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Abstract

Brain age prediction is a machine learning method that estimates an individual’s chronological age 

from their neuroimaging scans. Brain age indicates whether an individual’s brain appears “older” 

than age-matched healthy peers, suggesting that they may have experienced a higher cumulative 

exposure to brain insults or were more impacted by those pathological insults. However, 

contemporary brain age models include older participants with amyloid pathology in their training 

sets and thus may be confounded when studying Alzheimer’s disease (AD). We showed that 
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amyloid status is a critical feature for brain age prediction models. We trained a model on T1-

weighted MRI images participants without amyloid pathology. MRI data were processed to 

estimate gray matter density voxel-wise, which were then used to predict chronological age. Our 

model performed accurately comparable to previous models. Notably, we demonstrated more 

significant differences between AD diagnostic groups than other models. Additionally, our model 

was able to delineate significant differences in brain age relative to chronological age between 

cognitively normal individuals with and without amyloid. Incorporation of amyloid status in brain 

age prediction models ultimately improves the utility of brain age as a biomarker for AD.
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1. Introduction

Neuroimaging-based brain age prediction may serve as a promising, individualized 

biomarker of brain health (Cole and Franke 2017) to understand the highly heterogeneous 

biological changes that occur in aging. Machine learning brain age prediction models learn 

the association between age and neuroimaging data in healthy individuals, where brain age 

is approximately equal to chronological age in healthy individuals. Once trained, the brain 

age model may be utilized in independent samples as a marker of brain health. If the 

resulting brain age is lower than chronological age, that individual may have a “younger” 

brain than expected and may be more resistant to or have accumulated less pathology. 

Alternatively, if predicted brain age is greater than chronological age, that individual may 

have an “older” brain than expected, and may have a genetic predisposition, or have 

experienced a higher cumulative exposure to brain insults. These individuals may have been 

more impacted by pathological insults due to less effective homeostatic mechanisms 

compared to their age-matched peers. Brain age prediction models have demonstrated the 

association of increased brain age with cognitive impairment, Alzheimer’s disease (AD), 

traumatic brain injury, Down’s syndrome, HIV, and more (Behehsti 2018, Liem 2017, Cole 

2015, Cole 2017, Gaser and Franke 2013).

Prior brain age models have been limited due to the inclusion of amyloid positive older 

participants in the training sets. It has been demonstrated that amyloid (Aβ) deposition, 

which is a hallmark of AD, may occur decades prior to the clinical onset of AD (Sperling 

2011, Jack 2013). However, the neurotoxic effects of amyloid may be exerted on the brain 

for years before manifestation of overt cognitive impairment (Aizenstein 2008). In this 

period of time before cognitive symptoms appear, Aβ(−) and Aβ(+) individuals demonstrate 

subtle structural or functional differences, such as grey matter (Mattsson 2014) and white 

matter atrophy (Vipin 2019), cerebral hypometabolism (Bozoki 2014), disruptions in grey 

matter networks (Ten Kate 2018), default mode network, and the central executive network 

(Lim 2014). It is possible that brain age models not accounting for amyloid status in the 

training set (Aβ insensitive models) may not detect these very subtle differences and 

distinguish between individuals in these stages. Therefore, we trained a brain age model 

with only cognitively normal, Aβ(−) individuals to potentially improve the utility of brain 
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age as a biomarker in the context of aging and AD. We then applied multivariable regression 

modeling to examine for differences between AD cognitive diagnostic stages, as well as 

amyloid status among cognitively healthy participants. In addition, we compared our results 

against brain ages obtained from a well-known but amyloid insensitive brain age model 

(Cole 2015, Cole 2017). We hypothesized that the association between brain age and 

chronological age would be moderated by group – specifically we hypothesized that the 

Aß(+) group would have a greater positive association between brain age and chronological 

as compared to the Aß(−) group indicating a more rapid aging process (cross-sectionally). 

We further hypothesized that more severe diagnostic groups (CN < EMCI < LMCI < AD) 

would have more rapid associations between brain and chronological age.

2. Methods

2.1 Data cohorts

This study included a total of 1256 structural magnetic resonance imaging (MRI) scans from 

a combination of publicly available databases (full details in supplement). All scans were 

acquired using standard T1-weighted sequences. See supplement for more detailed cohort 

information.

2.2 Training set

The training set consisted of 757 images from healthy, Aβ(−) individuals from the ADNI 

(n=92, mean age 73.9, range 60–85, 3T), IXI (n=264, mean age 34.9, range 20–49, 1.5 and 

3T), and OASIS-3 (n=401, mean age 66.0, range 42–85, 3T) datasets (Supplemental Table 

1). Inclusion criteria were the age range of 20–85, normal cognitive function, and sustained 

global amyloid-PET negativity over at least 3 years (only for participants of age 50+ since 

detectable amyloid deposition is almost non-existent in individuals without genetic 

mutations <50 years old). The earliest corresponding T1 with negative amyloid status was 

selected for use in the training set. Participants were excluded for cognitive impairment, 

memory complaint, dementia, history of psychosis or neurologic disorders, and 

contraindications to MRI and PET imaging.

2.3 Test sets

The test sets (Supplemental Tables 2 and 3) consisted of 491 3T T1-images from six groups: 

1) cognitively normal (CN) and Aβ(−) individuals from the ADNI dataset (CN-Aβ(−), 

n=51); 2) CN, Aβ(−) individuals from the Pittsburgh community dataset (CN-Aβ(−) PITT, 

n=32); 3) ADNI CN, Aβ(+) individuals (CN-Aβ(+), n=51); 4) ADNI early mild cognitive 

impairment (MCI) individuals (EMCI, n=195); 5) ADNI late MCI (LMCI, n=88); and 6) 

ADNI AD individuals (AD, n=74). The CN-Aβ(−) group was used as an independent 

validation set for the model. All participants were between the age of 60–85. All CN-Aβ(−) 

individuals sustained Aβ-PET negativity over 3 years, while CN-Aβ(+) individuals 

demonstrated Aβ-PET positivity. The CN-Aβ(−) PITT cohort was included as an additional 

community-based comparison against the ADNI CN cohorts. All CN cohorts were matched 

by age (mean age matched). EMCI, LMCI, and AD groups were all Aβ(+) and are described 

in ADNI protocols. No test set participants were used in training of the model.
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2.4 Image pre-processing

Using the Statistical Parametric Mapping (SPM12) software package, structural images were 

segmented into tissue classes (gray, white, cerebrospinal fluid, skull, soft-tissue, and air). We 

utilized the nonlinear DARTEL (fast diffeomorphic registration) algorithm to register images 

to the Montreal Neurological Institute (MNI) space then generated a template per cohort, 

and then smoothed with a 4 mm smoothing kernel.

2.5 Machine learning model creation and validation

The Pattern Recognition for Neuroimaging Toolbox (PRoNTo) (Schrouff 2013) was used to 

create the machine learning model. Whole brain, voxel-wise grey matter densities were 

mean-centered and then were used to compute a similarity matrix kernel – in particular we 

used the simple dot product (this is an NxN matrix that estimates the distance or similarity 

between any two participants). This matrix was used in a Gaussian Processes Regression 

model with the similarity matrix as the independent variable and chronologic age as the 

dependent variable with cohort (i.e., ADNI, IXI, or OASIS-3) as a covariate. Accuracy of 

the machine learning model was assessed by running a 10-fold cross-validation on the 

training set. We permuted chronological age (500 permutations) to assess the significance of 

the model prediction. Since each fold may result in slightly different models, the final 

overall model was an average of the 10-fold cross-validation. This average model was then 

tested on a separate independent test set of CN-Aβ(−), which served as a hold-out test set. 

We also assessed the validity of brain age prediction by comparing brain age between CN-

Aβ(−), CN-Aβ(−) PITT, CN-Aβ(+), EMCI, LMCI, and AD participants. The CN-Aβ(−), 

CN-Aβ(−) PITT, CN-Aβ(+), EMCI, LMCI, and AD participants were not part of the 

training in any way.

2.6 Comparison against amyloid insensitive brain age model

We also computed brain age using a model that has been previously described, validated, 

and widely implemented in previous literature which does not account for amyloid status in 

its training (Cole 2015, Cole 2017). Code for the model was downloaded from https://

github.com/james-cole/brainageR. This was used to estimate predicted brain age based on 

each participant’s gray matter and white matter data. We used this brain age measure as an 

amyloid-insensitive brain age compared to our model that accounted for amyloid.

2.7 Statistical Analysis

All statistical analyses were conducted in JMP Pro 14.1.0 (SAS Institute Inc., 2018). 

Multivariable regression modeling was used to determine the effects of chronological age 

(CA), group, and CA-group interactions on brain age. This was performed for the AD 

cognitive diagnostic stages (CN, EMCI, LMCI, and AD), as well as CN subgroups of 

differing amyloid status (CN-Aβ(−), CN-Aβ(−) PITT, CN-Aβ(+)). Non-significant 

interactions were removed from the final model. Values of r, R2 and mean absolute error 

(MAE) were evaluated for the goodness of fit of the model. The same analyses were 

performed on the results of the amyloid insensitive model.

Difference between brain age and chronological age has been previously utilized to identify 

differences, however recently it has been shown that the strength of the correlation between 
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brain age and chronological age does not guarantee that the difference will be estimated 

accurately (Smith 2019). Further, the difference between brain age and chronological age is 

not orthogonal to chronological age – this means that factors correlated with age may be 

falsely associated with difference between brain and chronological age (Smith 2019). By 

modeling brain age statistically with chronological age as a predictor, we circumvent the 

need to compute this brain age and chronological age difference. This also allows for 

quadratic associations with chronological age to be modeled (we did not do this here).

2.8 Cross-Validated Prediction of Groups using Logistic Classifier

To help understand the predictive potential of these features, we trained a simple logistic 

classifier for predicting the groups (CN-Aß(−), CN-Aß(+), EMCI, LMCI, and AD) using the 

following: chronological age alone; brain age alone; and chronological age and brain age. 

Since there is a high number of individuals in the EMCI group, we decided to include 30 

participants from each group to help balance our logistic classifier (as to not overfit on 

EMCI). We conducted following analysis 500 times: (1) choose a random set of 30 

participants from each group; (2) train the logistic classifier on this training set of 150; and 

(3) output predictions on other individuals not in training set. We then computed the average 

prediction for each participant across the 500 repetitions. We then evaluated the model’s 

performance based on area under the curve (AUC), accuracy, sensitivity, and specificity. 

Since the number of participants in the EMCI group is large, we needed a baseline model to 

help understand what performance we need to improve upon. We used the ZeroR model, 

which predicts groups by choosing the most common category (i.e., each participant is 

identified as EMCI) – this is a baseline model that evaluates how good of an accuracy, 

sensitivity, and specificity we need to improve upon chance prediction. We describe this 

model in Supplementary Figure 4. We conducted the same predictions using the Cole model 

as well.

3. Results

Training set demographics are shown in supplemental table 1, test set demographics between 

cognitive groups (CN, EMCI, LMCI, and AD) are shown in supplemental table 2, and test 

set demographics between amyloid groups (CN-Aβ(−), CN-Aβ(−) PITT, CN-Aβ(+)) are 

shown in supplemental table 3. Cognitive groups differ by sex, chronological age, and 

education. The CN-Aβ(−), CN-Aβ(−) PITT, and CN-Aβ(+) groups do not differ by 

chronological age but do differ by education.

3.1 Brain age model prediction: training and independent validation sets

In our training set, our model accurately predicted brain age (r(756) = 0.94, p<0.002; R2 = 

0.88,; and mean absolute error (MAE) = 4.9 years) (Supplemental Figure 1). We also show 

that this model does not violate any assumptions (Supplemental Figure 2). In the ADNI CN-

Aβ(−) independent validation set, our model also accurately predicted brain age (r(50) = 

0.64, R2 = 0.42, and MAE = 3.7 years). The model also accurately predicted brain age in the 

entire test set (r(490) = 0.60; R2 = 0.36; and mean absolute error (MAE) = 4.65 years). The 

voxel-wise coefficients of the model that predict chronological age are shown in 
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Supplemental Figure 3 and are also in a supplementary file that can be visualized with 

imaging software.

3.2 Multivariable linear regression model between brain age and chronological age with 
group effects

For the Aβ(−) trained model results, diagnostic group (CN, EMCI, LMCI, and AD) were 

significantly associated with BA even after adjusting for race, sex, and education (F(3, 

487)=62.3, p<0.0001, Figure 1, Table 1). Pairwise post-hoc group comparisons identified 

significant differences between groups (Supplemental Table 4): 1) the CN had a lower brain 

age compared to EMCI, LMCI, and AD; 2) EMCI had a greater association between 

chronological and brain age compared to LMCI and AD [age by group interaction]; and 3) 

LMCI had a lower brain age compared to AD. For the Aβ(−) trained model results, CN 

subgroups (CN-Aβ(−), CN-Aβ(−) PITT, CN-Aβ(+)) were significantly associated with BA 

even after adjusting for race, sex, and education (F(2, 131)=3.3, p=0.04, Figure 1, Table 1). 

The CN-Aβ(−) PITT had a lower brain age compared to CN-Aβ(+), but there were no 

differences between CN-Aβ(−) and CN-Aβ(+) (Figure 1).

For the Aβ insensitive model results, diagnostic group (CN, EMCI, LMCI, and AD) was 

also significantly associated with BA (F(3, 487)=6.9, p<0.0001, Figure 1, Supplemental 

Table 5). However, post-hoc group comparisons showed that (Supplemental Table 6) EMCI 

had greater brain age compared to CN, LMCI, and AD. Although there were significant 

differences between CN and EMCI, incremental differences between stages did not follow 

AD progression (CN to EMCI to LMCI to AD). In addition, there were no significant 

differences between CN subgroups (Supplemental Table 5, F(2, 131)=0.4, p = 0.68).

3.3 Cross-validated simple logistic classifier

The baseline model (ZeroR), which predicts groups by choosing the most common category, 

had an accuracy of 42%, sensitivity of 21%, and specificity of 80%. We found that 

chronological age alone has an accuracy of 32%, sensitivity of 24%, and specificity of 82% 

with an AUC of 0.61. We found that brain age alone improves upon this with an accuracy of 

41%, sensitivity of 34%, and specificity of 84% with an AUC of 0.66. Finally, those two 

features together had an accuracy of 42%, sensitivity of 42%, and specificity of 85% with an 

AUC of 0.71. We have plotted receiver-operating characteristic (ROC) curves in 

supplemental figure 5. Using brain age from the Cole model, we found an accuracy of 17%, 

sensitivity of 19%, and specificity of 80% with an AUC of 0.56. Using brain age from the 

Cole model combined with chronological age, we found an accuracy of 32%, sensitivity of 

22%, and specificity of 82% with an AUC of 0.62.

4. Discussion

We trained a brain age model on individuals without significant amyloid pathology to 

improve the utility of brain age as a potential biomarker in aging and AD. Our model 

predicted brain age with similar accuracy as compared with previous brain age models 

(Franke and Cole 2017, Beheshti 2018), both in cross-validation and in the independent test 
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set. The resulting brain ages significantly distinguished between diagnostic stages of AD 

(CN, EMCI, LMCI, and AD).

While our model distinguished between all stages of AD diagnoses, later stages showed 

increasing differences in BA over CA, suggesting that later AD progression results in 

exacerbated structural changes (as supported by Jack 2013, Sperling 2011).

The slope of the EMCI line was significantly higher than those of LMCI and AD, suggesting 

that in this stage specifically, BA reflects the greatest extent of structural change over time 

relative to other diagnostic stages. The other stages with similar slopes may reflect 

incrementally increased disease burden or diminished reserve rather than “accelerated 

aging,” although a longitudinal study would be needed for further interpretation.

For the cognitively normal groups, our model was able to significantly distinguish between 

the CN-Aβ(−) PITT and CN-Aβ(+) groups, but not the CN-Aβ(−) and CN-Aβ(+) groups. 

This may be attributed to the Pittsburgh cohort being recruited from community dwelling 

older adults for a normal aging study, whereas the ADNI cohort has been recruited from 

ADRCs, which may include individuals with subjective cognitive decline or other factors not 

accounted for in exclusion criteria, which may warrant additional study.

To our knowledge, our model demonstrates the greatest incremental differences in BA over 

CA between diagnostic stages of AD disease progression. In addition, it is the first to 

consider amyloid status in defining the BA prediction model. Notably, a prevailing amyloid 

insensitive brain age model was not able to correctly order the diagnostic stage test groups or 

distinguish between any CN subgroups. Although comparisons between additional amyloid 

insensitive models are warranted, these preliminary results show strong potential for the 

consideration of amyloid status in training of brain age models.

In addition, our results demonstrate that there is potential clinical utility of machine-learning 

brain age models in the monitoring of AD. When considering that MRI is relatively 

inexpensive and non-invasive relative to PET and is commonly obtained in cases of 

subjective cognitive concern without objective memory impairment, more developed models 

may offer benefits in tracking disease progression and informing decision making regarding 

PET imaging. Our two-feature (chronological age and brain age) simple logistic classifier 

was capable of predicting groups, indicating their capacity as predictive features. We noted 

that brain age improved classification of groups with chronological age.

One limitation of this study is the diminished correlation coefficient in the independent 

validation set (r = 0.64, compared to r = 0.94 in the training set). The diminished value may 

be explained by the lower number of participants in the test set (51 vs. 757 in the training 

set) and the restricted age range of the test sample (60–85 years compared to 20–85 in the 

training sample), which reduced the total variability that can be explained by the model 

(Bland and Altman 2011). We also did not evaluate longitudinal changes in cognitive 

function or amyloid positivity – future longitudinal studies are needed to evaluate these 

associations.
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Regardless, the MAE of our independent validation set is comparable to previously 

published brain age models (Franke and Cole 2017), which is a better indicator of model 

accuracy. Furthermore, a prior study demonstrated a similar diminished correlation 

coefficient and preserved MAE (Beheshti 2018) with a similar age range. Another limitation 

of this study is the sparsity of participants between the ages of 45–55 as compared to other 

age groups. This is expected, as amyloid-PET is not often acquired in those younger than 60.

5. Conclusions

Our Aβ(−) trained model performed superior to a contemporary Aβ insensitive model in 

both fitting BA for CA and distinguishing between groups of different stages of AD 

progression. Overall, incorporation of amyloid status in brain age prediction models may 

improve model performance and the utility of brain age as a biomarker of aging and AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 - Multivariable linear regression for brain age models show benefits of Aβ(−) training:
Plots for the test group regression lines of brain age over chronological age for both the Aβ 
insensitive and Aβ(−) trained models are shown for AD diagnostic groups (top) and amyloid 

status in the CN group (bottom). An identity line is also provided (dotted black). The Aβ(−) 

trained model shows incremental differences between diagnostic groups and CN subgroups 

following AD progression while the Aβ insensitive model does not.
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Table 1 –
Aβ(−) trained brain ages show significant differences between AD diagnostic groups and 
amyloid status in CN participants:

Results of the multivariable linear regression analysis of the Aβ(−) trained model are shown for cognitive 

diagnostic groups and amyloid status as a sub-analysis of the CN group. The reference test group was CN for 

comparison between diagnostic groups and CN-Aβ(−) PITT for CN subgroups. (CA = chronological age)

Term Estimate Std Error t Ratio p-value Lower 95% Upper 95%

Cognitive diagnostic groups (CN as reference)

Intercept 35.291579 2.243782 15.73 <.0001 30.882867 39.70029

CA 0.5093958 0.029011 17.56 <.0001 0.4523937 0.5663979

EMCI 1.020452 0.467582 2.18 0.0296 0.1017208 1.9391832

LMCI 4.2385508 0.551762 7.68 <.0001 3.1544176 5.322684

AD 6.7979684 0.572472 11.87 <.0001 5.6731422 7.9227945

Amyloid status in CN group (CN-Aβ(−) PITT as reference)

Intercept 34.463869 4.644971 7.42 <.0001 25.274351 43.653388

CA 0.5050906 0.060237 8.39 <.0001 0.3859185 0.6242627

CN-Aβ(−) 1.0575062 0.781668 1.35 0.1784 −0.48893 2.6039429

CN-Aβ(+) 1.9821045 0.781679 2.54 0.0124 0.4356468 3.5285621
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