis denotes the subjects. For the target tensor data, x-axis represents clinical
scores, y-axis represents the subjects, andz-axis denotes the time points. For the model parameterdV, x-axis plots the clinical scores,y-axis represents the
features, andz-axis denotes the time points. We want to establish a linear odel W between the inputX and output Y.
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a multi-task learning framework. Speci cally, we de ne adar  relationship between the connected nodegures 4B,Cshow

regression model for each time point using the baseline data @he relationship among subjects and among clinical scores,

a single task, and then formulate the global regression miade respectively. In these graphs, the length of an edge between

a multi-task learning framework with & 1 sparsity constraint, features (subjects or clinical scores) represents the asiityil

where the above three relational aspects are incorporateaimong features (subjects or clinical scores), where thdzsityi

as regularization termskigure 3 shows the owchart of the increases with the length of the edge. These graphs are built

proposed method. based on the information of training data, which are then
To clearly illustrate the relationship among features,jsats, used as regularization terms for subsequent multi-tasknieg

and clinical scores, we adopted a graph matching technique iprocedure.

our proposed method, where the feature-feature, subjedjestib Previous studies (e.gZhou et al., 2013 revealed the

and clinical score-clinical score relationships are reprEsk associations among imaging features and cognitive scbezsh

in terms of graph (shown inFigure4). In Figure 4A, a time point separately, under the assumption that each taskdit ea

node represents one feature and an edge represents ttime point is independent. However, this assumption does not

always hold because clinical scores possess temporal tiorrela

In fact, harnessing the temporal correlation could potentially

help predict the clinical cognitive scores. This motivatssta

W=[W,W;_....,W,,...,W,]GRNT use a joint learning regression model across all time points,

which would help identify the most relevant imaging markers

for the prediction of cognitive scores. Speci cally, we seek t

N . . . ..
learn the weight coe cient matrices to uncover the clinicabses
progression, through which the information from each leai
<Y task and the common structures among multiple time points can
e R, be jointly discovered.
3 . WT 3 To select the most relevant and discriminant features aheac
3 >_, time point, a correlation-induced sparsity model with a least
= 5 squares loss function is proposed. The loss function conthas
y prediction error, while the sparsity assumption leads to tlaste
- number of contributing features. As a result, for each timépo
we would select the features that are most correlated wiéh th
- actual clinical scores. A general form of the proposed ohjecti
L..p-4..C L..p.g..C L..p-4..C function is de ned as below:
1eosdueens JoonT
i RV () ® 2
FIGURE 2 | The illustration of the unfolded weight matrices. Each row is (t)mln tD1 Y XW F
correponding to a speci ¢ feature vector among different tine points, and fwit )D( 1.Tg
each column is corresponding to a clinical score vector at oe time point. T
ponding P C 1 8 WO C kWk,,, (1)
tD1 ’
. Simultaneous multi-relation
Baseline data temporal-constrained learning
! E‘_lir;ical ;cores . Loss Smoothness Group
[eeusermae s II function +regularizati0n + regularization
li MMSE i» VS:;:; L | Clinical
i ADAS-Cog ; score ADAS-Cog
! - A, : l similarity regression
| Lo R | . Dimension model
. MRI data :/ reduced
| Subject data \ MMSE
. similarity regression
| model
Feature ‘i
SEiaction : Feature O\Q
| similarity O~
....... -
FIGURE 3 | Flowchart of the proposed method.  The MRI data and clinical scores are extracted for longitudal feature selection, with smoothness regularization
(i.e., feature-feature, subject-subject, and clinical sare-clinical score relation guided regularizers) and a gup sparsity induced regularization. After longitudinal &ure
selection, the feature dimension is reduced, and the seleed features are employed to build ADAS-Cog and MMSE regressin models for prediction.
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® | | @9
® o5

@O 9

FIGURE 4 | lllustration of relations among (A) features, (B) subjects, and
(C) clinical scores, where a node means a vector ofA) feature, (B) subject,
(C) clinical score, respectively, and an edge denotes the distace between the
nodes.

where k k ,2: is the Frobenius norm of a matrixyV is
the coe cient weight matrix, 1 and > are the regularization
parameters. The last term in Equation (1) is a group reguéariz
to uncover the correlation among di erent features and jdynt
'gelect features for multiple tasks, which is de neckal/ ko 1D
Fo 1 ki -k, wheret - is thei-th row vector o, andk  k 2
isl2,1-norm. It is worth noting thatl, 1 -norm computes the sum
of thel, -norm of each row o, which enforces many rows to
be zero, and hence it is suitable for feature selection.uFest
corresponding to those non-zero rows W are regarded as

subjects should be similar. Therefore, similar to the prasio
term, we use a heat kernel to exploit the “subject-subject”
similarities and de ne the similarity between the-th and the
n-th subject as

mn D exp K Xm; Xn,:k% ) 4)
wherex,,. is them-th row of input X. Here, “subject-subject”’
relation regularizer is de ned as

X
Rs W' D

mnp1 M ka‘:W(t)

X0 WOKS,  (5)
The last regularization is based on the “clinical scoreictih
score” relation. For each subjects feature vectgr i our
regression framework, di erent sets of weight coe cientsear
used to regress the output clinical scoré%: yn other words, the
elements in each column of W are related to the elements in
each column of ¥ through the feature vectors. As a result, if two
clinical scores are correlated, the corresponding weighinsos

in matrix W® should be correlated too. Similarly, we use a heat
kernel to exploit the “clinical score-clinical score” rétat. The
similarity between thep-th clinical score and thepth clinical
score is de ned using a heat kernel as

the most predictive features in subsequent learning models.

The second tern8 (W®) is our proposed regularizer, which is
comprised of multiple parts corresponding to three relatiompshi
among features, among subjects, and among clinical scbees.
de ne the proposed regularization tern8,(W®), the “feature-
feature,” the “subject-subject,” and the “clinical scaligical
score” relationships at each di erent time point are incorpaat

We use the idea of Laplacian matrices and graphs to obtain the

similarity in the local structuresBelkin and Niyogi, 2003 In
the rest of this section, we explain it in detail and discus#sl
characteristics.

The “feature-feature” relation information is imposed a th

relationship between columns of the input matrix X, and is
re ected in the relation between corresponding rows in the fW®itD 1.Tg

coe cients weight matrix W0, Hence, the widely used graph

D exp k¥ yOKZ (6)
wherey® is thep-th column vector ofy®). To this end, we de ne
the clinical score relational regularization term as

RC W.t/ D X c (t)

t),,2
oqp 1 Pkl wiks.

()

Therefore, our proposed joint learning model using the relatio
information, as discussed above, is

X 1
tD

X 71
: A ® 2 A
min lk Y XWW kg C 1 ‘D1 R W

CRWY CR WY C ,kWkys. (8)

Laplacian Hinrichs et al., 2009; Wang et al., 2012; Zhu et al.,

2019 is leveraged. To measure the similarity betweenutb

Using Equation (8), we incorporate three types of relatiopshi

and thev-th features of X. in the original feature space, we Usgi5 at multiple time points into a uni ed objective functiomhis

the heat kernel de ned as below:

fwDexp k x, Xxyk3, 2

wherex. , is the u-th column of the input dataX. Based on
the similarity, we develop the rst feature-feature retatibased
regularization term as
X

R w' D Sovkwd) wk3, @A)

uyvD

wherew(?) is theu-th row of W attime pointt. Thus, the highly

method is referred as the simultaneous multi-relation temaly
constrained learning (SMTL). To the best of our knowledge,
this is the rst work to simultaneously incorporate multi-
relation information such as “feature-feature,” “subjscbject,’
and “clinical score-clinical score” in fused regularipas, which
is di cult to solve in current sparse models. In addition, no
previous studies jointly apply the multi-relation information
across multiple time points as additional regularizers.
Motivated byZhu et al. (2013)the optimization problem in
Equation (8) could be solved in an alternative way (i.e.,ingl
the optimal solution for one variable while the others are ed

correlated features produce large weights in the above $parsiThe optimization steps are discussed in the following section

regularization.

After selecting the most meaningful features, we use a SVRemod

The second regularization is based on the “subject-subjecto predict the clinical scores of patients at multiple future &m

relation graph. We know that the output clinical scores of $ami

points. Considering how AD changes over time, our algorithm
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bene ts from a joint multi-task learning framework, in wHic
multiple relationships are introduced as regularizationnter
to take advantage of the local structure similarity in theaada
Because of the sparsity property of flhg -norm regularization
on weight vectors, the optimal weights contain some zeroase|
to zero row vectors. Structured sparsity is then imposed tgtou
penalizing all the regression coe cients corresponding talea
single feature, at multiple time points. Thus, the most distive
and predictive features will have similar large weights sl

This equation is regarded as Sylvester equation and sehmabl
the closed fornzhu et al. (2014alsing

AW® cwOBD Q, (12)

whereA D XTXC 14 C 1X"LsXC 2L, BD 1LY and

QisX(Y®)" WO (1 t T)can be obtained by solving the
Sylvester equationg(u et al., 2014awhen the timet changes
from1toT.

time points. Sincels, Lg, LY, and Lp are obtained from WP and are

dependent of WP, an iterative optimization is proposed to

Although our objective function is convex, it is di cult to@ive € ciently obtain the global solutions of W), (1t T) (Zhu
because regularization terms are based on non-smooth gparsi €t -, 2013 The solution of WO forl  t T is summarized
inducing norms in the objective functionZou et al., 2013, iNAlgorithm 1. The iterative optimization method updatesW
2014). lp1 norm minimization is more challenging to solve until the objective function converged.
than the |k -norm minimization problem. As most existing
optimization algorithms are too computation costly to solve ou EXPERIMENTAL RESULTS
problem Wee et al., 2012; Zhang and Shen, J0an e cient
iterative algorithm is developed in this work. A 10-fold cross validation strategy is employed to avoid aiag b
In the similarity measurement, a Laplacian graph at each tim#troduced in the data and experiments. A set of 445 subjects
point is built based on a diagonal matrix and formulated as_co:_nprising of ?1d NdC_, 202 ptatéent\ijitr MCl,dandb'lsf ?\D
® t) atients are included in our study. We also used subjects from
D D Ds D mn, De” D par- LEtS, Ssandté denote the tphe ANDI database with Tl-weighted MRI data from a 1.5 T
summation of the diagonal entry &, D, andD{’, respectively. scanner. The entire set of subjects is equally partitioned int
The graph Laplaciab, for the feature space at each time point10 subsets, and the subjects of one subset are selected as the
is:Ly D D, S. Similarly, we have the Laplacian graph for thetesting (Sj&:cmmes and the subjects ir(; tlhe remaining nine ms,,l;bsets
. . t t t are used for training regression models. In our experimefis, t
sub]ectland clinical scoré; D D.S .Ssand LE) D D(C) S“(”)’ regression model is implemented using the LIBSVM toolbox
respectively. As any regularization teriR(W®) can be . . -

T with default parameters, and a linear kernel is adopted after
reformulated as R(W®) D Tr (W®) LLWO R(W®) D normalizing each feature vector into a unit norm. In the pre-
Tr (W(t))T LSW(t)  Re(W®) D Tr (W(t))T Lg[)W(t) . processing step the features are z-normalized by r_emov'neig th

. . . . . mean and dividing the result by its standard deviation. Tive t
Assuming Lp is Laplacian graph built based on a diagonal
matrix of W, the objective is rstreformulated as:

Optimization Algorithms

cognitive measurements, ADAS-Cog and MMSE, are computed

XW(I)) D t min tD1 k Y(t) XW(t) k|2: Algorithm 1 | An iterative algorithm to solve the optimizatio n problem in
fwO.tD 1,.Tg Equation (8)
X ONITRTYG O ®
C 1 tD1 Tr (W ) Lf WY C XW Ls XW Input: Baseline MR training data of subjects and F dimensional feature:

x2RS F
T time points clinicgl scores ofS subjects and4C dimensional clincial
:, T Parameters:

cWOLOWO ¢ ,Tr WL W | ©)

wherelp is Laplacian graph built based on a diagonal matrix
of W. The optimal solution of W) is obtained by taking the output:
derivative of the objective function with respect td¥

o]

By taking the derivative of the objective function in Equati
(8) with respect to VP and set to 0, we obtain:

XTX X(YD)' € 1 Ly w®CXTLsxw® c wOL®

C LLowWODo. (10)
We can rewrite Equation (10) as
XTXC 14 C XTLsXC WO cw® 1O
DX YO (11)

Set iterationr D 0 and initializew® 2 RF € according to the linear
model for each time point;

Repeat

fortD1to T
CalculateLs, Ls, Lg) and Lp, according to the above de nitions;
Update \WS‘) by solving the Sylvester problem in equation (13);

End for
W?():l D WO W, WO, w):
rbrCi;
until ¢ D50 0r W W, < 107%)
Return w0, @1 t T)
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from the MRI data collected at four dierent time points. ADAS-cog and MMSE Prediction Results
The experimental setup frolzhou et al. (2013)is adopted. Figure 6 shows the scatter plots of the estimated ADAS-Cog
The regularization parameters in the feature-selection rhofle scores vs. the actual ADAS-Cog scores obtained with the
Equation (8) (i.e., 1 and 2) are determined by performing proposed method at baseline, 6, 12, and 24 monfhgure 7
another round of cross-validation on the training data. shows the scatter plots of the predicted MMSE vs. the actual
Figure 5summarizes the objective function values at di erentMMSE scores obtained with the proposed method at baseline, 6,
iterations. The objective function values monotonicalgctease 12, and 24 months. The linear model adopted in the proposed
as the number of iterations increases, which is consistetlit w method is illustrated with a red line, and the perfect regmssi
our convergence analysis. The objective value quicklyeg®d method is shown by a green line for comparison. Although
after a few iterations, which demonstrates the e ectivervdslse  predicting future clinical scores is quite challengingsievident
proposed optimization method and the e cacy of our feature that our proposed method achieves remarkable results in terms
selection algorithms. of Corr and RMSE results. Similar to the previous studi#sahg
Extensive experiments are performed to evaluate thend Shen,2012;Zhangetal.,2012; Zhou et al.,)2@&dbserved
e ectiveness of the proposed feature selection method. Twthat predicting early and changes of MCI up to 1 year is more
regression tasks are constructed to predict the changes ®SAD di cult than later time points as less distinct information is
Cog and MMSE for the baseline and a two-year follow-up studyavailable to separate early MCI. The low correlation values in
The widely used Pearson’s correlation coe cient (Corr) andthe early time periods are mainly due to the failure to detect
root-mean-square error (RMSE) metrics are used to measugogression from MCI to early AD, and it is even harder to
performance Duchesne et al., 2009; Ito et al., 2010; Stonningtonncover essential changes of brain regions in early MCI. Our
etal., 2010; Zhou et al., 2013 experimental results show that the proposed multiple time point

FIGURE 5 | Scatter plots of predicted vs. actual ADAS-Cog val  ues at different time points; (A) Baseline(B) 6 Months (C) 12 Months (D) 24 Months. The red
line in each gure is a reference of perfect correlation. Thergen line is the regression line by the proposed model. Thea@$er between the regression line and
reference line, the better performance the proposed methodan achieve. A high correlation is observed for ADAS-Cog peéction at each time point.
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FIGURE 6 | Scatter plots of predicted vs. actual MMSE values a t different time points; (A) Baseline(B) 6 Months (C) 12 Months (D) 24 Months. The red line
in each gure is a reference of perfect correlation. The greetine is the regression line with the proposed model. The cl@s between the regression line and reference
line, the better prediction the proposed model can achieveA high correlation is observed for MMSE prediction at eachrtie point.

joint learning with multiple relationships information is ler is signi cantly harder than the later time points since there
at predicting ADAS-Cog and MMSE scores than single-tasks less distinct information available for the earlier prtitin,
learning and the separate learning methods. We also addreshich was also conrmed by previous studiesh@ng et al.,
the problem of predicting the future cognitive decline of MCI 2012; Zhou et al., 20).3The main reason for low correlation

subjects. in the early time frame is that there is not su cient time for
) ) MCI to progress to early AD, thus it is more challenging to
Algorlthm Comparison uncover the essential changes of brain regions in early MCI.

A comparison of our proposed method with three featureOur proposed method achieves stable and promising results
selection methods, namely, Lasso, temporal group Lasso,(TGor both ADAS-Cog and MMSE prediction, and outperforms
Zhang et al., 202 and convex fused temporally constrainedseveral state-of-the-art methods’Hang et al., 2012; Zhou
group Lasso (cFSGIzhou et al., 2018is performed.Figure 8 et al.,, 2013 From the experimental results, the promising
shows the performance of these methods on predicting ADASsrediction results clearly suggest the e ectiveness of the mego
Cog/MMSE scores at baseline (T1), 6 months (T2), 12 monthsiethod.

(T3), and 24 months (T4). We also present the detailed Next, we compare di erent sub-groups containing all subjects
algorithm comparison results in terms of Corr and RMSE inincluding AD, MCI, NC (ALL), and only MCI patients
Table 2 Our experimental results demonstrate that the proposedMCI). Figure 9 presents the detailed comparison results of
method performs better than the separate learning method ithe di erent sub-groups for ADAS-Cog and MMSE prediction.
predicting ADAS-Cog and MMSE scores. We observed that th8ince our method is jointly learned, better results are ol
prediction of the changes of early and rst year clinical scor from the ALL group. This group provides the opportunity
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for the proposed algorithm to discover multi-relationship method with multi-relationship information obtains remaakle
information using multi-task learninglable 3shows the detailed results, especially for the prediction of later time points lioth
comparison of the state-of-the-art methods. The proposed®DAS-Cogand MMSE, which are consistent with the ndings in

FIGURE 7 | Objective value as a function of the iteration number
ADNI dataset.

on the

the previous publications as welilfang et al., 2012; Zhou et al.,
2013.

Top Selected Brain Regions

The hippocampus plays an important role in identifying brain
conditions through AD modeling and measuring the cognitive
outcomes such as ADAS-Cog and MMSE. By extracting features
from the associated brain regions, the multi-task mechanis
accounts for the hippocampus region's sensitivity in cognitive
score prediction via MRI baseline data. MCI is characterized by
the temporal lobe neocortical regions during dementia dexlin
Therefore, it is of great signicance to nd biomarkers for
the diagnosis of AD. In this section, we investigate multiple
regression variables and their relationships with brainiatales
such as ADAS-Cog and MMSE. Based on the cross validation,
the top predictive regions were selected in terms of the feeqy

of feature appearancigure 10shows the top 30 most predictive
brain regions with the highest weights for ADAS-Cog and MMSE
predictions of our proposed and cFSGL methods, where darker
colors denote larger weights and vice versa. The most preelict

FIGURE 8 | Comparison of ADAS-Cog and MMSE prediction results

by our proposed SMTL method and three feature selection methods : Lasso, TGL,
and cFSGL, using Corr and RMSE measurement; (A)  ADAS-Cog prediction results in terms of Corf{B) ADAS-Cog prediction results in terms of RMSEC) MMSE
prediction results in terms of Corr(D) MMSE prediction results in terms of RMSE.
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Table 2 | Comparison of ADAS-Cog and MMSE prediction results b y our proposed SMTL method and three feature selection methods: Lasso, TGL, and
cFSGL, using Corr and RMSE measurement.

ADAS-Cog MMSE
Lasso TGL cFSGL SMTL Lasso TGL cFSGL SMTL
Baseline Corr 0.32 0.08 0.49 0.08 0.58 0.08 0.77 0.05 0.51 0.09 0.56 0.12 0.64 0.08 0.75 0.08
MO6 Corr 0.48 0.07 0.50 0.07 0.59 0.05 0.78 0.04 0.49 0.07 0.48 0.10 0.63 0.10 0.79 0.10
M12 Corr 0.46 0.12 0.52 0.09 0.62 0.05 0.79 0.04 0.52 0.06 0.57 0.08 0.64 0.12 0.79 0.12
M24 Corr 0.57 0.08 0.53 0.08 0.69 0.05 0.84 0.04 0.61 0.05 0.58 0.05 0.65 0.05 0.83 0.06
Baseline RMSE 5.19 0.33 553 0.32 5.20 0.33 3.81 045 225 0.20 230 0.24 224 021 1.75 0.20
MO06 RMSE 548 0.62 590 0.65 5.48 0.63 436 0.46 275 0.31 2.85 0.33 2.76 0.32 231 0.29
M12 RMSE 6.25 0.58 6.74 0.63 6.24 0.59 491 0.56 3.42 0.49 3.59 0.52 3.42 0.50 2.48 0.40
M24 RMSE 7.95 1.20 781 1.39 796 1.23 6.00 1.00 4.05 0.58 448 0.82 4.04 0.58 3.00 0.38

FIGURE 9 | Comparison of ADAS-Cog and MMSE prediction models in terms of both Corr and RMSE for all subjects including AD, MCI, a nd NC (ALL)
and only MCI patients (MCI); (A) ADAS-Cog prediction results in terms of Cor{B) ADAS-Cog prediction results in terms of RMSEC) MMSE prediction.

brain regions, namely, the hippocampus and amygdala, are al., 2011; Ota et al., 2Q18oth cFSGL and proposed method
commonly selected for regression tasks. Most of the commonlselected the important biomarkers for AD diagnosis, while our
selected top regions such as hippocampal formation, amygdalasoposed method identi es more stable and related features
and uncus regions proved to be sensitive and provides Alor the clinical score measurement. Moreover, the distirectiv
biomarkers in many studiesZfiang et al., 2012; Zhou et al., information selected by the proposed method is more promising
2013. for AD modeling than the cFSGL method, due to the joint
Biomarkers from dierent time-points are consistently learning adopted in a multi-task framework, and weights for
identi ed, and important MRI patterns are localized, which both ADAS-Cog and MMSE are considered jointly, rather than
suggest that the MRI biomarkers are able to predict the ADASseparately. The common and shared high-level information
Cog and MMSE results e ectively. The distinctive and importantof ADAS-Cog and MMSE scores can be further explored for
biomarkers selected in our study included the hippocampatlisease progression modeling. As a result, the most predictive
formation, amygdala, middle temporal lobe, uncus, and corpubrain regions such as the hippocampus, amygdala, and temporal
callosum. The hippocampus is the most important regionpatterns are commonly selected in our regression models. The
a ecting AD as it possesses signi cant structural lesioGisifvit  identi ed brain regions are consistent across multiple time
et al., 2000; Laakso et al., 2000; Wolf et al., 2003; Del Speints. The weights for ADAS-Cog and MMSE have similar
et al., 2008; Knafo et al., 2009; Der inger et al., 2011; iRoul patterns as well. Moreover, our proposed method con rms that
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Table 3 | Algorithm comparisons of the proposed method with the related works for ADAS-Cog and MMSE prediction.

Method Target Subject Feature Result (Corr)

Duchesne et al., 2009  M12 MMSE 75 NC, 49 MCl, 75 AD Baseline MRI, MMSE: 0.31 p D 0.03)
age, gender, years of education

Stonnington et al., 2010 Baseline Set 1:73 AD, 91 NC BaselineMRI, CSF MMSE Setl: 0.7p(< 10e-5)
ADAS-Cog and Set 2: (ADNI) 113 AD, 351 MCI, Set 2: 0.48 (p < 10e-5) ADAS-Cog
MMSE 122 NC Set 2: 0.57 (p < 10e-5)

Zhang et al., 2012 Baseline,M06,M12,M24 ADNI: 91 AD, 202 MCI, 152 NC  Baseline,M06, M12, M24 MRI Average MSE: 0.613 p < 10e-5)
ADAS-Cog, MMSE Average ADAS-Cog: 0.639 ) < 10e-5)

Proposed Baseline, M06, M12, M24  ADNI: 91 AD, 202 MCI, 152 NC  Baseline MRI Average MMSE: 0.753® & 10e-5)
ADAS-Cog, MMSE Average ADAS-Cog: 0.7875 ) < 10e-5)

AD, MCI, and NC denote Alzheimer's disease patients, mild cognitive impanent patients, and normal controls, respectively.

FIGURE 10 | The most predictive regions identi ed by (A) Proposed and (B) cFSGL method Zhou et al., 2013). Note that the proposed method learns
ADAS-Cog/MMSE jointly, while cFSGL learns them separately.

the hippocampus and amygdala are highly important for studieg ectiveness of features to characterize the brain atrophyugh

on AD. guantitative measurements. The experiments on progression
In general, higher weights lead to the selection of bettefrom MCI to AD produce similar results from predicting AD

features, namely, large weight values correspond to thend NC inthe training steps. ADAS-Cog and MMSE predictions
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FIGURE 11 | The probability feature map for predicting the score S.

share common e ective information. Other feature selectionet al., 2003; Del Sole et al., 2008; Knafo et al., 2009; Qgrin

methods such as cFSGL demonstrate di erent patterns. As showai al., 2011; Poulin et al., 2011; Ota et al., 2014

in the stable feature selection results, our method generall

obtains more stable features for predicting both ADAS-Cod an

MMSE scores at multiple time points. In general, our methodDISCUSSIONS AND CONCLUDING

outperforms the competing methods, which is also demonstrateREMARKS

in the probability map shown irFigure 11 The probability map

further con rms that the hippocampus and amygdala are highlyThese relationships could provide inherent high-level

correlated with AD. The features extracted from these negio information on AD progression, therefore modeling and

have high predictive power for the ADAS-Cog and MMSEutilizing such relationship information can enhance thareing

prediction. performance of AD progression prediction. Although there are
As illustrated inFigure 12 the most e ective features for a myriad of progression models available, such as regression

predicting ADAS-Cog and MMSE across all time points areand survival model\(Vang et al., 200))we used a popular SVR

namely, angular R, right hippocampal formation, right temporalmodel due to its desirable properties. The accurate prediaion

lobe WM, left uncus, left middle temporal, right periirhinal ADAS-Cog and MMSE scores is essential in modeling disease

cortex, left periirhinal cortex, left inferior temporal, an@ft progression of AD, and to assist clinical assessment. It is ishow

temporal. Our ndings are consistent with many previous that clinical scores are highly correlated with ventriceaege,

studies which determined the amygdala, hippocampal formatiorshape, hippocampal, and gray matter volume loss. Because

angular, and uncus are the most predictive biomarkers for ADhe medial temporal lobe and brain atrophy pattern are highly

characterization Convit et al., 2000; Laakso et al., 2000; Wolfelated to MMSE, the correlation should be utilized for clinica
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FIGURE 12 | Top 10 most predictive brain regions for predicting the cognitive measurements.

score prediction. Apart from feature selection, clinical rebd problem led to increased di culty to draw consistent conclus®
and statistical analysis extract diagnostic information &earn  from the dataset. The feature selection method addressisd th
large-scale medical imaging based features. The advantdge problem by leveraging the sparse learning technique to model
our models include discrete timestamps at irregular intésva the AD progressive and predict AD progression using the
for modeling the disease progression of AD, and the greatdemporal priors and hippocampus. Apart from feature selection,
interpretability of our model due to the improvement in the the clinical model and statistical analysis extracted disgo
selection of distinct features. information and learned large-scale medical imaging based
Even though promising prediction results were obtained infeatures. By merging fused multi-task learning togethethwi
our study, there are still some limitations in the proposeddea the temporal smoothing of the parametric hippocampus surface,
selection method. First, only a single modality is used.dftiple  clinical scores, and subjects, promising prediction restdts
modalities were available (such as PET, DTI, APOE, and @8F), future ADAS-Cog and MMSE prediction were obtained.
predictive power could be possibly enhanced. Second, alldabje  The main challenge is to identify task-speci ¢ features and
should have complete feature values with no missing datas Thsigni cant biomarkers to model AD, as well as locating a
would be challenging to achieve with larger experiments andommon set of features using the learned model. Previou&svor
more subjects. Future research can be conducted to inastig showed that performance decreases with a smaller trainihg se
the issues associated with missing data. Third, we onlysiiga@te  (Stonnington et al., 20)0but the trend and relative performance
the ADAS-Cog and MMSE predictions. It is possible to extendemain comparable. An interesting direction is to add conisiis
this method to predict the sub-scores of clinical tests artteot to nd similar parametric surfacesto determine more simitard
regression variables, such as the clinical dementia rateade smoother weights, and hence better and more consistent gesult
sum of boxes (CDR-SOB) and the auditory verbal learning testan be obtained. This work illustrated that the extractidrttee
(AVLT) for cognitive measurement. volumetric information from parametric surface could aid in
A problem that is often referred to as the curse ofthe prediction of AD progression, which could be also extended
dimensionality, where the large size (i.e., large number dab fMRI studies. Because the dimensionality problem still exists
dimensions) of features for modeling AD progression makes itvhen the number of voxel and vertex points increases, feature
di cult to perform various numerical analyses on the data. Bhi selection is generally a plausible approach to leverage prior
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information and explore sparsity and smoothness as well. 8parfeature selection procedure selects the most relevant resatu
learning is a powerful tool to identify useful features anduee for the task of clinical scores prediction at multiple future
feature dimension. Although there are a number of featurdime points, followed by the use of regression models for
selection algorithms available, the features from thegerithms  predictions. Our experimental results of the proposed method
often lack biological meanings and reasonable interpretsti  based on the ADNI database demonstrated promising results in
A method that is capable of locating desirable features witkestimating the clinical cognitive scores at multiple futumme
reasonable feature dimension is highly desirable. points.

Directions for future work include understanding the
behavior of weights across the parametric surface space apgd JTHOR CONTRIBUTIONS
time. Previous works shown that stability selectiofh¢u
et al., 201 may be a good t for analyzing the feature BL, FJ, SC, DN, and TW designed the experiments; BL and DN
weights on the model. Future works including the stabilityperformed the data analysis and experiments; BL wrote the main
analysis of weights which might provide more information manuscript text; SC and TW provided scienti ¢ interpretation;
on the relationship between the deformation of hippocampaBL, FJ, SC, DN, and TW reviewed the manuscript, provided nal
sub elds and other clinical indicators, such as AVLT duriA®  approval of the version to be published and ensured the accuracy
progression. The longitudinal information on brain struc&is  and integrity of the work.
highly correlated to disease progression. Hippocampal atrophic
rates and ventricular changes are assessed statisticgliyhe ACKNOWLEDGMENTS
surface change. The resulting maps are sensitive to lorigaud
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