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A B S T R A C T

Quantifying the degree of atrophy is done clinically by neuroradiologists following established visual rating
scales. For these assessments to be reliable the rater requires substantial training and experience, and even then
the rating agreement between two radiologists is not perfect. We have developed a model we call AVRA
(Automatic Visual Ratings of Atrophy) based on machine learning methods and trained on 2350 visual ratings
made by an experienced neuroradiologist. It provides fast and automatic ratings for Scheltens' scale of medial
temporal atrophy (MTA), the frontal subscale of Pasquier's Global Cortical Atrophy (GCA-F) scale, and Koedam's
scale of Posterior Atrophy (PA). We demonstrate substantial inter-rater agreement between AVRA's and a
neuroradiologist ratings with Cohen's weighted kappa values of κw=0.74/0.72 (MTA left/right), κw=0.62
(GCA-F) and κw=0.74 (PA). We conclude that automatic visual ratings of atrophy can potentially have great
scientific value, and aim to present AVRA as a freely available toolbox.

1. Introduction

The assessment of structural changes in the brain is made clinically
by visual ratings of brain atrophy according to established visual rating
scales. They offer an efficient and inexpensive method of quantifying
the degree of atrophy and can help to improve the specificity and
sensitivity of dementia diagnoses (Harper et al., 2015; Wahlund et al.,
2017). However, there are limitations associated with visual ratings of
atrophy, which may explain why they are still not widely used in the
clinical routine. First, the ratings are inherently subjective which means
that the agreement between two radiologist might be low if they have
not had sufficient training (Harper et al., 2015). Second, in order to
achieve adequate reliability the radiologist needs to be experienced and
regularly perform ratings for the reproducibility not to drop (Cavallin
et al., 2012a). Third, the ratings are relatively time consuming and
tedious. It takes a few minutes per image (Wahlund et al., 1999),

depending on rating scale and level of rating experience. While this
amount of time may be feasible in most clinical settings, it does not
easily allow studying large imaging cohorts of potentially thousands of
images. An automatic method would remove the inter- and intra-rater
variability and eliminate the time-consuming process of rating.

Amongst the most commonly used visual rating scales—both in
research and in clinical routine—are Scheltens' Medial Temporal
Atrophy (MTA) scale (Scheltens et al., 1992), Koedam's scale for Pos-
terior Atrophy (PA) (Koedam et al., 2011) and the frontal subscale of
Global Cortical Atrophy (GCA-F) proposed by Pasquier (Scheltens et al.,
1997; Pasquier et al., 1996). These scales each assess the atrophy in a
specific region of the brain from Magnetic Resonance Imaging (MRI) or
Computer Tomography (CT) images, and details about these scales can
be seen in Table 1 with illustrative examples in Fig. 1. These scales have
previously been validated by quantitative neuroimaging techniques
used in research (Bresciani et al., 2005; Cavallin et al., 2012b; Wahlund
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et al., 1999; Möller et al., 2014; Ferreira et al., 2016). MTA ratings have
been shown to be significantly (anti-)correlated with hippocampal vo-
lume and width of the temporal horn (Bresciani et al., 2005; Cavallin
et al., 2012b; Wahlund et al., 1999). Möller et al. (2014) found statis-
tical differences in parietal cortex between PA ratings both in volumes
of specific posterior gray matter regions, and using voxel-based mor-
phometry (Möller et al., 2014). Further, the GCA-F scale has been
shown to reliably reflect atrophy in the frontal cortex using both vo-
lumetrics and surface-based analysis (Ferreira et al., 2016). Some stu-
dies have explicitly compared diagnostic ability of using regional cor-
tical volume and thickness measures as opposed to visual ratings in
dementia cohorts, showing improved discrimination when using

cortical measures (Bresciani et al., 2005; Westman et al., 2019). How-
ever, in cases where a neuroimaging software fails to extract volumetric
information (e.g. due to presence of image artifacts or an odd scanning
protocol) it would not be feasible—nor possible—to manually correct
this error in a clinical situation. Yet, it is likely that the radiologist
would still be able to make visual atrophy ratings of those images.

A few automatic (or semi-automatic) methods to quantify medial
temporal atrophy—besides volumetrics—have previously been pro-
posed. Two of them involve planimetrics based on manual delineation
of hippocampus and surrounding structures that are combined into a
single score of medial temporal atrophy (Zimny et al., 2013; Menéndez-
González et al., 2014). While these methods assess almost the same

Table 1
Description of Scheltens' MTA scale, Pasquier's frontal GCA subscale (GCA-F) and Koedam's PA scale. Abbreviations: Posterior cingulate sulcus (PCS); Parieto-
occipital sulcus (POS); Precuneus (PRE); Hippocampus (HC).

Rating MTA (Scheltens et al., 1992) GCA-F (Pasquier et al., 1996) PA (Koedam et al., 2011)

0 Normal No atrophy No atrophy
1 Widening of choroid fissure. Mild sulcal atrophy in frontal

lobe.
Mild widening of PCS and POS, mild atrophy of PRE and
parietal lobes.

2 Increased widening of choroid fissure, widening of temporal
horn, decreased height of HC.

Moderate sulcal atrophy in
frontal lobe.

Substantial widening of PCS and POS, substantial atrophy of
PRE and parietal lobes.

3 Increased widening of choroid fissure and temporal horn,
further decreased heigth of HC.

Severe sulcal atrophy in frontal
lobe.

Evident widening of PCS and POS, end-stage atrophy of PRE
and parietal lobes.

4 Further decreased height of HC. – –
Rating slice(s) Single coronal slice. Multiple axial slices. Multiple slices, all anatomical planes.

Fig. 1. Examples of Scheltens' MTA scale (Scheltens et al., 1992), Pasquier's frontal subscale of GCA (Pasquier et al., 1996), and Koedam's PA scale (Koedam et al.,
2011). The MTA ratings are done in the coronal plane, GCA-f in the axial plane, and PA ratings are based on assessments of all three planes. The area between the
dashed lines in the left images indicates the slices assessed by a radiologist for the GCA-F and PA scales, while it shows the single slice assessed for MTA. The red
boxes indicate the regions assessed for each rating scale.

G. Mårtensson, et al. NeuroImage: Clinical 23 (2019) 101872

2



structures as Scheltens' MTA scale, the different scales are not inter-
changeable and do not necessarily reflect the same atrophy patterns.
Another study recently reported an automatic method that is trained on
radiologist ratings which predicts MTA scores based on volumetric
measures extracted from the MRI image (Lotjonen et al., 2017). Volu-
metric measures of brain regions can not be extracted from most CT
images nor do they retain any information regarding the shape of the
structures. It is reasonable to assume that the shapes are important
since the visual MTA rating is done on a single slice, from which it is not
possible to estimate the hippocampal volume.

Deep learning—a branch of machine learning—has recently gener-
ated impressive results in several fields, such as speech recognition, text
semantics, image recognition and genomics (Lecun et al., 2015). Con-
volutional neural networks (CNN's) have already been substantially
applied in medical image analysis (for recent reviews, see (Shen et al.,
2017; Litjens et al., 2017)). In neuroimaging, deep neural networks
have been used successfully for automatic methods of skull stripping
(Roy et al., 2017; Kleesiek et al., 2016), brain age prediction (Cole
et al., 2017), brain segmentation (Chen et al., 2018), PET image en-
hancement (Wang et al., 2018) and brain tumor segmentation (Pinto
et al., 2016; Zhao and Jia, 2016) to name a few. In dementia research,
several studies have investigated brains of patients with Alzheimer's
disease (AD) using deep learning and shown impressive diagnostic
abilities (Hosseini-Asl et al., 2016; Payan and Montana, 2015; Suk et al.,
2016; Liu et al., 2018). A Recurrent Neural Network (RNN) is an arti-
ficial neural network that has an internal state (or “memory”) and is
useful when processing sequential data, such as words in a sentence or
frames in a video (Lecun et al., 2015; Donahue et al., 2015). RNN's have
previously been combined with CNN's to segment MRI images, where
the addition of an RNN module helped to leverage adjacent slice de-
pendencies (Ypsilantis and Montana, 2016; Poudel et al., 2017).

In this study, we aimed to develop an automatic algorithm based on
convolutional and recurrent neural networks that provides fast, reli-
able, and systematic predictions of established visual ratings scales of
atrophy of brain regions often affected in dementia: the MTA, GCA-F
and PA scales. The models are trained on a large set of MRI images that
have been rated by an experienced neuroradiologist. This method is
atlas-free and requires minimum amount of setup and third-party
software. We plan to present the proposed algorithm as a freely avail-
able software targeted towards neuroimaging researchers.

2. Material and methods

2.1. MRI data and protocols

Two different dementia cohorts of MRI images were included in this
project: Alzheimer's Disease Neuroimaging Initiative (ADNI) and a
clinical cohort with images from the memory clinic at Karolinska
University Hospital (referred to as MemClin from here on). Informed
consent was obtained for all participants, or by an authorized re-
presentative of theirs.

Individuals in the MemClin cohort consisted of patients clinically
diagnosed between 2003 and 2011 with AD according to the ICD-10
criteria, or frontotemporal dementia (FTD) using the diagnostic criteria
by Neary et al. (1998). Brain images of these patients had been visually

rated by neuroradiologist Lena Cavallin (L.C.) in previous studies by our
group focused on AD and FTD, with the exclusion criteria of patients
having history of traumatic brain injury (< 1%) or insufficient quality
of the MRI scan (< 1%, not possible to visually rate) (Ferreira et al.,
2018; Lindberg et al., 2009). An additional exclusion criterion in this
study was failed automatic registration using FSL of images possible for
a radiologist to visually rate (2.6%). All participants underwent a T1-
weighted MRI scan at the Radiology Department of Karolinska Uni-
versity Hospital in Stockholm, Sweden.

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic re-
sonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer's disease (AD). For up-to-date information,
see www.adni-info.org. A majority of the participants in the ADNI co-
hort were scanned multiple times within a few weeks—often in the
same day. A subset of participants were scanned both in 1.5 T and 3 T
machines.

All available images with an associated visual atrophy rating per-
formed by a neuroradiologist were used in this study: a total of 5271
images. They were obtained from 117 different scanners (112 in ADNI
and 5 in MemClin, see Supplementary Data for detailed description of
scanner protocols), where all except 36 scans were acquired using a 3D
MRI protocol. The MemClin image data was collected as part of the
clinical routine with standard—but not strictly harmonized—MRI pro-
tocols, including updates and protocol changes over time. Thus, the
MemClin data largely resembles the MRI variability present in clinics,
whereas the ADNI data does not due to extensive efforts in harmonizing
the MRI protocols across scanners.

We used theHiveDB database system (Muehlboeck et al., 2014) for
data management during the development of the algorithm, which will
become part of theHiveDB's automated activity system.

2.2. Human ratings

An experienced neuroradiologist (L.C.) visually rated 2350 T1-
weighted MRI images over the course of 16months with no prior
knowledge of age, sex, or diagnosis. For ADNI subjects scanned more
than once within a few weeks (i.e. within the same ADNI time-point),
only one of these images was rated by the radiologist and the additional
image(s) were labeled with the same rating. The distribution of L.C.'s
MTA, PA and GCA-F ratings are shown in Table 2. Many of the ADNI
ratings have been analyzed and reported in previous studies (Ferreira
et al., 2018; Ferreira et al., 2015; Ferreira et al., 2016; Ferreira et al.,
2017; Westman et al., 2019). All visual ratings of MTA, PA and GCA-F
were based on T1-weighted MRI images, and illustrative examples of
the ratings can be seen in Fig. 1. The images were aligned with AC-PC
(the anterior and posterior commissures) by the radiologist if the pro-
tocol allowed for it (Cavallin et al., 2012a). The MTA ratings were made
in a single coronal slice, just behind the amygdala and mammillary
bodies. The GCA-F ratings were based on multiple axial slices, whereas

Table 2
The rating distribution of the images used in the study. The “Images” column refers to how many unique images that were rated by the radiologist at least once. Both
the left and right MTA ratings are presented in the “MTA” column in the Table.

Cohort Images MTA GCA-F PA

0 1 2 3 4 0 1 2 3 0 1 2 3

ADNI 1966 425 1581 1147 555 224 1449 468 49 0 1188 611 157 10
MemClin 384 23 265 296 139 45 279 89 14 2 210 127 43 4
Total 2350 448 1846 1443 694 269 1728 557 63 2 1398 738 200 14
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the PA scores were based on slices in all three planes.
To get an idea of the variability in the human ratings used for

training AVRA, we studied the intra-rater agreement in a subset of 244
images that had been rated 2–4 times with at most 16months from the
first to the last rating session by L.C. To be consistent with the computer
training and evaluation procedure, we compared the latest rating to a
previous one. If there were more than two ratings, the previous rating
was chosen randomly.

2.3. Computer ratings

The motivation behind the proposed model architecture was to
mimic how a neuroradiologist would process an MRI image: to scroll
through the brain volume slice-by-slice looking for the “correct” slice(s)
to base the rating on. A human rater assesses images acquired using
different scanners, vendors and protocols without any need for sub-
stantial preprocessing such as segmentation, intensity normalization,
non-linear registrations or skull-stripping. To better mimic the clinical
situation (and to keep the number of time consuming preprocessing
steps that can potentially fail to a minimum) we trained AVRA to rate
images with as little preprocessing as possible. The main difference
between AVRA's and a human rater is that AVRA's ratings are con-
tinuous instead of discrete.

All code in this project was developed in Python 3.4.3 using the
deep learning framework PyTorch 1.0 (Paszke et al., 2017). The
training of AVRA was done on GPU's for computational efficiency. To
obtain an estimate of the time to run a single case when run on a
“regular” computer, we processed and timed five individual cases using
CPU only (Intel®Core ™i7-8700k, 32GB DDR-4) without GPU support.

2.3.1. Preprocessing
The only preprocessing included in our method is the registration of

all brains to the MNI standard brain using FSL FLIRT 6.0 (FMRIB's
Linear Image Registration Tool) (Jenkinson et al., 2002; Jenkinson and
Smith, 2001; Greve and Fischl, 2009). This rigid transform is computed
with 6 degrees of freedom (i.e. rotation and translation only) and is
used to automatically AC-PC align each brain and conform all images to
the same voxel size (1x1x1mm3) and input dimension (182x218x182).
The AC-PC aligned images are cropped to remove excess space outside
the brain and redundant slices not part of the ratings scale (as indicated
in Figs. 1 and 2). The center-voxel of the cropped images depended on
the rating scale. For the MTA ratings, 22 coronal slices of the dimension
128mm×128mm are input to the model—enough to ensure that the
“correct” rating slice is included. The GCA-F ratings are done on mul-
tiple axial slices so each volume is cropped to 160mm×192mm×40
slices, with 2mm slice thickness. The PA model requires slices from all
three anatomical planes. From each MRI image a smaller volume of
128mm×128mm×128mm was extracted from the parietal lobe,
sufficiently large to include all relevant structures in the parietal cortex.
From this cropped volume 37 axial, 28 coronal and 34 sagittal slices
with 2mm slice thickness (i.e. 99 slices in total) were used as input to
the model. Since the distribution of raw voxel values was very differ-
ent—particularly between 1.5 T and 3 T images—all cropped volu-
metric images were normalized to have a zero variance and mean.

2.3.2. Model architectures
The overall structure of the models is shown in Fig. 2 and can be

split into three parts. First, relevant features from a single slice are
extracted using a Residual Attention Network (Wang et al., 2019), de-
tailed in Fig. 3. It combines the abilities from residual learning (He
et al., 2016), which can allow for even deeper models, and attention
models that can “focus” spatially on images—particularly useful for
visual ratings since they are based on regional atrophy (Xu et al., 2015;
Ba et al., 2015). Our implementation is a slimmed version of the ori-
ginal, with the same depth but a smaller number of filters in each layer
to reduce memory usage and computation time. Initial experiments

showed no noticeable performance reduction on the validation set
compared to using a larger network. Second, the features are reshaped
to a 1D vector and fed to an RNN, which consists of a two-layer Long-
Short Term Memory (LSTM) network with 256 hidden nodes
(Hochreiter and Schmidhuber, 1997; Gers and Cummins, 2019). The
LSTM modules are expected to “remember” relevant features seen in
previous slices and update its state (“memory”) when it is exposed to a
slice containing useful information for the rating. Finally, when slice 0,
1, …, (n−1) have been propagated through the network, the final
output from the second LSTM module hn(2) is used to make a linear
prediction of the visual rating. All three models share the same network
architecture except for the size of the input vector fed to the LSTM
network, as that is dependent on the input size of the MRI slices.

For comparison, we trained a VGG16 network (Simonyan and
Zisserman, 2019) without the RNN part, where the 3D volumes are
treated as multi-channel 2D images. That is, for the MTA model we
input one “22-channel” image to the CNN once instead of 22 single-slice
images.

2.3.3. Training
For training and evaluation, the dataset was randomly split into a

training and a hold-out test set, where 20% of all subjects were assigned
to the test set. On the remaining images in the training set we applied 5-
fold cross validation for hyper-parameter tuning for each rating scale.
The five trained models were used together as an ensemble classifier
evaluated on the test set, where the average prediction was considered
the final rating.

The models were trained for 200 epochs using backpropagation and
optimized through stochastic gradient descent (SGD) with cyclic
learning rate to maximize the probability of predicting the radiologist's
rating (Loshchilov and Hutter, 2016; Huang et al., 2017). The training
set was randomly split into minibatches, each containing 20 MRI
images, and the weights were updated to minimize the mean-squared
error between the automatic and the integer ratings by L.C. We em-
ployed data augmentation in the training process of the network to
reduce the risk of overfitting to the training set. This included random
cropping (within± 10mm off the center voxel), scaling, left/right
mirroring, and randomly selecting N4ITK inhomogeniety corrected
images instead of the original file (Tustison et al., 2010). Due to the
imbalance of ratings in the dataset we employed random oversampling
of images with less frequent ratings, which has been shown to improve
the prediction performance of CNN's (Buda et al., 2017). For ADNI
subjects that had multiple scans for a single timepoint, a scan was se-
lected randomly for each minibatch.

2.4. Analyses metrics

The visual rating scales are subjective measures by definition.
Consequently, there are no objective ground truth ratings available. In
most studies, the performance of a rater is reported in kappa statis-
tics—a group of measures that can quantify the level of agreement
between two sets of discrete ratings—but there is no single metric al-
ways reported. To make our results comparable to previous findings, we
present our results with Cohen's weighted kappa (κw), which has been
used in several previous rating studies (Koedam et al., 2011; Westman
et al., 2019; Cavallin et al., 2012a; Cavallin et al., 2012b; Ferreira et al.,
2016; Ferreira et al., 2017; Velickaite et al., 2017), as well as accuracy
and the Pearson correlation coefficient (ρ). The agreement between two
sets of ratings is referred to as inter-rater agreement if the sets were
assessed by different raters, and intra-rater agreement if a single radi-
ologist rated the set twice.

3. Results

For the 244 images rated more than once by the radiologist the
intra-rater agreement κw and accuracy for MTA (left) were: κw = 0.83,
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acc=76%; MTA (right): κw = 0.79, acc= 70%; GCA-F: κw = 0.46,
acc= 71%; PA κw= 0.65, acc= 72%. Ratings made only 1 week apart
showed substantially better intra-rater agreement (see Ferreira et al.
(2017) entry in Table 3). These results provide an estimate of the
“human-level agreement”—i.e. approximate levels of agreement our
models should be able to achieve by training on the available cohort
due to rating inconsistencies over 16months. Since there are no random
elements in the evaluation process of a brain image, the “intra-rater”
agreement of AVRA is inherently κw=1.

Our models predicted continuous rating scores of an image, based
on training from discrete ratings by L.C. We rounded AVRA's ratings to
the nearest integer to be able to compare the rating consensus in terms
of accuracy and kappa statistics. The agreements between the radi-
ologist's and AVRA's (as well as the VGG networks') ratings on the hold-
out test set are summarized in Table 3 together with previously re-
ported κw values of inter- and intra-rater agreements. The inter-rater
agreement kw, Pearson correlation ρ, and accuracy on the test set for
MTA (left): κw= 0.74, ρ=0.88, acc= 70%; MTA (right): κw= 0.72, ρ
= 0.88, acc= 70%; GCA-F: κw= 0.62, ρ=0.71, acc= 84%; PA: κw=
0.74, ρ = 0.85, acc= 83%. These agreement levels were similar to
previously reported in studies, see Table 3. The naive VGG16

implementations showed lower inter-rater agreements with the radi-
ologist compared to AVRA.

To increase interpretability and understanding of the models, we
computed gradient-based sensitivity maps of images in the test set
based on the SmoothGrad method (Smilkov et al., 2019). These in-
dicated how influential individual voxels were in the rating prediction,
which we can apply to verify that the network identified the correct
features. Examples of AVRA's rating predictions for each scale are
shown in Fig. 4. As can be observed, the MTA sensitivity maps were
generally focused only around the area of the hippocampus and the
inferior lateral ventricle in ∼±3 slices from the “correct” rating slice.
The sensitivity maps in other more posterior and anterior slices were
close to zero. The GCA-F maps were more diffused, but the greatest
magnitudes were primarily seen in the sulci of the frontal lobe. The PA
maps were mainly visible in the parietal lobe and in the sagittal plane,
with the greatest magnitudes appearing in parieto-occiptal sulcus and
precuneus.

The average time to process a single image using AVRA without
GPU support was 48 s, where the majority of the processing time was
spent on the AC-PC alignment using FSL FLIRT.

Fig. 2. A sketch of the architecture of AVRA, with
the example of a GCA-F prediction. Briefly, each slice
is processed through the residual attention network
and the extracted features are passed to a 2-layer
Long-Short Term Memory (LSTM) network. Once all
MRI slices have propagated through these two
stages, a fully connected network (FC) makes a pre-
diction of the visual atrophy rating. The MTA and PA
models followed the same structure.

Fig. 3. A sketch of the residual attention net used to extract features from individual MRI slices, where the flattened output is fed to the RNN. The downsampling
block consists of stacking maxpooling operations followed by a residual block. The upsamling is performed with bilinear interpolations of the output of a residual
block. The “+”, “x”, and “S-shaped” symbols denote element-wise summation, multiplication and the sigmoid function, respectively. The flow chart is adapted from
(Wang et al., 2019).
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4. Discussion

We have developed a tool for automatic visual ratings of atrophy
(AVRA) that is fast, systematic and robust. AVRA is trained on a large
set of images rated by an expert neuroradiologist using the established
clinical assessment measures of Scheltens' MTA scale, Pasquier's GCA-F
scale and Koedam's PA scale with agreement levels similar to that be-
tween two experienced radiologists. This tool runs in under 1min on a
regular computer, which enables automatically rating thousands of
images in a couple of hours. The main advantage of an automatic model
is the absence of randomness, which can improve rating consistency
between different clinics, research groups and cohorts. Thus, AVRA can
increase the use of visual ratings in research, and has—after extensive
validation—the potential to function as a clinical aid in the future.

The rating agreements between AVRA's and the radiologist's ratings
were considered substantial (i.e. between 0.6 and 0.8) according to the
often cited paper by Landis and Koch (1977) (Landis and Koch, 1977).
The agreements were close to the “human-level agreements” in this
study (i.e. the agreement between the multiple L.C. ratings of the same
image). This was reasonable since a model trained on imperfect labels
due to rating inconsistency can never achieve perfect agreement. AV-
RA's ratings agreed more with the radiologist ratings than the VGG16
models' did. A recurrent CNN architecture might thus be particularly
suitable for visual rating predictions, but we can not say from these
results if it was the residual modules, the attention components, or the
LSTM cells—all used in AVRA but not in the VGG16 models—that had
the greatest positive impact on the performance. Another contributing

factor may be the wide difference in the number of trainable parameters
between AVRA (1.5M) and VGG16 (65M) that makes AVRA less prone
to overfit on the training data.

The automatic model presented by Lötjönen and colleagues (2017)
is, to our knowledge, the only software that also attempts to predict
scores based on clinical visual rating scales (Lotjonen et al., 2017). It is
based on volume measures of hippocampus and surrounding structures,
whereas AVRA predicts the ratings directly from the voxel intensity
values. This makes our proposed method promising to also work on MRI
images with large slice thickness and CT images, from which volumes
generally cannot be computed. The fact that CT is a cheaper and more
commonly used imaging modality than MRI in the clinics speaks in
favor of using convolutional neural networks over volumetrics for au-
tomatic predictions of visual ratings (Falahati et al., 2015). No κw values
are reported in (Lotjonen et al., 2017), but they provided correlation
coefficients between radiologist and computer ratings for the MTA scale
as 0.86 (left) and 0.85 (right). AVRA showed a similar magnitude of
correlation for the MTA scale on the hold-out test set: ρ=0.88.

Frequently, it is difficult for a radiologist to decide between two
scores, and in a clinical situation the level of atrophy is often described
as “the left MTA is between 2 and 3” for instance. This nuance might be
important information for the physician diagnosing dementia, but in
research single integer scores have typically been used following the
original definitions of the rating scales. Previous attempts of (semi-)
automatic atrophy measures have output a continuous measure (Zimny
et al., 2013; Menéndez-González et al., 2014; González et al., 2019;
Lotjonen et al., 2017). The main advantages of using a continuous

Table 3
Previous studies reporting weighted kappa (κw) values for intra- and inter-rater agreements together with the test set agreement between L.C. and AVRA (in bold
text), and L.C and VGG16 as a reference. The interval given refers to the minimum and maximum κw value reported in the referenced study. The N column refers to
the number of images used for the intra- and inter-rater assessment (if two values are given the number of images rated were different for the intra- and the inter-rater
analysis). ∗ denotes if L.C. (whose ratings was used for training in this study) was one of the raters in the reported agreements.

Study Scale N Intra-rater agreement (κw) Inter-rater agreement (κw)

Cavallin et al. (2012) MTA 100 0.83–0.94∗ 0.72–0.84∗

Cavallin et al. (2012b) MTA 100 0.84–0.85∗ –
Westman et al. (2011) MTA 100 0.93∗ –
Velickaite et al. (2017) MTA 20/50 0.79–0.84 0.6–0.65∗

Ferreira et al. (2017) MTA 120 0.89–0.94∗ 0.70–0.71∗

Koedam et al. (2011) MTA 29/118 0.91–0.95 0.82–0.90
VGG16 MTA 464 1 0.58–0.59∗

AVRA MTA 464 1 0.72–0.74∗

Koedam et al. (2011) PA 29/118 0.93–0.95 0.65–0.84
Ferreira et al. (2017) PA 120 0.88∗ 0.88∗

VGG16 PA 464 1 0.63∗

AVRA PA 464 1 0.74∗

Ferreira et al. (2016) GCA-F 100 0.70∗ 0.59∗

Ferreira et al. (2017) GCA-F 120 0.83∗ 0.79∗

VGG16 GCA-F 464 1 0.56∗

AVRA GCA-F 464 1 0.62∗

Fig. 4. Examples of sensitivity maps for the MTA, GCA-F and PA scale, respectively. These maps indicate the influence each voxel had in AVRA's rating. The
particular slices displayed were chosen manually as representative images for each rating scale.
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measure of atrophy are 1) atrophy evolves continuously and thus it is
reasonable to describe its degree through a continuous measure, and 2)
it provides more detailed information about the severity of the atrophy.
The latter point is for instance particularly useful to track disease
progression and could allow us to establish more sensitive cut-off values
for different diagnoses.

In Fig. 5 we show some examples between AVRA's continuous and
the radiologist discrete ratings in the important diagnostic interval
between MTA=2 and MTA=3. When studying these images again
post AVRA's ratings, the radiologist only assessed that the images ori-
ginally rated MTA=2 with associated AVRA scores of 2.6–3.0 to be
wrongly rated. They would be re-rated as MTA=3, i.e. closer to AV-
RA's score. The image scored MTA=2 (radiologist) and MTA=2.4
(AVRA) was described as a case between 2 and 3, which may illustrate
the usefulness of continuous ratings. However, we noticed that in two of
the most disagreeing ratings (L.C.: MTA=3, Avra: MTA={2.0, 2.2})
the individuals had an adhesion between the hippocampus and the
cerebral white matter. These cases are not frequent, and the rating
disagreements in Fig. 5 indicate that AVRA did not learn to correctly
adjust the score for the presence of adhesions.

One of the main motivations of having a computer rate brain
atrophy instead of humans is its inherent perfect intra-rater agree-
ment—the same image will be rated exactly the same regardless of
when (and where) it is rated. A relevant question to ask is: why not let a
computer segment and calculate e.g. hippocampal volumes instead of
an MTA rating? We see two main motivations for this: First, CT, and
some MRI protocols, have too large slice thickness that do not allow for
extracting reliable volumetric information from the images. While not
explicitly investigated in this project, the RNN component of AVRA
(allowing us to extract information from the MRI slice-by-slice) makes it
possible to process images with large slice thickness. Second, segmen-
tation methods will—just as AVRA—fail in processing some cases, and
for clinician to manually intervene and delineate structures would
neither be feasible nor practical. If an automatic visual rating would fail
the radiologist would be able to quickly perform their own visual
rating, as is done today.

The sensitivity maps shown in Fig. 4 suggested that the models were
able to correctly identify relevant structures to base their ratings on.
Particularly the sensitivity maps of the MTA model were typically not
visible± 3mm from the “correct” rating slice, indicating that the em-
ployed recurrent CNN architecture used was able to correctly identify
relevant slices and disregard redundant ones. The diffused sensitivity
maps seen for the GCA-F scale was also observed in the quantitative
validation study using surface-based analysis by Ferreira et al. (2015),
showing that frontal atrophy is also associated with temporal and

posterior atrophy—at least in the ADNI cohort (Ferreira et al., 2016).
Möller et al. (2014) found, using VBM analysis, significant differences
between PA ratings not only in the parietal lobe, but also in parts of the
cerebellum, temporal lobe and the occipital lobe (Möller et al., 2014).
Their study was also performed on a cohort with individuals with
probable AD and subjective memory complaints, concluding that
atrophy solely in the posterior cortex is an exception. The sensitivity
maps from our PA model indicate that AVRA based the PA ratings on
mainly the same regions. AVRA learns to how to predict a GCA-F or a
PA score from an MRI image only based on previous human ratings.
Thus, if e.g. frontal atrophy is strongly associated with atrophy in the
temporal lobe, the model is likely to find it difficult to learn to only
assess the frontal lobe in the GCA-F scale.

There are some limitations of the proposed algorithm. First, the
models are solely based on the ratings by a single radiologist and thus
assume that the ratings we trained the model on are “ground truth”
labels. A model trained on these labels can therefore never be “better”
than the rater. If the ratings have systematic errors the model will in-
corporate these. For instance, a rater might systematically look at the
left medial temporal lobe when rating the MTA of the right hemisphere,
which could influence (bias) the right hemisphere MTA score. If we
train a model on these ratings, this bias would be learned by the model
as well. Another approach would be to have multiple expert radiologists
rate a set of images together or separately and use these labels as
ground truth. However, it is not feasible to have multiple radiologist
visually assess the large number of images necessary for training a deep
neural network. If future studies want to use a neural network based on
their own set of ratings, it should be possible to start from the pre-
trained networks of AVRA and fine-tune the final classification layer(s)
on the new ratings. This would require substantially fewer ratings, since
the convolutional part would already have learned to extract relevant
features from the images. The second limitation of the study are the
small numbers of the highest GCA-F and PA ratings, which may increase
the risk of “true” 3 score to be misclassified. Based on the results in
Fig. 6 this seems to be the case. As the diagnostic cut-off values for these
ratings scales in AD diagnosis have been suggested as PA ≥ 1 and GCA-
F ≥ 1 (Ferreira et al., 2015), the clinical implications of this may be
minor even in the cases where the atrophy is rated as a 2 instead of a 3.
These severe ratings are rare also in previous studies on dementia co-
horts (Ferreira et al., 2015; Rhodius-Meester et al., 2017), so this will
likely be an issue for any computerized method trained on radiologist
ratings.

The performance of AVRA was validated in a test set that was
randomly sampled from the same cohorts as the training data set. This
is a simpler test set than if the test set was from a different cohort with

Fig. 5. Comparison between AVRA's continuous ratings and the neuroradiologist's discrete ratings of the same images. Rows: MRI slices with MTA on the right side of
the image (side indicated by the red squares) rating of 2 (top) and 3 (bottom) given by neuroradiologist. Columns: corresponding continuous AVRA ratings. E.g., the
second image from the left in the bottom row was given assessed to have a left MTA score of 3 by the neuroradiologist and 2.2 by AVRA. When the radiologist re-
examined these cases the same ratings were given for all images, except for the three images on the right in the top row (Radiologist: 2, AVRA: 2.6, 2.8 and 3.0),
which were instead given MTA scores of 3. The image rated 2 by L.C. and 2.4 by AVRA was described as a subject between 2 and 3.
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images acquired using other scanning parameters, which would better
reflect the clinical setting. Further, since AVRA is evaluated on scores
by the same radiologist that rated the training set, the agreement levels
are expected to be lower if compared to an external rater. We are
currently in the process of validating how the models would handle
data acquired with different MRI protocols and the effect it would have
on rating agreement.

5. Conclusion

In this study, we have proposed an automatic method (AVRA) to
provide visual ratings of atrophy according to Scheltens' MTA scale,
Koedam's PA scale, and Pasquier's frontal GCA scale. AVRA mimics the
neuroradiologist's rating procedure and achieves similar levels of
agreement to that between two experienced neuror-
adiologists—without any prior preprocessing of the MRI images. We
plan to make AVRA freely available as a user-friendly software aimed
towards neuroscientists.
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