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Methods: Alzheimer’s disease and Frontotemporal dementia are the first and third

most common forms of dementia. Due to their similar clinical symptoms, they are

easily misdiagnosed as each other even with sophisticated clinical guidelines. For

disease-specific intervention and treatment, it is essential to develop a computer-aided

system to improve the accuracy of their differential diagnosis. Recent advances in deep

learning have delivered some of the best performance for medical image recognition

tasks. However, its application to the differential diagnosis of AD and FTD pathology has

not been explored.

Approach: In this study, we proposed a novel deep learning based framework to

distinguish between brain images of normal aging individuals and subjects with AD

and FTD. Specifically, we combined the multi-scale and multi-type MRI-base image

features with Generative Adversarial Network data augmentation technique to improve

the differential diagnosis accuracy.

Results: Each of the multi-scale, multitype, and data augmentation methods improved

the ability for differential diagnosis for both AD and FTD. A 10-fold cross validation

experiment performed on a large sample of 1,954 images using the proposed framework

achieved a high overall accuracy of 88.28%.

Conclusions: The salient contributions of this study are three-fold: (1) our experiments

demonstrate that the combination of multiple structural features extracted at different

scales with our proposed deep neural network yields superior performance than
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FIGURE 2 | Architecture of generative adversarial network. The numbers of

units of Generator layers are 512 and 3,449(1,488+705+343+527+255+131),

respectively.

be a powerful data augmentation technique to synthetic image
data with more variation and improve the generalizability of the
machine learning algorithm (Shi et al., 2018; Lata et al., 2019;
Sandfort et al., 2019; Shao et al., 2019). Therefore, we investigated
the possibility of applying GAN for 1D structural brain feature
augmentation for the improvement of classification performance
in this study.

GANs consist of two parts, the Discriminator (D) and
the Generator (G), as displayed in Figure 2. In the proposed
framework, the MMDNN was used as the discriminator with
an additional channel of output for the recognition of data
synthesized by the generator, denoted here as “fake,” while
the generator aimed to generate feature vectors to “fool”
the Discriminator, i.e., classified as NC, AD, or FTD by the
discriminator. The input of the generator was a 1D random noise
vector. By finding the mapping from the random variables to
the data distribution of interest, the generator outputs a feature
vector with the same dimension as the real data samples. It was
worth mentioning that the fourth channel of output was only
used during the optimization of GAN. For each testing sample,
only the output probabilities of the first three channels were used
to determine which of the three groups a subject belongs to.

To prevent potential problems due to vanishing gradients, the
generator consists of two layers, a single hidden layer and an
output layer. Both layers are fully connected layer with 512 and
3,449 units, respectively. The dimension of random noise was set
to 100 with each element set to follow a normal distribution. The
activation function for the first layer was a rectified linear unit
(ReLU) to avoid gradients from vanishing, while the one for the
second layer was tanh function to squash the synthesized data
into the same range of the real data.

2.5. Network Optimization
For optimization of the GAN, the loss function was defined:

min
D

max
G

V(D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(−D(G(z)))] (1)

where x represents the input data and pz(z) is the prior
of input noise variables. log(−D(G(z))) was used instead of
log(1 − D(G(z))) to avoid vanishing gradient and mode collapse
(Arjovsky and Bottou, 2017). The E here stands for weighted
cross entropy function, which is defined as:

E(logD(x)) = −
1

N

N∑

i=1

4∑

j=1

[11{yi = j}Wjlog(h(xi)j] (2)

where N is the number of input samples, j represents the class of
samples,Wj stands for the weight of class j which is computed as
the inverse proportion of the subject number for the current class
over the entire sample data, xi, yi are the feature vector and label
of sample i, and h represents the network function.

For the training of GAN, the discriminator and the generator
were optimized alternately. During the optimization of the
discriminator, the parameters of the generator were held
constant, and when the generator was trained, the parameters of
the discriminator were fixed. The minimax competition between
G and D could drive both networks toward better performance.

Besides adding dropout layers, another strategy, early
stopping, was applied during the training process to reduce the
overfitting. During the training of the deep neural network,
iterative back propagation could drive the network to co-adapt
to the training set. After a certain point, reducing training error
could result in increasing the generalization error. Early stopping
was therefore useful to provide guidance for the number of
optimization iterations before overfitting. Part of the training
data was randomly selected as the validation set and were
excluded from training. While the remaining data samples
were used to train the network, the validation set was used to
determine the early stopping time point: the iteration in which
the network has the lowest generalization error for the validation
set. In this study, optimization of the network was stopped when
the generation error of the validation set ceased to decrease for a
consecutive 20 epochs.

Furthermore, due to the limited number of available data
and variation among different samples, there was still a chance
that early stopping with a small validation set could result in
biased classification toward the validation set, and the differential
performance could be unstable with different splitting of training
and validation sets. An ensemble classifier strategy (Lu et al.,
2018b) was therefore used to improve the robustness, stability,
and generalizability of the classifier. Similar to the 10-fold cross
validation, the training set was randomly divided into 10 subsets.
In each fold of the training process, one subset was retained
for validation while the remaining nine subsets were used for
training. With 10 repetitions, each set was used for validation
once resulting in 10 different networks. For each test sample,
each network would generate three probabilities corresponding
to NC, AD, and FTD. The output probabilities of 10 networks
were averaged followed with a softmax operation to determine
the final classification result.

The proposed deep neural network was built with Tensorflow
(Abadi et al., 2015), an open source deep learning toolbox
provided by Google. For the optimization of network in all
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FIGURE 3 | Comparison about the distribution of the concatenated multi-level multi-type W-score feature set among different disease groups: (A) NC(ADNI) vs.

NC(FTDNI); (B) NC vs. AD in ADNI database; (C) NC vs. FTD in FTDNI database; and (D) FTD vs. AD. (A) No statistical difference was shown when comparing the

W-scores of the Healthy Control subjects between the ADNI and FTDNI, confirming no database-specific biases remained in the input w-score feature of the

normative group. (B) Similar level of significant differences were shown when comparing the NC and AD subjects in the ADNI database, or (C) When comparing the

NC and the FTD subjects in the FTDBI database, indicating similarity between the AD and FTD group. (D) When comparing the FTD and AD group alone, significant

differences were observed in both the volume-based and thickness-based features, indicating discrepancy between these two types of Dementia subtypes which can

be utilized to achieve potential differential diagnosis. Unpaired t-test were performed for each pair of the comparison, with multiple comparison corrected by setting

false discovery rate (FDR) = 0.05.

experiments, Adaptive Moment Estimation (Adam) was used as
the optimizer, batch size was set as 100 and the learning rate was
fixed as 5× 10−5.

2.6. Performance Evaluation
To validate the discriminant ability of the proposed framework
on NC, AD, and FTD pathology, 10-fold cross validation was
performed on the 1,954 T1 MRI images. Because a single subject
could have multiple scans at different visits, a split based on
images could result in having scans from the same subject
used for both training and testing. We therefore performed the
split based on subject to ensure complete separation between
training and test samples. As mentioned in the section 2.5,
the training set was further sub-dived into 10 subsets for each
cross validation experiment and 10 networks optimized with
different training and validation set were used to “vote” for the
classification result of testing samples. Such an experimental
design ensures that the data samples in the training, validation,
and testing set were mutually exclusive on a subject level. The
performance of classification was measured via accuracy and
the sensitivity of correctly identifying different groups, such
as N(TrueNC)/N(NC) for NC group, where N(·) denotes the
number of data samples belonging to this group.

Other than the proposed deep-learning-based method, a
standard classifier, support vector machines (SVM) were also
trained for comparison. One vs. rest strategy was applied for
this multiclass classification task. Principal component analysis
(PCA) was used for the reduction of feature dimension and the
eigenvectors accounting for 95% of the total data variance were
retained. Radial basis function (RBF) kernel was used for SVM
given its superior performance in classification tasks. The features
extracted at different scales were concatenated as the input for
PCA+SVM classifier. In addition, to validate the effect of patch-
wise parcellation, we also trained the MLPs on FreeSurfer ROI-
wise features, i.e., the surface thickness and volume size of each
ROI based on the Freesurfer segmentation.

3. RESULTS

3.1. W-Score Feature Extraction
Figure 3 showed the comparison of the distributions for the
entire concatenated multi-level multi-type W-score feature set
between different subgroups. First, no statistical difference were
shown when comparing the W-scores of the healthy control
subjects between the ADNI and FTDNI for either the volume-
based or thickness-based features (Figure 3A), confirming no
database-specific biases remained in the input w-score feature
of the normative group. Similar level of significant differences
were shown when comparing the NC and AD subjects in the
ADNI database (Figure 3B), or when comparing the NC and
the FTD subjects in the FTDBI database (Figure 3C), indicating
similarity between the AD and FTD group. Finally, when
comparing the FTD and AD group alone, significant differences
were observed in both the volume-based and thickness-based
features, indicating discrepancy between these two types of
Dementia subtypes, which can be utilized to achieve potential
differential diagnosis.

3.2. Cross Validation Experiment Results
The results of 10-fold cross validation experiment are shown in
Table 2. When comparing the mean accuracy across 10-folds, the
accuracy of PCA+SVM with both type of multi-scale features
was only slightly higher (0.02%) than the multi-scale deep neural
network (MDNN) with surface thickness feature. The accuracy
of MDNN using volume size feature was higher than the one
using surface thickness feature by 2.93%. The combination of
both type of multi-scale features showed superior performance
comparing with MDNN using a single type of feature, and it was
further improved by 1.42% with the data augmentation using the
proposed GAN technique.

Figure 4 showed the corresponding statistical comparison
results among different experimental setup for the overall
accuracy as well as the sensitivity for each class group. When
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TABLE 2 | Comparison of classification performance over different experiments

with multi-type features.

Accuracy NC sen. AD sen. FTD sen.

PCA+SVM (Multitype) 83.06 93.90 71.74 68.23

MDNN+Thickness 83.04 89.07 76.77 74.79

MDNN+Volume 85.97 91.05 83.88 74.20

MMDNN (Multitype) 86.81 93.76 81.94 73.59

GAN (Multitype) 88.28 93.40 84.66 77.82

The second column is the overall classification accuracy, while the third to fifth columns

represent the sensitivity of NC, AD, and FTD, respectively. The second row represents the

result with PCA+SVM using multi-type multi-scale features. The third and fourth rows are

the classification performance of MDNN with multi-scale surface thickness or multi-scale

volume size. Experiment results with both types of features using MMDNN are shown in

the fifth row and the last row represents the result of multi-type multi-scale features along

with data augmentation using GAN.

compared to the baseline method, PCA+SVM (multi-type), both
the proposed MMDNN method with or without GAN showed
significant improvement (indicated asO) for the overall accuracy
(Figure 4A), as well as sensitivity for AD (C) and FTD (D).
Training with multi-type feature showed improvement over the
training with only single feature (for either thickness, indicated
as X, or volume, indicated as +) in terms of overall accuracy
(Figure 4A). Finally, data augmentation using GAN further
improve the overall accuracy (Figure 4A) as well as sensitivity
for the NC group (Figure 4B) and the FTD group (Figure 4D)
(indicated as+).

For detailed classification result, the confusion matrices
of experiments using the proposed multi-scale networks are
displayed in Table 3. The presented four experiments show a
similar pattern despite the differences in their accuracy and
sensitivity. The networks had a good performance for the
task of distinguishing between AD and FTD pathology. The
discrimination between NC and FTD showed the least accurate
performance, leaving room for potential future improvement.

3.3. Discrimination With Cortical Thickness
Feature
The experiment performance with only cortical thickness feature
was displayed in Table 4. MLP with only ROI-wise cortical
thickness feature showed the least accuracy (76.48%), while better
result was achieved with PCA+SVM using features extracted
at all scales. As expected, the classification performance was
sensitive to patch size change and a generalized reduction
with increasing patch size was found on the overall accuracy.
The combination of multi-scale features with MDNN yielded
superior classification performance.

3.4. Discrimination With Volume Size
Feature
The experiment performance with volume size feature was
displayed in Table 5. Similarly, as the experiments with cortical
thickness feature, MLP with only ROI-wise feature had the
worst performance (79.78%), and PCA+SVM using features
extracted at all scales showed better accuracy (82.28%). Unlike

the experiments with cortical thickness feature,MLPwith a single
scale of feature showed better performance comparing with
PCA+SVMusing features extracted at all scales. The combination
ofmulti-scale features withMDNN also had the highest accuracy,
while no generalized reduction of accuracy was found with
increasing of patch size.

3.5. Ensemble Classifier
As described in section 2.5, the classification results presented
in this study came through the “collective vote” of an ensemble
of classifiers instead of a single network. The classification
performance with or without ensemble classifiers of four different
experiments, including MDNN with cortical thickness, MDDN
with volume size, MMDNN with multi-type of features and
GAN with multi-type of features, are shown in Figure 5. The
y axis represents the mean classification accuracy from the 10-
fold cross validation experiment, while the x axis stands for
different classifiers. On the x axis, the number “1” to “10”
represents the network trained with different split of training and
validation set, while “ensemble” denotes the combined result of
these 10 networks.

4. DISCUSSION

In this study, we proposed a novel deep-learning-based
framework for the differential diagnosis of NC, AD, and
FTD. Cross validation experiment indicate that the proposed
network could learn the latent patterns representing the different
dementias using multi-type and multi-scale features, which
in combination with GAN-based data augmentation, achieved
a high accuracy of 88.28%. Based on the confusion matrix
displayed in Table 3, there were only three cases of misdiagnoses
betweenAD and FTD out of 891 samples, suggesting the excellent
performance of the proposed framework to distinguish these
two dementias.

4.1. Differential Diagnosis Using MRI
Biomarker
Brain MRI is an imaging modality widely used for detecting
various types of dementia, as the image contrast between different
tissue can reveal pathology-induced brain morphology changes.
Due to variations in pathogenesis and phenotypes, dementia
can further be categorized into different sub-types, such as
FTD, AD, mild cognitive impairment, vascular dementia, and
dementia with Lewy bodies. Differentiating among different
dementia subtypes is crucial for to provide appropriate healthcare
and potential treatment, but is challenging due to overlapping
phenotyping and morphological heterogeneity with each subtype
(Bruun et al., 2019), and accurate differential diagnosis requires
both appropriate feature extraction technique combined with
powerful classification model. Some recent studies attempted to
differentiate dementia subtypes using different machine learning
techniques, such as hierarchical classification (Kim et al., 2019),
statistical learning with feature selection based on least absolute
shrinkage and selection operator (LASSO), and support vector
machine (SVM) (Zheng et al., 2019), but are limited from either
the constrained feature set (e.g., structural-volume feature) or
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FIGURE 4 | Statistical analysis of the classification performance among different experiments. One-tailed pairwise t-tests were conducted to access the performance

improvements. Multiple comparisons were corrected with False discovery rate FDR = 0.05. O: Significant improvement over PCV+SVM(Multi-type); X: significant

improvement over MDNN (thickness); +: significant improvement over MDNN (volume); #: significant improvement over MMDNN (Multitype). (A) Overall accuracy, (B)

NC sensitivity, (C) AD sensitivity, (D) FTD sensitivity.

TABLE 3 | Confusion matrix of GAN.

NC AD FTD

NC 944 62 57

AD 86 352 19

FTD 97 11 326

(A) MDNN+Thickness

NC AD FTD

NC 968 66 29

AD 59 387 11

FTD 100 10 324

(B) MDNN+Volume

NC AD FTD

NC 998 45 20

AD 77 377 3

FTD 109 3 322

(C) MMDNN+Multitype

NC AD FTD

NC 995 43 25

AD 65 391 1

FTD 93 2 339

(D) GAN+Multitype

The class names of the first column in each table represent the ground truth, and the

names in the first row denote the classification result.

relatively small validate with data for testing the robustness
and generalizability of the classifiers. In our study, we proposed
a framework to achieve accurate differential diagnosis by first
building a multi-scale multi-type feature, followed with a deep
neural network with the help of generative adversarial data
augmentation technique, which was validated on a large sample
(1,954 images), demonstrating a consistent overall high accuracy.

4.2. Multi-Scale Classification
Based on the results presented in Table 4, the accuracy of MLP
decreased from 82.80% to 79.51% with patch size increasing
from 500 voxels to 2,000 voxels, suggesting that cortical thickness
feature is sensitive to the change of size of the ROI patch
sizes, while less variation of accuracy was found with ROI
volume feature (from 85.78% to 85.41%) as shown in Table 5.
Contradicting our observations on using cortical thickness
feature, the accuracy of volume size feature showed a slight
improvement when the patch size increased from 1,000 to
2,000 voxels, suggesting that the volume change caused by
brain atrophy may affect a large brain region in a similar

TABLE 4 | Comparison of classification performance over different experiments

with cortical thickness feature.

Accuracy NC sen. AD sen. FTD sen.

PCA+SVM 81.12 91.04 73.78 63.43

ROI MLP 76.48 82.74 71.80 66.55

500 MLP 82.80 87.95 77.02 76.05

1000 MLP 81.22 86.92 72.13 72.48

2000 MLP 79.51 84.49 75.84 71.20

MDNN 83.04 89.07 76.77 74.79

The second column is the overall classification accuracy, while the third to fifth columns

represent the sensitivity of NC, AD, and FTD, respectively. The second row represents

the result using PCA+SVM with multi-scale surface thickness features, while the third row

shows the classification performance of a single MLP with ROI-wise features. The fourth

to sixth rows are the result of a single MLP with features extracted at different scales, i.e.,

500, 1,000, and 2,000 voxels per patch. The last row represents the MDNN result with

multi-scale surface thickness features.

fashion. However, the combination of multi-scale features always
resulted in a better classification performance, indicating that
the proposed MDNN is capable of learning the hidden pattern
across the small to large patch sizes regardless the feature type.
The optimal scale with the best performance would be a potential
tunable hyperparameter in an optimization framework.

4.3. Volume Size, Surface Thickness, and
Other Morphological Features
Two types of features, ROI volume and cortical thickness, were
used for differential diagnosis in this study. Cross validation
experiments showed that volume size has better discriminant
ability compared with surface thickness regardless of the scale
of feature and the type of classifier, as presented in Tables 4,
5. In addition, the results in Table 2 show that with the same
classifier, the combination of these two features yields superior
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TABLE 5 | Comparison of classification performance over different experiments

with ROI volume Feature.

Accuracy NC sen. AD sen. FTD sen.

PCA+SVM 82.28 85.94 85.44 67.14

ROI MLP 79.78 83.44 79.79 69.67

500 MLP 85.78 91.60 82.83 73.31

1000 MLP 85.41 90.03 84.91 73.07

2000 MLP 85.45 90.34 82.26 75.06

MDNN 85.97 91.05 83.88 74.20

The second column is the overall classification accuracy, while the third to fifth columns

represent the sensitivity of NC, AD, and FTD, respectively. The second row represents the

result using PCA+SVMwith multi-scale volume size features, while the third row shows the

classification performance of a single MLP with ROI-wise features. The fourth to sixth rows

are the result of a single MLP with features extracted at different scales, i.e., 500, 1,000,

and 2000 voxels per patch. The last row represents the MDNN result with multi-scale

volume size features.

classification performance comparing with single type of feature,
regardless of whether they are concatenated as a single input
feature vector for SVM or using a MLP to learn the latent
representation of each scale of feature first.

In this study, we have explored the extraction volume-
based and cortical-thickness-based features as an effort to
improve the power of differential diagnosis. Other additional
image-based morphological features could potentially also
provide complementary information regarding brain pathology.
Specifically, cortical folding has showed different aging-related
patterns between healthy and diseased brain (Wang et al.,
2016), including dementia such as AD (Cash et al., 2012).
The combination of cortical folding with other shape-based
descriptors such as local cortical thickness could potentially yield
better characterization the cortical morphological changes that
is induced by AD and other types of dementia (Awate et al.,
2017). Therefore, the proposed framework could potentially
be further extended to integrate other brain morphological
descriptors, such as the cortical folding, into the multi-type
input feature space to achieve better classification and differential
diagnosis power.

In the current study, the proposed network was trained
using structural-MRI-based patch-wise volume size and surface
thickness features created with a combination of from FreeSurfer
segmentation and k-mean clustering to balance the number
of parameters trainable and the level of original image-based
patterns that are preserved. A potential future direction is to
learn the features directly from the raw structural image while
maintaining a trainable number of network parameters, which
still remains a challenge. This study with patch-wise FreeSurfer-
segmentation-based features sets a baseline benchmark for future
studies of deep-learning-based differential diagnosis studies with
novel network-leaned image-based features for comparison.

4.4. Data Augmentation With GAN
As displayed in Table 2, the classification accuracy was further
improved by 1.42% when using GAN for data augmentation. The
sensitivity for detecting AD and FTD pathology was increased
by a large margin with a slight decrease for detecting NC

samples. Instead of log(1 − D(G(z))), we used log(−D(G(z)))
in loss function to avoid vanishing gradient and mode collapse
(Arjovsky and Bottou, 2017). Therefore, we did not specify
what kind of data samples the generator should synthesize. We
consider it as a “success” for the generator as long as the generated
feature vector was classified as one of the three categories, i.e.,
NC, AD, and FTD, by the Discriminator. It would be interesting
to train one or three Generators to synthesize data samples
corresponding to specific groups, although this is beyond the
scope of this study as our primary goal was to increase the
differentiating accuracy.

For the generator, we only have a single hidden layer because
of the low dimension of our data and potential gradient vanishing
problem. Instance normalization or other kinds of normalization
(Almahairi et al., 2018) was not performed because they caused
mode collapse of the generator and resulted in synthetic data
all close to 0. Contrasting with many other studies using GAN
(Arjovsky et al., 2017), we found root mean square propagation
(RMSprop) optimizer resulted in an 87.39% accuracy, which was
lower than with Adam optimizer.

4.5. Ensemble Classifier and
Cross-Validation
As shown in Figure 5, there can be as much as 3% difference
in the classification accuracy (the seventh and the tenth bar of
the top left image) across the individual classifiers trained with a
different subdivision of the training and validation set, suggesting
an unstable performance of each single classifier. In all four
experiments, the ensemble classifier had the highest or close to
highest accuracy, suggesting that the ensemble strategy improves
the robustness and generalizability of the classifier.

It was worth mentioning that with the GAN, the variation
of classification accuracy with individual classifiers decreased
to 0.49% (from 87.98 to 88.47%) while the accuracy of
ensemble classifier was 88.28%, suggesting that, with using
GAN for data augmentation, the complex co-adaptations to
training or validation set were reduced. The ensemble classifier
strategy, although still effective, could therefore be optional
with the application of GAN in light of limitations of available
computational resources.

On top of the combination of GAN-based data augmentation
and cross-validation-based ensemble classifier, an additional
nested 10-fold cross validation was implemented to ensure the
proposed method is properly validated. Nevertheless, it would be
ideal to validate the proposed multi-class classifier on an entire
independent and well-homogenized dataset to best evaluate its
generalizability toward unseen dataset (Popuri et al., 2020; Yee
et al., 2020).

5. CONCLUSION

In this study, a novel framework for accurate differential
diagnosis among NC, AD, and FTD pathology has been
proposed leveraging the multi-type and multi-scale feature
fusion, ensemble classifier, and GAN strategy. The proposed
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FIGURE 5 | Boxplot for classification accuracy of single classifiers (classifier 1–10 on x axis) and an ensemble of classifiers (E on the x axis). The stars in each box are

the mean of accuracy and the red lines represent the median accuracy. (A) MDNN+Thickness, (B) MDNN+Volume, (C) MMDNN+Multitype, (D) GAN+Multitype.

framework achieved a high accuracy of 88.28%. The cross-
validation experiments conducted on 1,954 MRI images
demonstrate three salient observations. Firstly, the proposed
network was able to learn the latent representation pattern
across the different types of features (volumes and cortical
thickness) extracted at coarse-to-fine scales. Secondly, using a
Generative Adversarial Network for data augmentation could
prevent overfitting and improve classification performance.
Thirdly, the ensemble classifier strategy could result in a
more robust and stable classifier, which has statistically better
performance than an individual classifier. The promising
high-accuracy results using the proposed framework, and
the ability of deep networks to generalize to multiple
classes, indicate that this approach can be potentially
extended for the multiclass differential classification
of brain images in other neurodegenerative dementias
as well.
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