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Abstract. Mild cognitive impairment (MCI) exhibits a high risk of progression to Alzheimer’s disease (AD), and it is
commonly deemed as the precursor of AD. It is important to find effective and robust ways for the early diagnosis of
MCI. In this paper, a random forest-based method combining multiple morphological metrics was proposed to identify MCI
from normal controls (NC). Voxel-based morphometry, deformation-based morphometry, and surface-based morphometry
were utilized to extract morphological metrics such as gray matter volume, Jacobian determinant value, cortical thickness,
gyrification index, sulcus depth, and fractal dimension. An initial discovery dataset (56 MCI/55 NC) from the ADNI were used
to construct classification models and the performances were testified with 10-fold cross validation. To test the generalization
of the proposed method, two extra validation datasets including longitudinal ADNI data (30 MCI/16 NC) and collected
data from Xuanwu Hospital (27 MCI/32 NC) were employed respectively to evaluate the performance. No matter whether
testing was done on the discovery dataset or the extra validation datasets, the accuracies were about 80% with the combined
morphological metrics, which were significantly superior to single metric (accuracy: 45%∼76%) and also displayed good
generalization across datasets. Additionally, gyrification index and cortical thickness derived from surface-based morphometry
outperformed other features in MCI identification, suggesting they were some key morphological biomarkers for early MCI
diagnosis. Combining the multiple morphological metrics together resulted in a significantly better and reliable identification
model, which may be helpful to assist in the clinical diagnosis of MCI.
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INTRODUCTION

Mild cognitive impairment (MCI) is a syndrome
with cognitive decline more serious than normal
aging but not severe enough to cause notable impair-
ments of daily function, which is generally regarded
as the prodromal stage of Alzheimer’s disease (AD).
The early diagnosis and intervention for cognitive
decline is crucial to postpone progression to AD,
so MCI identification has been a persistent research
focus for decades. Brain atrophy is a remarkable
sign of neurodegeneration as measured by structural
magnetic resonance images (sMRI) [1], and different
morphological analysis methods have been used to
investigate subtle structural alterations in MCI with
sMRI [2, 3].

The common morphological analysis methods in
sMRI include voxel-based morphometry (VBM) [4],
deformation-based morphometry (DBM) [5], and
surface-based morphometry (SBM) [6]. VBM is a
popular morphometry analysis method which could
provide voxel-wise volume/density estimations of
segmented gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). DBM relies on the
deformation descriptor generated from the spatial
registration to reflect the whole brain structural
changes. SBM measures types of cortical surface
properties in a vertex-based manner. Different met-
rics could be extracted using these morphological
analysis methods, representing distinctive structural
properties of cerebral cortex. Scanlon et al. [7]
used these morphological analysis methods to detect
brain structural changes related with temporal lobe
epilepsy, and found three methods could reveal dif-
ferent aspects of brain atrophy, which implied that
integration of these three methods may further help
in the detection of neurodegenerative diseases.

So far, several studies have adopted various mor-
phological metrics to investigate MCI and AD
patients. Schmitter et al. [8] used the volume of
hippocampus extracted by VBM as the classifi-
cation feature to discriminate MCI from normal
controls (NC) and achieved a 71% detection rate.
Koikkalainen et al. [9] utilized multi-template DBM
to analyze sMRI images of MCI and the classifi-
cation accuracy for stable versus progressive MCI
subjects was 72.1%. Park et al. [10] computed two
cortical features including cortical thickness (CTH)
and sulcus depth (SD) with SBM and an accuracy of
86% was achieved in MCI identification. Madan et al.
[11] demonstrated fractal dimension (FD) extracted

from SBM was a sensitive index for detecting age-
related cortical folding changes due to its ability to
characterize tiny morphometric deformations. How-
ever, single morphological feature may be insufficient
for MCI identification because it may only reflect
specific morphological abnormalities. Several stud-
ies used multiple morphological features to recognize
MCI, which could provide comprehensive informa-
tion about the complex structural changes in MCI.
Bron et al. [12] found the best performance in an MCI
prediction challenge was achieved using a combina-
tion of features including volume, CTH, shape, and
intensity, and the best algorithm yielded an accuracy
of 63%. Liu et al. [13] used thickness and volume
of selected brain regions to differentiate MCI from
NC, and obtained an 82% accuracy. Our prior stud-
ies [14, 15] demonstrated that integrating multiple
features could improve the MCI classification accu-
racy. Above all, the classification accuracy varied
largely in different studies, which emphasized the
importance of the generalization in MCI classifica-
tion. Ideally, a good prediction model should be able
to perform well regardless of the input data; however,
there are few studies to adopt more than one cohort for
model validation. In addition, previous studies mainly
focused on gray matter volume (GMV) and CTH of
MCI patients, and there are only a few studies to use
other structural metrics [16, 17]. It is still unknown
whether the combination of morphological metrics
obtained from VBM, DBM, and SBM could further
improve the MCI classification and the prediction
generalization.

Taken together, we speculate that metrics extracted
from multiple morphological analysis methods would
outperform those from single morphological analy-
sis method in MCI identification, and the prediction
generalization with multiple morphological metrics
would also perform better than the one with single
morphological metric. In this study, VBM, DBM,
and SBM analyses were conducted to calculate
the morphological metrics including GMV, Jaco-
bian determinant value (JDV), CTH, gyrification
index (GI), SD, and FD, and these features were
selected by statistical analysis and served as clas-
sification features for random forest (RF) classifier
to identify MCI with 10-fold cross validation. The
classifier performances were finally validated by two
extra datasets including a longitudinal Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset
and a clinically collected dataset from Xuanwu
Hospital.



Z. Ma et al. / Identifying MCI with Random Forest by Integrating Multiple MRI Morphological Metrics 993

MATERIALS AND METHODS

Participants

A total of 216 subjects were included in this study,
including 111 subjects (56 MCI and 55 NC) in the dis-
covery ADNI dataset, 46 subjects in the longitudinal
ADNI validation dataset, and 59 subjects in Xuanwu
validation dataset. The inclusion criteria for ADNI
data were as follows: 1) normal subjects: the Mini-
Mental State Examination (MMSE) scores between
26 and 30, Clinical Dementia Rating less than or equal
to 0.5, non-MCI, and non-demented; 2) MCI sub-
jects: objective memory loss measured by education
adjusted score of Wechsler Memory Scale Logical
Memory and a memory complaint, essentially pre-
served daily living function, and non-demented; 3)
All subjects were scanned using magnetization pre-
pared rapid gradient echo sequence by a 3 Tesla
MRI system. The exclusion criteria were as follows:
1) MCI and NC without structural MRI scans and
above-mentioned clinical information; 2) Poor image
quality. In addition, the discovery dataset only con-
tained the subjects scanned at baseline (first time),
while the validation ADNI dataset were the longitudi-
nal data of persons who had follow-up scanning in the
discovery dataset. The other validation dataset were
clinically collected patients at the clinic of the Depart-
ment of Neurology, Xuanwu Hospital, and the health
controls were recruited from the local community.
Diagnoses of MCI due to AD were made by expe-
rienced neurologists using Petersen’s criteria [18],
and more inclusion/exclusion criteria were given in
[19]. The study was approved by the Research Ethics
Review Board of Xuanwu Hospital. All NC matched
well with the MCI patients on age and gender. The
detailed demographic information for all subjects is
shown in Table 1.

Image acquisition

Structural images from ADNI were acquired with
the following parameters: slice thickness = 1.2 mm,
TE = 2.95 ms, TR = 2.3 s, TI = 900 ms, flip angle = 9◦,
slices = 176, and voxel size = 1×1×1.2 mm3. Data
from Xuanwu hospital were obtained on a 3T
Magnetom Trio Tim scanner (Siemens, Erlan-
gen, Germany), and the parameters were set
as following: thickness = 1 mm, TE = 2.2 ms,
TR = 1.9 s, matrix = 448×512, slices = 176, and
voxel size = 0.5×0.5×1 mm3.

Calculation of multiple morphological metrics

Data were preprocessed with the Computational
Anatomy Toolbox (CAT12.3-r1317, http://www.
neuro.uni-jena.de/cat/) ran under Statistical Paramet-
ric Mapping, Version 12 (SPM12, http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/). Notably, we
took a two-step quality assurance: all raw images
were visually inspected for artifacts and all seg-
mented images were statistically controlled for inter-
subject homogeneity. Previous literature showed that
neurodegenerative diseases were mainly related to
GM, therefore, three structural analysis methods were
only conducted on the GM [20].

VBM could identify differences in local brain
region in a voxel-wise manner. After segmentation,
GM images were used and normalized to the MNI
standard space with DARTEL algorithm. ‘Modula-
tion’ was applied in the normalization step to preserve
the volume of GM and all GM images were resampled
to 1.5×1.5×1.5 mm3. Finally, the modulated GM
images were smoothed with an isotropic 8 mm full
width half maximum (FWHM) Gaussian kernel and
the GMV was finally computed from the smoothed
images.

Table 1
Demographic and neuropsychological information for all subjects

Discovery dataset Validation dataset 1 Validation dataset 2
(longitudinal ADNI) (Xuanwu data)

MCI NC p MCI NC p MCI NC p

Sample size 56 55 — 30 16 — 27 32 —
Age (y) 74.6 ± 7.4 75.2 ± 6.7 0.669 ∗ 74.4 ± 8.4 74.3 ± 5.8 0.070 ∗ 67.4 ± 8.5 64.9 ± 7.5 0.223 ∗
Gender (M/F) 30 / 26 27 / 28 0.706 # 16 / 14 5/11 0.152 # 13 / 14 16 / 16 0.887 #

MMSE 25.1 ± 4.1 28.9 ± 1.2 <0.001∼ 24.7 ± 3.2 28.8 ± 1.1 <0.001∼ 23.5 ± 3.3 27.7 ± 1.7 <0.001∼
CDR 0.5 ± 0.3 0.1 ± 0.2 <0.001∼ 0.5 ± 0.1 0 <0.001∼ 0.5 ± 0 0 <0.001∼

M, male; F, female; MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating. ∗ Two sample two-tailed t test, # Chi-square
test, ∼Mann-Whitney U test, p < 0.05.

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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DBM focuses on local deformations generated
during the process of non-linear spatial registration,
which was quantified by the Jacobian determinant.
For each voxel registering from subject’s image to
reference image, the JDV greater than 1 represents an
expansion of the voxel and below 1 indicates a com-
pression of the voxel [21]. The resulting JDV maps
were masked for GM and smoothed with an isotropic
8-mm FWHM Gaussian kernel.

SBM could measure cortical surface properties in a
vertex-wise manner. CTH was calculated by adopting
a fully automated projection-based thickness mea-
surement method, which was different from other
thickness measurement methods [22]. Other surface
parameters including SD (based on the Euclidean
distance between the central surface and its con-
vex hull), GI (based on absolute mean curvature),
and FD (based on spherical harmonics [23]) were
also extracted. In addition, to enhance the statistical
power of features, CTH was smoothed with a Gaus-
sian kernel of FWHM 15 mm, and other three surface
parameters were smoothed with an isotropic 25 mm
FWHM Gaussian kernel [24].

The flowchart of the three morphological analysis
methods was shown in Fig. 1.

Statistical analysis

Voxel/vertex-wise two-sample two-tailed t-test
was performed for each structural metric, with age
and gender as covariates, to determine the differences

between MCI patients and NC. Additionally, total
intracranial volume was taken as a covariate to cor-
rect for individual head size differences in the VBM
analysis [25]. For GMV, JDV, and CTH, the p-values
were corrected using family wise error (FWE) with
a threshold of 0.05. For GI, SD, and FD, we applied
a statistical threshold of p = 0.001 (uncorrected). Of
note, once used in the classifier training, statistical
analysis was only conducted in the training data,
which could decrease the possible overfitting in the
subsequent classification.

Random forest-based classification

RF is an ensemble of decision tree classifiers
developed by Breiman, and many decision trees
are built using randomized feature subset sampling
and bagging [26]. The RF has important advan-
tages in term of robustness to avoid overfitting,
to handle highly non-linear data, and to conduct
efficient parallel processing when applied on neu-
roimaging data [27, 28]. In order to construct the
classification classifiers of single or combined mor-
phological features, a RF procedure was carried
out with random forests package (https://cran.r-
project.org/web/packages/randomForest). The fea-
tures were input separately into the RF classifiers with
ntree = 100 and mtry = 2 (ntree indicates the number
of trees and mtry represents the number of predictors
sampled for splitting at each node). The classification
performance was quantified by means of accuracy,

Fig. 1. The flowchart of the three morphological analysis methods.
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which is defined as the percentage of correct identifi-
cation cases with the optimal RF model. Considering
the randomness of the RF performance, the ultimate
result was assessed by the average accuracy of ten tri-
als. Additionally, the mean decrease in accuracy and
mean reduction in Gini index were respectively used
to access the feature importance in classification. The
mean decrease in accuracy is defined as the decrease
of accuracy when a feature is changed into random
numbers. The larger the value, the more importance
the feature is. The Gini index is based on the principle
of impurity reduction, and a greater decrease in Gini
index means a higher importance of the feature. At
last, the prediction model used for the extra validation
datasets was slightly different in the training features
compared with the model for the discovery dataset.
The training features used in discovery dataset were
generated from statistical differences in the training
dataset (9 fold) while the training features adopted
in the extra validation datasets were statistical differ-
ences in the whole discovery dataset.

The flowchart of our proposed method for MCI
identification was shown in Fig. 2.

RESULTS

The between-group morphological metrics dif-
ferences in the whole discovery dataset were
summarized here. Using VBM, two large clus-
ters with GMV loss were observed at bilateral
temporal gyrus, hippocampus (HIP), parahippocam-
pal gyrus (PHG), entorhinal cortex (ENT), and
amygdala (AMYG). At similar locations, abnormal-

ities were also detected in JDV using DBM. MCI
patients showed significantly thinner CTH in bilat-
eral parietal, frontal, temporal, supramarginal, and
left precentral gyrus than NC. If using FWE correc-
tion, there was no significant inter-group difference
for three surface parameters (SD, GI, and FD), there-
fore, significant differences were set at p < 0.001
(uncorrected). The detected regions were illustrated
in Fig. 3, and the detailed quantitative descriptions
were shown in Table 2.

Table 3 listed the set of accuracy, sensitivity, and
specificity for classification with different metrics.
The classification performances of single or com-
bined morphological features on extra validation sets
were summarized in Fig. 4. In addition, the feature
importance measured by mean decreased accuracy
and mean reduction of Gini index were respectively
shown in Fig. 5.

DISCUSSION

In this study, we proposed an MCI identification
method which incorporated multiple morphologi-
cal metrics. Multiple metrics like GMV, JDV, CTH,
SD, GI, and FD were extracted by VBM, DBM, or
SBM respectively, and RF was applied to quantify
the classification performances of different combined
features. No matter whether testing was done using
the 10-fold cross validation on the discovery set or on
two extra validation sets, nearly 80% accuracy was
achieved, indicating that our method was robust and
potentially valuable in distinguishing MCI from NC.

Fig. 2. The flowchart of our proposed method for MCI identification.
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Fig. 3. T-value maps exhibiting significant differences with GMV, JDV, and CTH (p < 0.05, FWE correction) and SD, GI, and FD (p < 0.001,
uncorrected). The green/red shades represent areas where the MCI group has lower measured values than NC group, whereas the blue regions
represent areas where MCI group has higher value than the NC group.

In general, VBM, DBM, and SBM are widely
used to detect the neuroanatomical changes in human
brain. Among them, VBM and DBM are appropriate
approaches for measuring alterations in subcortical
regions. Our results found similar abnormal regions
were detected in MCI patients by using both methods.
VBM detected larger clusters with GMV loss while
DBM detected smaller clusters with deformable
changes (Table 2). One possible reason for the similar
findings is that GMV is computed by multiply-

ing GM density with the Jacobian determinant at
each voxel, which indicates an intrinsic association
between each other [29]. However, JDV extracted
from DBM performed better in classification com-
pared with GMV from VBM (72% versus 61%). This
may be due to some discrepancies between the two
methods. First, VBM estimated the volume infor-
mation from the segmented images (GM/WM/CSF),
while DBM extracted the deformation information
from the whole brain images. Second, DBM utilized
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Table 2
The brain regions showing significant differences between MCI and NC

Method Feature No. Brain regions Cluster size T value

VBM GMV 1 L, MT/IT/HIP/TMP/ENT/PHIP/AMYG 12876 6.52
2 R, TMP/HIP/PHIP/MT/IT/ENT/AMYG 12359 7.45

DBM JDV 3 L, HIP/MTG/TMP/PHIP/ENT/IT/AMYG 6033 5.91
4 R, TMP/HIP/ENT/IT/PHIP/MTG/AMYG 7966 7.78

SBM CTH 5 L, SP/IP/ST/SMG/MT/IT 39091 6.20
6 L, MF/SF 12488 5.40
7 L, PC 1523 4.00
8 R, IP/ST/SP/PC/MT/SMG/IT 39586 6.50
9 R, MF/SF 11649 5.30

SD 10 L, ST 222 3.40
11 L, ACC 118 –3.30

GI 12 L, ST 307 3.50
13 L, INS 92 3.30
14 L, ENT 555 –3.90
15 R, INS/ST 4677 4.60
16 R, PCC/ACC 1664 4.30
17 R, ENT 1219 –4.70

FD 18 L, IP/SMG/ST 1454 4.20
19 R, PCC/PRE 279 3.50

L, left; R, right; GMV, gray matter volume; JDV, Jacobian determinant value; CTH, cortical thickness; SD, sulcus depth; GI, gyrification
index; FD, fractal dimension; TMP, temporal pole; HIP, hippocampus; PHIP, parahippocampal gyrus; ENT, entorhinal cortex; AMYG,
amygdala; SP, superior parietal gyrus; IP, inferior parietal gyrus; ST, superior temporal gyrus; SMG, supramarginal gyrus; MT, middle
temporal gyrus; PRE, precuneus; IT, inferior temporal gyrus; MF, middle frontal gyrus; SF, superior frontal gyrus; PC, precentral gyrus;
ACC, anterior cingulate; INS, insula; PCC, posterior cingulate.

Table 3
Classification performance of single or combined metrics using ten-fold cross validation

(Results were reported as mean with standard deviation in brackets)

Method Feature Accuracy Sensitivity Specificity
(Mean ± std.) (Mean ± std.) (Mean ± std.)

VBM GMV 0.61 (0.14) 0.60 (0.21) 0.69 (0.12)
DBM JDV 0.72 (0.10) 0.69 (0.17) 0.80 (0.14)
SBM CTH 0.74 (0.13) 0.67 (0.18) 0.80 (0.17)

SD 0.65 (0.10) 0.60 (0.19) 0.71 (0.15)
GI 0.76 (0.15) 0.85 (0.13) 0.72 (0.21)
FD 0.58 (0.10) 0.60 (0.13) 0.57 (0.27)

Combined All 0.80 (0.11) 0.75 (0.20) 0.83 (0.19)

GMV, gray matter volume; CTH, cortical thickness; JDV, Jacobian determinant value; SD,
sulcus depth; GI, gyrification index; FD, fractal dimension.

DARTEL and Geodesic shooting normalization algo-
rithms for registration, thus it is reasonably expected
that DBM could detect subtle subcortical changes
over VBM due to the superior registration [30, 31].
In contrast, SBM is suitable to detect cortical abnor-
malities through multiple metrics of cortical surface.
An accuracy of 77% was achieved in identifying MCI
from NC using four types of surface features (CTH,
GI, SD, and FD), which was obviously superior to that
from VBM and DBM, suggesting the combination
of surface features could improve the classification
performance. However, SBM has a potential draw-
back during the surface reconstruction process, which
may artificially inflate surface areas that not perfectly
match the underlying anatomy [24].

Regarding the classification accuracy, it varied
across different morphological metrics (Table 3). We
found GI provided the best accuracy of 76%, closely
followed by CTH. GI is used as a measure of surface
complexity and the cortical region with larger folding
has a large GI, whereas the region with limited folding
has a small GI. The cortical folding pattern is deter-
mined by genetic and early developmental factors and
will keep stable throughout adulthood in healthy pop-
ulations, implying that GI with deviation from normal
populations has a high probability of brain abnormal-
ities [32]. However, De Miras et al. [33] computed
the GI according to the conventional method, which
was defined as the ratio between the inner contour
and the outer hull, and found MCI displayed no sig-
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Fig. 4. Classification performance of the combinations of features extracted from different morphological analysis methods on different
datasets.

Fig. 5. The feature importance for classification using mean decrease in accuracy and mean reduction in Gini index as measures respectively
(The brain regions corresponding to the feature ID could refer to Table 2).

nificant reductions of GI compared to NC. In our
study, GI was defined via absolute mean curvature
and was found with obvious differences between MCI
and NC. Additionally, different normalization algo-
rithms may also lead to differences in GI numerical
calculation across studies. Taken together, the selec-
tion of the calculation method has a great influence
on GI, which should be paid more attention in future
studies.

The classification accuracies of single metrics var-
ied across validation datasets largely, demonstrating
the weak generalization ability (Fig. 4). However,
using multiple metrics, the accuracies were almost
consistent in three datasets, indicating the method
we established was stable and reliable. Furthermore,
combination of the features extracted from different
morphological analyses could improve classification
performances in discriminating MCI than single met-
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ric, implying that different morphological metrics
had complementary and specific contributions to the
recognition accuracy. Besides using RF to classify
MCI, we also established classification models with
SVM. Though high accuracy (89.2%) was obtained
for the discovery dataset, poor performance (accu-
racy of 65.2%) was found on the external validation
datasets, demonstrating this model was likely to be
overfitting. The results showed RF possessed a good
between-cohort robustness compared to SVM, which
was consistent with Lebedev’s work [34].

With regard to the importance of each feature, sim-
ilar results were discovered by using mean decrease in
accuracy and the Gini index (Fig. 5). The GI of insula
was found with weakest importance in MCI identi-
fication and lowest T values in the between group
comparison. The insula, anterior cingulate, amyg-
dala, and other subcortical structures are referred to
as the salience network, which displays abnormalities
in a wide range of neurological disorders, suggesting
that insula has important roles in cognition. However,
there is no consensus about the alterations of insula
in MCI [35, 36], and future studies are needed to
ascertain the role of salience network in MCI patients.

It was worth noting that we used different multiple
comparison correction methods for the morpholog-
ical metrics, which was FWE correction for GMV,
JDV, and CTH, and uncorrected for SD, GI, and FD.
So far, the selection of correction method in mor-
phological analysis varies across studies [37, 38].
Westman et al. [39] identified MCI volume abnormal-
ities in multiple brain regions, and the p-values were
adjusted for multiple comparisons with Bonferroni
correction with a significance threshold of p < 0.05.
In Beheshti et al. study [40], significance level was
set at p < 0.01 with FWE correction, and the clus-
ter size threshold was set at 1400 voxels to report
the VBM findings. Using DBM, Hua et al. [41] cre-
ated Jacobian maps of MCI and NC respectively, and
tested the overall significance of group differences
using permutation tests for multiple comparisons.
Maier et al. [42] investigated the cortical properties
(including CTH, GI, and SD) of adults with autism
spectrum disorder, and only uncorrected p-values
exhibited significant group differences in region of
interest (ROI)-based statistics. Taken together, for
the volume and thickness metrics, rigorous correction
method was used, while for other geometric metrics,
loose correction method was used, which was proba-
bly due to complicated spatial patterns of geometric
metrics. Moreover, the classification performance of
uncorrected features was comparable to that of cor-

rected features in our study, thus, we inferred that it
was not mandatory to use strict correction method for
geometric metrics in a machine learning study.

Compared with NC, MCI patients showed signif-
icant lower values in GMV and JDV in the bilateral
temporal gyrus, HIP and PHG, ENT and AMYG
(Table 2), which also displayed high discriminative
abilities for MCI identification according to the fea-
ture importance indices (Fig. 5). The GMV reduction
in medial temporal gyrus is a typical trait of MCI [43,
44]. HIP atrophy is recognized as one of the most
effective biomarkers for AD pathological progression
[45]. ENT provides an interface between the HIP and
neocortex, where early neurofibrillary tangles and
tau protein are deposited [46–48]. The neurofibril-
lary tangles and amyloid plaques could result in the
loss of neurons in AMYG, who has abundant neural
connections with the HIP [49]. These brain regions
are strongly implicated in memory functions and are
widely used to study the pathological mechanism of
MCI and AD [50].

Our results showed significant CTH thinning in
some temporal, parietal, and frontal regions, which
also showed high discriminative powers reflected by
feature importance. These regions are parts of the
widely studied default mode network (DMN), and a
previous study reported that the activities of DMN
diminished in MCI patients [51]. To date, some stud-
ies have examined cortical surface folding properties
in MCI, which are linked with the progression of
neuronal connections and cortical connectivity pat-
tern. In our study, significant inter-group differences
in surface properties (including SD, GI, and FD)
were observed. Our results were similar to findings
obtained by Li et al., who reported that MCI showed
shallower SD and lower GI in the temporal gyrus.
However, increased GI in MCI group was found in
bilateral ENT in our study, while Li found increased
GI lay in left ENT, right precuneus, and superior
frontal gyrus [52]. Li et al. [53] found CTH and SD
may be markers reflecting abnormal connectivities
related with brain development and disease. In our
experiment, MCI patients had lower FD values than
NC in left inferior parietal, superior temporal gyrus,
and right posterior cingulate gyrus and precuneus. To
date, the differences in FD between MCI and NC have
not been studied extensively, so FD should be given
more attentions in the future which might provide
new insights into the pathophysiological mechanism
of MCI.

Several limitations should be considered in future
work. First, in addition to structural biomarkers
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extracted from different morphological analyses, the
early identification of MCI can be improved by using
more biomarkers, including proteins measured in the
CSF and imaging biomarkers extracted from differ-
ent modalities, such as positron emission tomography
and functional MRI [54–57]. Second, further studies
could utilize ROI-based analysis and explore specific
ROI related to MCI pathology, which might benefit
MCI early diagnosis or discrimination. Third, MCI
patients are known to be a clinically heterogeneous
group with different patterns of brain atrophy, of
which just some cases are due to AD. However, we do
not ascertain the classification between MCI due to
AD and MCI due to other dementia in our paper. One
interesting and significant problem to address in the
future is the differential diagnosis of MCI and clini-
cal subtypes of MCI, which would be very useful in
clinic.

In conclusion, multiple metrics extracted based
on different morphological analysis methods pro-
vide complementary information about the brain
differences between MCI and NC; therefore, their
combination could effectively and robustly identify
the MCI patients and is potentially useful for the
diagnosis of MCI.
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