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Abstract
Diffusion tensor imaging (DTI) is a promising imaging technique that 
provides insight into white matter microstructure integrity and it has 
greatly helped identifying white matter regions affected by Alzheimer’s 
disease (AD) in its early stages. DTI can therefore be a valuable source of 
information when designing machine-learning strategies to discriminate 
between healthy control (HC) subjects, AD patients and subjects with mild 
cognitive impairment (MCI). Nonetheless, several studies have reported so 
far conflicting results, especially because of the adoption of biased feature 
selection strategies. In this paper we firstly analyzed DTI scans of 150 subjects 
from the Alzheimer’s disease neuroimaging initiative (ADNI) database. We 
measured a significant effect of the feature selection bias on the classification 
performance (p-value  <  0.01), leading to overoptimistic results (10% up 
to 30% relative increase in AUC). We observed that this effect is manifest 
regardless of the choice of diffusion index, specifically fractional anisotropy 
and mean diffusivity. Secondly, we performed a test on an independent mixed 
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cohort consisting of 119 ADNI scans; thus, we evaluated the informative 
content provided by DTI measurements for AD classification. Classification 
performances and biological insight, concerning brain regions related to the 
disease, provided by cross-validation analysis were both confirmed on the 
independent test.

Keywords: Alzheimer’s disease, DTI, random forests, feature selection

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

Alzheimer’s disease (AD) is the most common type of progressive neurodegenerative dis-
order, affecting millions of people worldwide. It is characterized by different stages, rang-
ing from a pre-dementia phase to a final stage in which the patient is completely dependent 
from external assistance. Estimates indicate that 75% of dementia cases in the world, more 
than 25 million people, are of Alzheimer’s type (Reitz and Mayeux 2014). Nevertheless, the 
investigation of novel biomarkers and strategies to predict and model its onset needs further 
investigation (Allen et al 2016). In particular, the investigation of biological markers aimed at 
diagnosing the disease promptly is crucial (Jongkreangkrai et al 2016). Mild cognitive impair-
ment (MCI) is an intermediate state between healthy aging and AD, which represents an early 
state of abnormal cognitive function and is thus considered a good target for this investigation.

Over the past twenty years, several studies based on structural magnetic resonance imag-
ing (sMRI) highlighted the significant role played by brain atrophy in AD diagnosis (Tangaro 
et al 2014, Amoroso et al 2015, Jongkreangkrai et al 2016). Since 1980s it is also known that, 
besides a widespread gray matter atrophy, AD is characterized by a progressive disconnection 
of cortical and subcortical regions because of white matter (WM) injury (Rose et al 2000, 
Head et al 2004, Wang et al 2016). However, conventional MRI is not able to highlight the 
structure of WM regions due to their homogeneous chemical composition.

Diffusion tensor imaging (DTI) is able to track and quantify water diffusion along white 
matter fiber bundles and can thus provide useful information regarding their integrity (Basser 
et al 1994, Huang-Jing et al 2015). Fractional anisotropy (FA) and mean diffusivity (MD) are 
among the invariants derived from the diffusion tensor that are closely related to white matter 
integrity (Le Bihan et al 2001). Water diffusion along a healthy axon is highly anisotropic, 
being constrained almost completely to one direction, that is the fibre axis, and thus high val-
ues of FA and low values of MD describe a non-pathological scenario. FA and MD maps can 
be visualized as conventional gray-scale images and can be subsequently analyzed by means 
of classification tools. In recent years, DTI has revealed itself as a very promising imaging 
modality to discriminate between healthy control (HC) subjects, AD patients and subjects 
with MCI. An analysis approach commonly found in literature consists in the computation 
of FA and MD maps (or other diffusion indices), followed by the identification of the most 
representative voxels; these voxels are then fed into machine-learning algorithms to automate 
the classification.

For the discrimination HC/AD, Mesrob et  al (2012) adopted a support vector machine 
(SVM) classifier and a region of interest (ROI)-based approach; Dyrba et al (2015b) used a 
ROI-based approach and a multimodal SVM combining DTI indices with gray matter volume 
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derived from sMRI; Amoroso et al (2016) adopted topological measurements based on proba-
bilistic tractography; Schouten et al (2016) used a ROI-based approach in combination with 
elastic net regression. For the classification HC/MCI, Cui et al (2012) used subcortical volu-
metric features extracted using a segmentation algorithm together with FA values obtained for 
white matter regions of interest. Dyrba et al (2015a) used a ROI-based approach and SVMs 
on a multicentric dataset and apply variance reduction methods.

The best performances in literature for the HC/MCI classification, using a single DTI 
modality, can be found in Haller et al (2010) and O’Dwyer et al (2012). In these works, a 
voxel-based approach is used considering as features the voxel intensities in the diffusion 
maps. However, as also remarked in O’Dwyer et al (2012), in each of the above mentioned 
work, the methodological procedure relies on an a priori feature selection performed on the 
entire dataset to be analyzed. This procedure, also known as non-nested feature selection, 
circular analysis, or double dipping, chooses the most discriminative voxels by using also the 
test set, thus introducing a bias in the classification model. A non-nested feature selection nec-
essarily leads to overestimate the numerical values of accuracy and area under the ROC curve 
(AUC). On the contrary, a nested feature selection is obtained when the selection procedure is 
performed blind to the test set.

The practice of double dipping and its dangers are well known to the statistics and comp-
uter science community, and have been extensively described in the literature (Singhi and 
Liu 2006, Kriegeskorte et al 2009). Although recommendations and best practices are avail-
able (Pereira et al 2009), the field of neuroimaging is still widely populated by studies that 
noticeably perform non-nested feature selection, claiming classification performances close to 
perfect accuracy. The effects of double dipping on classification performances in neuroimag-
ing studies have been quantitatively assessed when dealing with functional brain data, such as 
fMRI (Pereira et al 2009) or MEG (Olivetti et al 2010), and with data derived from structural 
T1-weighted MR imaging (cortical thickness) in Eskildsen et al (2013). However, some of 
the image classification studies involving DTI cited above seem to be affected by such feature 
selection bias, and to date no study has yet investigated to which extent the reported perfor-
mances are inflated by its presence.

In this work we used DTI images for classification tasks in AD; considering the profitabil-
ity of using classification trees in the context of machine learning techniques applied to AD 
(Salas-Gonzalez et al 2010, Lebedev et al 2014), we used a random forest approach. The main 
aim of this work is to perform a comparative study between nested and non-nested feature 
selection on the same data set. To the best of our knowledge, this is the first study attempt-
ing to measure the bias introduced by non-nested feature selection, from now onward feature 
selection bias (FSB), in the classification of DTI images with a fair comparison, i.e. measuring 
the effect on the same fixed data set. We finally confirmed on an independent test set how the 
FSB impacts the reliability of estimated classification performances.

2. Materials

Data used in preparation of this article were obtained from the Alzheimer’s disease neuroim-
aging initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic resonance imaging, positron emission 
tomography, other biological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive impairment and early Alzheimer’s 
disease.

T Maggipinto et alPhys. Med. Biol. 62 (2017) 2361
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The images analyzed for this study are diffusion-weighted scans of 150 subjects (50 HC, 
50 AD patients and 50 MCI), both males and females, aged 55 to 90, from the ADNI-GO and 
ADNI-2 phases. Scans were randomly selected from baseline and follow-up study visits. HC 
subjects show no signs of depression, mild cognitive impairment or dementia; participants 
with AD are those who meet the NINCDS/ADRDA criteria for probable AD; MCI subjects 
have reported a subjective memory concern, but without any significant impairment in other 
cognitive domains: they substantially preserved everyday activities with no signs of dementia. 
Two MCI levels (early or late) are usually distinguished according to the Wechsler Memory 
Scale Logical Memory II. For this study, we used a balanced group of 25 early and 25 late 
MCI, but these labels were not taken into account in the classification tasks. Further details 
about diagnostic criteria for ADNI study participants can be found at http://adni.loni.usc.edu/
study-design/background-rationale/.

In order to evaluate the proposed algorithm on an independent test set, a second differ-
ent set of scans from the ADNI database was also considered, consisting of 40 HC, 40 MCI  
(22 early and 18 late) and 39 AD. This second test set included both male and female subjects, 
and was age-matched with the training sample. Diffusion-weighted scans were acquired using 
a 3 T GE Medical Systems scanner with 41 gradient directions (b  =  1000 s mm−2); in addi-
tion to these, 5 images with negligible diffusion effects (b0 images) were acquired as reference 
scans for subsequent analysis.

3. Methods

The main steps of our analysis are outlined in the flowcharts in figures 1(a) and (b).

3.1. Image preprocessing

Diffusion-weighted images were preprocessed using the FMRIB Diffusion Toolbox, included 
in the FSL software (Jenkinson et al 2012). Preprocessing comprised: (i) conversion to Nifti 
format; (ii) extraction of gradient directions and b-values; (iii) correction for eddy currents 
and head motion; (iv) skull-stripping using the brain extraction tool (BET).

3.2. Diffusion tensor fitting

After preprocessing, a single diffusion tensor was fitted at each voxel in the image, using 
DTIfit. From the diffusion tensor, fractional anisotropy (FA) and mean diffusivity (MD) were 
then calculated. By definition, these two invariants are related to the eigenvalues of the diffu-
sion tensor λ1, λ2, λ3 by Basser et al (1994) and Le Bihan et al (2001):

λ λ λ λ λ λ

λ λ λ
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− + − + −

+ +
FA

1

2
1 2

2
2 3

2
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2

1
2

2
2
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FA and MD maps were computed for each subject in the study. FA quantifies the degree of 
anisotropy of any diffusion process, taking values in the range [0, 1]. Diffusion is said to be 
isotropic for FA  =  0, whereas a value of 1 indicates that diffusion is fully constrained along 
one direction. Water diffusion in an healthy axon or fiber bundle is highly anisotropic and 
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constrained almost exclusively to the fiber direction, due to the presence of the surrounding 
myelin sheath. FA is typically higher in white matter than in grey matter or cerebrospinal fluid 
(CSF), and is an established marker of microstructural fibre integrity, in the sense that its value 
decreases in presence of axonal degeneration or demyelination. MD instead relates to the 
mean free path of water molecules in all directions. It is typically of the same order of magni-
tude in gray and white matter, while being consistently higher in the CSF, and can be regarded 
as an inverse measure of membrane density. Increases in MD in white matter areas are there-
fore indicative of myelin disruption or loss (Feldman et al 2010, Alexander et al 2011).

3.3. Tract-based spatial statistics

After diffusion tensor fitting, FA and MD maps need to be carefully aligned to a group-wise 
space before any voxel-wise statistical analysis is carried out; in addition to this, it is desirable 
to restrict the analysis only to voxels belonging to white matter fiber bundles. All this was 
achieved by means of the tract-based spatial statistics (TBSS) algorithm implemented in FSL 
(Smith et al 2006). TBSS performs the following steps:

 • Identify a common registration target (it can be either a mean FA template provided 
with the software or the most ‘representative’ subject of the cohort) and apply nonlinear 
registration to align all subjects’ FA maps to the selected target. The chosen target was the 
FMRIB58_FA standard-space FA template, generated by averaging 58 FA images from 
diffusion MRI data, in MNI152 space.

 • After the nonlinear registration, the entire aligned dataset undergoes an affine transforma-
tion to bring it into × ×1 1 1 mm3 MNI152 space. Then, a mean FA image is created, 
averaging all the FA maps in the dataset, and the result is used to generate a mean FA 
skeleton of white matter fibre tracts common to all subjects. The mean skeleton is thresh-
olded to exclude voxels belonging to gray matter or cerebrospinal fluid, as well as voxels 

Figure 1. Flowcharts of the performed analyses: (a) non-nested feature selection and 
(b) nested feature selection. For readability, they only consider the steps following the 
feature extraction phase. (a) Non-nested approach. (b) Nested approach.
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from the outermost part of the cortex, which are zones of greater inter-subject variability. 
Figure 2 shows an example of FA map (figure 2(a)) and MD map (figure 2(b)), and the 
FA skeleton mask overlapped onto the mean FA map (figure 2(c)).

 • Finally, all subjects’ FA images are projected onto the mean FA skeleton, achieving an 
alignment between subjects in the direction orthogonal to the fibre bundle orientation.

TBSS was performed also on MD maps. After applying TBSS, each subject’s map com-
prised about ×7 106 nonzero voxels.

3.4. Feature selection

As a result of TBSS, the skeleton of main white matter fibre tracts was extracted from each 
subject, together with the corresponding values of FA and MD at each voxel in the skeleton. 
Approximately 120 000 voxels for each subject map were projected onto the skeleton.

The following stage aimed at assessing which voxels are most significant for the purpose 
of discriminating HC from AD and MCI. It is important to note that it is not possible to 
rely on any assumption about the distribution of the test statistic under the null hypothesis; 
this implies that any statistical test has to be non-parametric. Wilcoxon rank sum test and 
the ReliefF algorithm were used both within a non-nested and nested approach. A Wilcoxon 
test compares the medians of the groups of data to determine if the samples come from the 
same population, and returns a p-value for the null hypothesis that samples are drawn from 
the same population (Whitley and Ball 2002, Hollander et al 2013). Then voxels are ranked 
selected by thresholding on p-values. The basic principle of ReliefF (Kira and Rendell 1992, 
Kononenko et al 1997) is to estimate features according to how well their values distinguish 
among data instances close to each other. Features are then ranked and sorted in order of 
decreasing importance.

For each classification task, fifteen reduced datasets were created by selecting an increasing 
number of most discriminating voxels, depending on the feature selection’s output: 50, 100, 
150, 200, 250, 300, 350, 400, 450, 500, 600, 750, 1000, 2000 and 3000 voxels.

Figure 2. From left to right: (a) a fractional anisotropy (FA) map and (b) a mean 
diffusivity (MD) map. For all subsequent analyses both maps are projected onto the 
mean FA skeleton (c). (a) Example of FA map. (b) Example of MD map. (c) Mean FA 
skeleton.
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3.5. Classification

In the present work, the learning and classification phase was accomplished by random 
forests. They constitute an ensemble learning method for classification and are known for 
producing highly accurate classifiers and for running efficiently on large datasets (Breiman 
2001). Random forests operate by building a multitude of decision trees at training time and 
outputting the class that is the mode of the classes predicted by the individual trees at evalu-
ation time. The training algorithm for random forests applies the general technique of boot-
strap aggregating, or bagging, to tree learners. Given a training set =X x x, ..., n1 , with classes 
=Y y y, ..., n1 , the algorithm repeatedly (B times) selects a random sample with replacement of 

the training set and fits trees to these samples. More precisely, for b  =  1, ..., B:

 • n training examples are sampled with replacement from X, obtaining Xb.
 • A subset of features is randomly chosen. Typically, for classification problems with m 

features, m  features are chosen. The reason for doing this is to reduce the high correla-
tion of the trees obtained in an ordinary bagging.

 • A decision tree is trained on Xb.

It is worth noting that B (i.e. the number of samples/trees) is a free parameter. Since a few 
hundreds of samples represent the typical size of the forest, in this study a value equal to 300 
for B was chosen. After training, predictions for unseen samples are made by taking the major-
ity vote of all the predictions obtained by each individual tree. To perform the classification 
tasks, the implementation of random forests in MATLAB was used.

To determine the classification performance of the random forests classifier, a 100 times 
repeated 5-fold cross-validation for each reduced dataset was adopted. More precisely, every 
subject was shuffled into one of five folds from which one fold was selected as the test set, 
while the remaining folds form the training set. The subjects were stratified by diagnosis, such 
that each fold contained the same number of subjects from each diagnostic group. The clas-
sification process was repeated until each of the five folds was used as test set once. Finally, 
the full cross-validation procedure was repeated 100 times, using different permutations, to 
shuffle the subjects into the folds for a more general approximation of the performance.

It is worth noting that the non-nested approach employed a feature selection on the entire 
dataset before the dataset was split (figure 1(a)). Conversely, in the nested approach (figure 1(b)),  
for each cross-validation round, the dataset was split into a training and test set, then the fea-
ture selection was applied on the training set blind to the test set. As measures of performance, 
the widely used accuracy and AUC were calculated.

4. Results

4.1. The feature selection bias effect

A primary question about the effects of excluding the feature selection from cross-validation 
procedures is whether or not the induced FSB is affected by the different kind of informa-
tion employed, specifically FA and MD. Another question concerns the size of this effect. 
Besides, we also investigated whether or not the FSB was associated with the diagnosis, thus 
we separately studied the binary classification of HC/AD and HC/MCI. Finally, we included 
in our investigation two different feature selection techniques to assess whether the FSB effect 
could in some way depend on the methodology adopted to select the features. Mean AUCs for 
the classification involving both FA and MD measurements are plotted in figure 3 with both 
feature selection techniques.

T Maggipinto et alPhys. Med. Biol. 62 (2017) 2361
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It can be observed that switching from non-nested to nested feature selection, for the clas-
sification between HC and AD, accuracy considerably decreases from a maximum mean 
value of 0.87 to a maximum value of 0.75, while the best AUC drops from 0.96 to 0.84. It is 
worth noting that the best performance is obtained using ReliefF, but for both feature selection 
techniques a significant drop in performance is consistently seen. The performance decrease 
switching from non-nested to nested approach is more evident for the classification between 
HC and MCI: the best classification performance changes from 0.81 to 0.59 concerning acc-
uracy, and from 0.90 to 0.65 concerning AUC.

The same procedure was applied using MD. It is worth noting that moving from non-nested 
to nested feature selection, for the classification between HC and AD, best mean accuracy and 
AUC decrease respectively from 0.83 to 0.76 and from 0.90 to 0.82. For the discrimination 
HC/MCI the best accuracy falls from 0.79 to 0.60, while AUC decreases from 0.88 to 0.65. 
Again in this case, ReliefF performed better and the same performance deterioration detected 
for FA is clearly recognizable.

For each classification task and for each feature selection technique, the best performances 
in terms of mean accuracy and mean AUC are summarized in table 1.

The boxplot in figure 4 shows the distributions of the differences between the AUC values 
obtained in non-nested and nested best cases. It can be noticed that the FSB effect occurs 
regardless of the diffusion index (FA or MD) used for the classification and that this effect is 
more pronounced in the HC/MCI classification task.

Figure 3. Mean AUCs obtained varying the number of voxels. (a) HC versus AD using 
FA. (b) HC versus AD using MD. (c) HC versus MCI using FA. (d) HC versus MCI 
using MD.

T Maggipinto et alPhys. Med. Biol. 62 (2017) 2361
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A Wilcoxon rank sum test was performed to assess differences between the performance 
distributions with the nested and non-nested approach in a non-parametric fashion. Statistically 
significant differences (p  <  0.01) were found between the median best performance obtained 
in the two cases (nested and non-nested) for all classification tasks and for both FA and MD. 
However, it must be noted that, for a given diffusion index (FA or MD), classification task 
(HC/AD or HC/MCI) and approach (nested or non-nested), the 100 measured performance 
metrics are not independent samples: all the 100 repetitions make use of the same images, and 
within each repetition there is substantial overlap among the training folds used for the cross-
validation. It has been shown that, in cases like the present one, no unbiased estimator exists 
for the variance of the k-fold cross-validation (Bengio and Grandvalet 2004). The dependence 
of the samples and the impossibility to get an unbiased estimation of the variance violate the 

Table 1. The first column refers to the classification task. Best average performances 
in terms of accuracy (Acc) and area under the curve (AUC) obtained in cross-validation 
with non-nested and nested feature selection are respectively reported in the second and 
third column; values are affected by a standard error of the mean approximately equal to 
0.01 and a standard deviation approximately equal to 0.10. Non-nested feature selection 
always yields higher performances.

Classification Non-nested Nested

HC/AD with FA Acc  =  0.87 Acc  =  0.75
AUC  =  0.96 AUC  =  0.84

HC/MCI with FA Acc  =  0.81 Acc  =  0.59
AUC  =  0.9 AUC  =  0.65

HC/AD with MD Acc  =  0.83 Acc  =  0.76
AUC  =  0.9 AUC  =  0.82

HC/MCI with MD Acc  =  0.79 Acc  =  0.6
AUC  =  0.88 AUC  =  0.65

Figure 4. Distribution of the differences between the AUCs obtained in non-nested and 
nested best performances shows a consistent increment.

T Maggipinto et alPhys. Med. Biol. 62 (2017) 2361
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main assumption behind the use of standard parametric and non-parametric hypothesis tests. 
Therefore, we acknowledge the violation of the main assumption of hypothesis testing, and 
we warn the reader to use caution when interpreting the reported p-values.

4.2. DTI measurements: evaluation on an independent test set

It is worth noting that the information coming from the voxel selection can be used to identify 
the most disease-related brain regions concerning the fiber integrity. Therefore, in the present 
study, it was also investigated whether the voxels selected during the feature selection were 
localized in specific regions of interest of the brain.

For each classification task (HC/AD and HC/MCI) and for each feature selection technique 
(Wilcoxon and ReliefF), we considered the 1000 most discriminative voxels selected by the 
averaged nested feature-selection. They are ‘averaged’ in the sense that they are the voxels 
that were more frequently selected throughout all the 500 rounds of the entire nested cross-
validation procedure. Two selected clusters of FA voxels are shown as an example in figure 5.

The position of the voxels derived from the average cross validation was then investi-
gated. In order to carry out the disease-related-regions analysis, a combination of three atlases 
(HarvardOxford-Subcortical, JHU-ICBM-labels, JHU-ICBM-tracts) was used. More pre-
cisely, using the voxels selected from the FA maps, the comparison of HC and AD reveals 
differences predominantly in the anterior corona radiata (bilateral but more widespread in 
the left hemisphere) but also in the superior longitudinal fasciculus (more widespread in the 
left hemisphere), fornix, cingulum (Hippocampus), forceps major and minor, inferior fronto 
occipital fasciculus (right), cortospinal tract, anterior thalamic radiation, uncinate fasciculus 
(right, only with Wilcoxon), superior corona radiata and external capsule (only with ReliefF). 
In the comparison between HC and MCI the FA changes are predominantly located in for-
ceps minor, superior longitudinal fasciculus, external capsule (left) and, to a minor extent, in 
inferior fronto occipital fasciculus, anterior thalamic radiation, inferior longitudinal fascicu-
lus, cortical spinal tract, fornix, forceps minor, anterior limb of internal capsule, left cerebral 
cortex.

Figure 5. Clusters of voxels selected by ReliefF averaging all rounds of the nested 
feature selection (classification task HC/AD with FA): (a) voxels in the anterior corona 
radiata (left); (b) voxels in the fornix.
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Concerning the voxels selected from the MD maps, comparing HC and AD, the predomi-
nant changes are localized in fornix, superior longitudinal fasciculus (more widespread in 
the left hemisphere in the case of Wilcoxon), anterior thalamic radiation, splenium and body 
of corpus callosum, inferior longitudinal fasciculus, anterior corona radiata, superior corona 
radiata (left). In the case of HC versus MCI, the MD differences are predominantly in anterior 
thalamic radiation, inferior fronto occipital fasciculus (right), forceps major, superior longitu-
dinal fasciculus, posterior thalamic radiation (right), inferior longitudinal fasciculus, fornix, 
forceps minor.

The effectiveness of the voxels selected by the nested cross-validation in discriminating the 
diagnostic groups was then evaluated on a second independent set of images from the ADNI 
database, consisting of new scans of 40 HC, 40 MCI and 39 AD. We considered the classifica-
tion tasks HC/AD and HC/MCI with FA and MD and adopted the classification tool obtained 
at the end of the training phase. In particular, we considered only those models constructed on 
the reduced sets of voxels corresponding to the best classification performance and by fixing 
the feature selection technique adopted, i.e. ReliefF.

In order to evaluate the classification performances on the new data set, we calculated the 
mean scores, indicating the average predicted class posterior probabilities obtained by all 
models; then we calculated accuracy and AUC accordingly. The results obtained are reported 
in the third column of table 2. It can be noticed that they fall within one standard deviation of 
the corresponding mean value (second column).

5. Discussion and conclusion

In this study we show that: (i) the use of non-nested feature selection techniques leads to 
overoptimistic classification performance; (ii) the FSB is manifest both for FA and MD, 
thus it does not depend on the features adopted; (iii) the FSB effect is more evident for the  
HC/MCI classification tasks.

The results obtained show that the voxel-based approach adopted in this study, without 
the bias introduced by the a priori feature selection, does not improve the classification per-
formance obtained with other methodological procedures, except for the AUC achieved in 
the discrimination of HC versus AD using FA. For the latter, the best accuracy is higher than 
the accuracy achieved by Mesrob et al (2012) and slightly lower than the value obtained by 
Schouten et al (2016). Conversely, the AUC achieved is slightly higher than the one obtained 

Table 2. Comparison between best average performances, both in terms of accuracy 
(Acc) and area under the curve (AUC), on the training sample with nested feature 
selection and on the independent test sample. Independent test results (third column) 
are in good agreement with those obtained on the training set (training performances in 
the second column are affected by a standard deviation approximately equal to 0.10).

Classification Nested Test (nested)

HC/AD with FA Acc  =  0.75 Acc  =  0.80
AUC  =  0.84 AUC  =  0.91

HC/MCI with FA Acc  =  0.59 Acc  =  0.56
AUC  =  0.65 AUC  =  0.58

HC/AD with MD Acc  =  0.76 Acc  =  0.73
AUC  =  0.82 AUC  =  0.86

HC/MCI with MD Acc  =  0.6 Acc  =  0.54
AUC  =  0.65 AUC  =  0.60
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by Schouten et al (2016). For the classification HC/MCI it can be noticed that the accuracy 
and the AUC achieved with nested feature selection is lower than the one obtained in Cui et al 
(2012); similarly, for the same classification task, the outcome is lower than the value obtained 
by Dyrba et al (2015a).

If such detrimental effects on performance were somehow expected, it is worth noting that, 
as far as we know, no other study has measured this effect in the field of machine learning 
techniques applied to diffusion tensor imaging for AD. Furthermore, our findings regarding 
the significant regions for AD are consistent with several studies involving DTI, also when 
using other datasets than ADNI/ICBM, thus reassuring about the informative content of the 
voxel-based approach from the clinical point of view. Therefore the presence of the FSB in 
some studies using this approach is not detrimental to the anatomical and biological plausibil-
ity of the findings. In general, the existing literature provides evidence about the vulnerability 
of fornix, corpus callosum and cingulum to the early disease process involved in AD (Acosta-
Cabronero and Nestor 2014). In particular, the white matter changes we found in the Fornix 
in all classification tasks (to a minor extent in the discrimination between HC and MCI using 
FA) have been reported in Oishi and Lyketsos (2014) and Nowrangi and Rosenberg (2015). 
Indeed, FA reduction in the Fornix has been identified in the majority of whole-brain-TBSS 
studies applied to AD. Similarly, the predominant differences we observed in cingulum, in the 
classification HC/AD using FA, are confirmed by looking, for example, at Teipel et al (2007) 
and Agosta et al (2011). Additionally, the changes we observed in the Splenium of Corpus 
Callosum, when classifying HC versus AD using MD, have been reported in Stahl et al (2007) 
and Teipel et al (2007). The most consistent results with our findings are those reported in 
Stricker et al (2009), where significant changes have also been found in uncinate fasciculus, 
inferior longitudinal fasciculus, superior longitudinal fasciculus and forceps major, and in 
Sousa Alves et al (2012), which identified changes in anterior corona radiata, inferior fronto 
occipital fasciculus and forceps minor. Finally, we remark that Sousa Alves et al (2012) also 
confirms the predominance of differences in the left hemisphere we found in our analysis.
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