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Abstract

Alzheimer’s disease (AD) affects millions of people and is a major rising problem in health

care worldwide. Recent research suggests that AD could have different subtypes, present-

ing differences in how the disease develops. Characterizing those subtypes could be key to

deepen the understanding of this complex disease. In this paper, we used a multivariate,

non-supervised clustering method over blood-based markers to find subgroups of patients

defined by distinctive blood marker profiles. Our analysis on ADNI database identified 4 pos-

sible subgroups, each with a different blood profile. More importantly, we show that sub-

groups with different profiles have a different relationship between brain phenotypes

detected in magnetic resonance imaging and disease condition.

Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, a condition affecting more

than 47 million people worldwide [1]. AD is one of the biggest concerns in global health care,

due to its large economic and social impact. It is characterized by a deposition of amyloid-beta

(Aβ) protein in the brain and the formation of tau plaques [2], and its most prevalent symptom

is a progressive decline and deterioration of cognitive skills, leading to death. AD has been

characterized as a multi-factorial disease [2, 3], involving many different processes and biologi-

cal phenomena. Despite many efforts spent on research, we know relatively little about many

aspects of the disease.

Currently, to diagnose accurately the disease and provide for an adequate treatment, several

markers are used: cerebrospinal fluid (CSF) concentration of tau, p-tau and Aβ [4], and mark-

ers obtained from imaging techniques such as magnetic resonance imaging (MRI) to detect

structural neurodegeneration, or positron emission tomography (PET) to detect Aβ concen-

tration and tau deposition in the brain [5, 6]. Efforts have been made to find new, less-invasive
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markers in blood that can help diagnose the disease. In 2009, Schneider et al. [7] presented a

review of proposed plasma marker candidates, concluding that a single reliable candidate had

not been found yet. O’Bryant et al. [8], in their review on blood-based markers for AD detec-

tion, concluded that, although progress has been made, significant advancements on results

validation are still needed before blood markers can be reliably used in clinical trials.

Several blood markers have been shown to correlate with structural changes. Dage et al. [9]

studied the connection between neurodegeneration and tau protein levels in plasma, finding

association between cortical thickness, cognition, and tau levels. In a study by Mattsson et al.

[10], plasma neurofilament light was associated with cognitive deterioration and imaging

markers of AD. Thambisetty et al. [11] analyzed the relationship between various plasma pro-

teins, brain volume and cortical thickness in AD patients, finding links between plasma pro-

teins and AD neurodegeneration. In a later work [12], they studied the relationship between

plasma clusterin (apolipoprotein J) concentration and longitudinal brain atrophy, finding sig-

nificant associations.

These previously described works do not take into account the possible heterogeneity aris-

ing from the interaction between blood and brain. AD is a highly heterogeneous disease,

where its symptoms and path of degeneration can vary between patients, and identifying the

different presentations or subtypes and their related signatures could help for a better detec-

tion of the disease and a better understanding of the interaction between different biological

mechanisms (i.e. phenotypes). There have been many studies identifying possible heteroge-

neous subgroups of the disease. Noh et al. [13] found 3 subtypes on distinct patterns of cortical

atrophy, using Ward’s clustering linkage method. Nettiksimmons et al. [14] presented sub-

types based on CSF and MRI markers, and in a posterior study [15], they argued that vascular

damage could explain subtyping difference. They also studied heterogeneity in mild cognitive

impairment patients [16], using CSF, MRI, and plasma markers. In a different approach,

Young et al. [17, 18] proposed an event ordering method to infer heterogeneous subtypes of

the disease and stage.

Studies addressing heterogeneity of AD generally use the same data modality both to sub-

type the disease and analyze the obtained subgroups. This could hide relevant differences from

other modalities. Moreover, clustering over features that are strongly correlated to the disease

stage could lead to subgroups divided by disease severity, instead of by possible disease sub-

types. Instead, we propose to use blood marker features to define the subgroups and then

explore the relationships with the disease in each subgroup using brain volume and cortical

thickness phenotypes and disease stages. We use a data-driven, non-supervised, multivariate

clustering technique [19] to identify different presentations of the disease using blood markers,

and then we analyze how the different blood profiles interact with brain structural phenotypes

across the different disease stages. Compared to methods limited by univariate analysis, such

as direct statistical tests for a single marker, multivariate analysis allows identification of poten-

tially hidden blood marker profiles associated with latent pathological processes, addressing a

limitation of the reported blood marker studies.

Materials and methods

Data

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.

edu) were used for this project. ADNI is a multi-site, longitudinal study launched in 2003 by

Weiner et al. [20] that includes acquisitions of MRI, PET, other biological markers, and clinical

and neuropsychological assessment tests of patients over time to track the pathology of AD.

For this work, we have selected subjects that had available MRI T1.5 scan and blood marker
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information at baseline. After removing subjects that presented missing values, we ended up

with a set of 298 subjects, including 52 cognitive normal (CN), 161 with mild cognitive

impairment (MCI) and 85 with AD. Table 1 shows the demographic information of the stud-

ied cohort.

We preselected 235 candidate plasma markers from the available cohort of biospecimen

markers in ADNI, including 190 protein plasma markers gathered by the AD Metabolomics

Consortium, plasma neurofilament light, Aβ proteins 40 and 42, and 41 aminoacids. For the

final selection, we accounted for the reported quality of the samples and removed any marker

that had missing values in any of the reported subjects. The final selection consisted of 172

markers. Experimental design and quality control methods are described in [21] (for the pro-

tein plasma markers) and in the ADNI website (for the rest of biomarkers). MRI data were

processed and registered to a common space using Freesurfer’s recon-all [22]. We selected 39

volumes of structures from relevant subcortical regions of the brain defined in the default atlas

of Freesurfer [23] and cortical thickness of the whole brain for interaction analysis. The full list

of the selected plasma markers and brain regions can be found in supplementary S2 and S3

Files.

Each volume value was normalized by the estimated intracraneal volume of the subject.

Both structural volumes and plasma markers were standardized to [0, 1] range before process-

ing, We used min-max scaling, substracting the minimum value of each biomarker and divid-

ing by the difference between the maximum and the minimum. This way, we preserve zero

entries and introduce robustness to small standard deviations in the biomarkers.

Methods

To find the different profiles, we cluster the patients using their blood markers, without using

neither brain phenotypes nor diagnosis. We analyze the resulting clusters to find the blood

profiles of each cluster. To find heterogeneous brain presentations in each cluster, we analyze

the relationships between brain phenotypes in each cluster and disease stage, thus revealing

the interactions between blood marker profiles and brain phenotypes across the disease stages.

Fig 1 shows the pipeline of the method.

Unsupervised clustering. We use CIMLR (which originally stands for cancer integration

via multikernel learning, since it was developed for cancer subtyping) [19, 24], to identify the

blood markers that reveal natural subgroups in the data, without taking into account neither

the brain phenotypes nor the disease stage, to obtain subtypes not defined by disease stage. We

could have used any other unsupervised clustering method, but we selected CIMLR, coupled

with manifold learning and k-means clustering, due to its scalability with large amounts of

data, good performance on a variety of datasets [19, 24], and interpretability of results.

Table 1. Demographic information of the studied cohort.

CN MCI AD Total

N˚ subjects 52 161 85 298

Age (years) 75.1 ± 6.0 74.1 ± 7.5 74.6 ± 7.9 74.4 ± 7.4

Sex (female) 44.2% 33.5% 47% 39.3%

Education (years) 15.8 ± 2.7 15.8 ± 2.9 15.3 ± 3.0 15.7 ± 2.7

ApoE4 9% 52% 67% 48%

MMSE 29 ± 1.2 26.9 ± 1.8 23.4 ± 1.9 26.3 ± 2.6

Categorical variables are expressed as counts and percentages. Continuous variables are expressed as mean ± standard deviation. CN: Cognitive normal. MCI: Mild

cognitive impairment. AD: Alzheimer’s disease. ApoE4: Apolipoprotein E4. MMSE: mini-mental state examination.

https://doi.org/10.1371/journal.pone.0211121.t001
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CIMLR is a method based on multiple kernel learning that learns a similarity between each

pair of samples by combining different kernels per feature (in our case, blood markers). It

enforces a C block structure on the learned similarity, where each block is a set of samples sim-

ilar to each other, i.e., a cluster. The number of clusters C must be specified beforehand. The

learned similarity can then be used to compute a space of reduced complexity, where each sub-

ject is positioned with respect to the whole population, and the distance between subjects indi-

cates how similar they are. By combining multiple kernels, each of which is based on a specific

blood marker, it integrates the heterogeneous information, and provides the contribution of

each blood marker in the computed low-dimensional representation.

Fig 1. Method overview. We detect clusters on the space defined by the blood markers, define a different profile for each cluster, and, using the

phenotypes extracted from the MRI images, we analyze the interactions between the profiles and the disease.

https://doi.org/10.1371/journal.pone.0211121.g001
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Let the input data consist of N samples with M features (i.e., blood markers) each, be

defined as fximg
N
i¼1

, m = 1, . . ., M, where xim represents the blood marker m of subject i.
Each blood marker is assigned to P kernels Kmp, p = 1, . . ., P. CIMLR solves for 3 variables:

S 2 RN�N (the learned similarity matrix), w 2 RM�P�1 (a vector containing the weights associ-

ated to each kernel), and A 2 RN�C (a matrix enforcing C clusters in S). The optimization

problem is defined as follows:

minS;A;w �
X

i;j;p;m

wmpKmpðxim; xjmÞSij þ gtrðA
TðIN � SÞAÞ

þm
X

m;p

wmplog wmp þ b kSk
2

F

subject to ATA ¼ IC;
X

m;p

wmp ¼ 1;wmp � 0;
X

j

Sij ¼ 1 and Sij � 0:

ð1Þ

Here, γ, μ, and β are tuning parameters for the various terms of the optimization function, I
represents the identity matrix, k.kF stands for the Frobenius norm, and tr denotes the trace of

the matrix. The first term of Eq 1 links the learned similarity S with the combination of kernels

from all features: similarity between two samples should be small if their kernel-based distance

is large. The second term enforces S to have C connected components, through the auxiliary

matrix A and its associated constraint IC. The third term imposes a constraint on w so that

more than one kernel is selected, and last term applies a regularization penalizing the scale of

the learned similarities. An extended overview of the algorithm, including the optimization

method, can be found in [19]. A MATLAB implementation of the method by the authors of

the paper has been used (https://github.com/BatzoglouLabSU/SIMLR).

We use Gaussian kernels to define Kmp. In total, there are P kernels for each feature m, each

with different parameters. This is needed because different markers could be sensitive to differ-

ent ranges of parameters. We define Kmp as:

Kmpðxi; xjÞ ¼
1

�ijp
ffiffiffiffiffiffi
2p
p exp �

kxim � xjm k
2
2

2�2
ijm

 !

;

mim ¼

P
j2KNNðximÞ

kxim � xjm k2

k
; �ijm ¼

sðmim þ mjmÞ

2
;

ð2Þ

with KNN(xim) representing the k nearest neighbours of subject i with respect to marker m,

and k.k2 being the Euclidean distance. For k 2 {30, 45, 50} and σ 2 {30, 35, 40, 45, 50}, we

have a total of P = 15 kernels for each feature. The choice of parameters was done empirically.

The method is mainly invariable to P [24]. For 172 markers, we optimize over a total of

15 × 172 = 2580 kernels.

As in [19], we estimate the best number of clusters with the heuristic proposed in [25], and

further validate the choice with the elbow method. For visualization of the clusters and

dimensionality reduction, we apply t-distributed stochastic neighbor embedding (t-SNE) [26],

a manifold learning technique, on the resulting similarity matrix. After obtaining the low

dimensional embedding, k-means clustering is used to discover the clusters.

Cluster validation. We want to test the stability of the clusters against perturbations (e.g.

particular choice of individuals). If the same clusters arise after modifying the choice of indi-

viduals, this suggests that the clustering is capturing an underlying structure in the data that is

invariant to the particular choice of individuals, to some extent. We use a bootstrap procedure

to test this stability. We apply the CIMLR-based clustering method to randomly select subsets

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles
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of the data, with the same size of the original dataset but with replacement (i.e. some patients

could appear several times, wheras others could not appear at all). After applying the clustering

algorithm, we compute the similarity of the obtained clusters in each bootstrap iteration with

the clusters obtained for the whole dataset.

We use the Jaccard index to quantify the similarity between clusters. This Jaccard index is

defined, for two sets A, B, as the intersection divided by the union of the sets:

JðA;BÞ ¼
jA \ Bj
jA [ Bj

¼
jA \ Bj

jAj þ jBj � jA \ Bj
: ð3Þ

The higher the index, the higher the similarity and hence the stability.

Profile discovery. Subjects in a given cluster share a specific profile of blood markers. To

obtain the profile of each cluster, we need to determine which markers contributed more to

the clustering. We look at the weights w in the optimization procedure: each weight accounts

for the importance of a specific kernel. As described above, we generate 15 kernels for each of

the 172 markers, with 15 associated weights. We compute the importance as the sum of those

weights.

For further validation, we use one-way analysis of variance (ANOVA) tests of mean popula-

tion across the clusters for the described markers to test whether the population of each sub-

type has a different mean. With this, we obtain a stable list of the most informative markers for

the clustering, and describe the different blood profiles in each subgroup according to that set

of markers.

Interaction analysis. To detect different interactions between blood markers and struc-

tural brain phenotypes, we test for differences between the brain volumes and cortical thick-

ness of the individuals in each subgroup. We perform three different comparison tests:

1. Whole cluster analysis: Each subgroup and the rest of the population, not taking into

account diagnostic groups, to detect different characteristics in each subgroup.

2. Diagnostic group analysis: Diagnostic groups, for each subgroup, to find differences

between stages of the disease in each subgroup with respect to the whole population.

3. Diagnostic interaction analysis: Each diagnostic group of each subgroup with the rest of

subjects on the population in that diagnostic group, to detect different interactions between

blood profiles and structural brain phenotypes across different stages of the disease.

We want to know whether cluster membership (independent variable) has significant

effects on brain volume/cortical thickness (dependent variable). The significance thresholds

may vary depending on the samples sizes, especially in our case that the groups may have dif-

ferent number of samples (i.e. clusters of different size). To correct for different sized groups

and remove false positives, we used a permutation based method [27]. For a large enough

number of iterations (1000), we perform random permutation of the independent variable (i.e.

cluster membership), while preserving the cluster sizes and the diagnostic group sizes. Thus,

we obtain a distribution of significance levels.

According to the permutation strategy, for the test to be significant, a higher significance

level than those of most of the random permutations (e.g. 95%, 99%, . . . depending on the

desired significance level) should be achieved. This correction is done to ensure that the

obtained statistical significance was not caused by the different sample sizes of each subgroup

and each diagnostic group. Fig 2 shows an outline of the procedure.

We use a non-parametric Mann-Whitney-Wilcoxon test for comparing the brain subvo-

lumes. For cortical thickness, we use FreeSurfer’s mri_glmfit-sim and fsPalm to implement the

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles
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analysis. We also perform a cluster-wise correction on the surface of the cortex and applied

Bonferroni correction for the two hemispheres. In this way, we can map corrected regions in

the cortex that present significant differences in each analysis.

Results

We applied the proposed method to the described cohort of subjects from ADNI database, to

find the subgroups with heterogeneous blood profiles and analyze the interactions with the

disease of each subgroup using volume features and cortical thickness. All the experiments are

reproducible following the instructions found in the repository of the project https://github.

com/GerardMJuan/simlr-ad.

Clustering

After applying the heuristics on cluster size described in the Methods section, we obtained C 2
{4, 6} using [25] and C 2 {4, 5} using the elbow method. We decided on C = 4 as the most

Fig 2. Permutation procedure. For groups G1 and G2, we create new random subgroups and test them. Then, we correct the obtained result in the

original group (Pc, red line), with respect to the 5% percentile of the obtained distribution of p-values (P0.05, black line). If the result is in the percentile,

we consider it significant.

https://doi.org/10.1371/journal.pone.0211121.g002
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appropriate choice. Fig 3 shows the learned similarity matrix S and the cluster distribution in

the first two dimensions of the low-dimensional space identified by t-SNE. We compared it to

the similarity matrix and cluster distribution obtained using Euclidean distance on the original

blood marker space. Fig 3 illustrates that clusters are not distinguishable when using an Euclid-

ean-based similarity matrix, whereas CIMLR has a block structure that improves dimensional-

ity reduction and cluster analysis.

We assessed the stability of the obtained clusters by using the bootstrap approach described

in the Methods section and compared it with stability results obtained using a random cluster-

ing and k-means clustering with Euclidean metric. Table 2 shows the results. CIMLR got a

larger mean similarity in each cluster than random clustering, and similar stability to k-means

clustering. Clusters C1 and C2 appeared more stable than C3 and C4.

Table 3 shows the demographic information of the subjects for each obtained cluster. Dis-

tribution of the diagnostic groups is similar to the distribution in the whole population, and

the other characteristics (age, sex, education, Mini–Mental State Examination results and

APoE4 genotype) are also similar across subgroups, with the exception of the mean age of C4,

which is 5 years lower than the mean population, and a slightly higher fraction of women in

Fig 3. Similarity matrices and 2D embeddings. a) Euclidean distance between subjects over the initial blood marker space. b) Learnt similarity matrix

S. Subjects in the matrix are ordered by the obtained clusters. c) d) 2D embeddings of the respective matrices in a) and b) using t-SNE.

https://doi.org/10.1371/journal.pone.0211121.g003
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C3 and C4. No major significant differences between subgroups were observed, meaning that

the obtained groups were not biased.

Blood marker ranking and profiling

CIMLR revealed patterns of plasma markers that relate to natural subgroups. Fig 4 shows the

ten most relevant markers determined by the weight vector w. The method uses all blood

markers to find the clusters but, unlike other methods, it automatically weights each marker.

S4 data contains the full set of weights.

Fig 5 shows the values for each marker and cluster. All the ANOVA tests done for each of

the described markers reject the null hypothesis with p< 0.001, meaning that the differences

found between clusters on those blood markers are statistically significant.

Each of the profiles is defined by different values of the markers:

• C1 presents larger values of beta-2-microglobulin, cystatin-C and lower thrombospondin-1

with respect to the total population.

• C2 shows decreased values in all of the relevant markers compared to the whole population,

with the exception of beta-2-microglobulin.

• C3 shows higher values in all of the relevant markers compared to the whole population,

with the exception of beta-2-microglobulin and cystatin-C.

• C4 presents lower values of beta-2-microglobulin, cystatin-C and higher values of every

other marker, compared with the general population.

Table 2. Stability tests.

Cluster Random k-means CIMLR

C1 0.227 0.453 0.467

C2 0.208 0.435 0.409

C3 0.187 0.320 0.317

C4 0.206 0.331 0.386

Stability tests for the clustering, compared to random clustering and k-means clustering using Euclidian distance.

Reported result is mean similarity.

https://doi.org/10.1371/journal.pone.0211121.t002

Table 3. Demographic characteristics of the different clusters.

Total C1 C2 C3 C4

N˚ subj. 298 82 77 61 78

CN 52 (17.4%) 17 (20.7%) 15 (24.5%) 12 (19.7%) 8 (10.2%)

MCI 161 (54%) 35 (45.4%) 44 (57.1%) 33 (54.1%) 49 (62.8%)

AD 85 (28.5%) 30 (39%) 18 (23.4%) 16 (26.2%) 21 (26.9%)

Age 74.4 ± 7.4 77.2 ± 6.7 75.6 ± 6.1 75.1 ± 7.1 70.0 ± 7.2

Sex 39% 25% 28% 52% 53%

Education 15.7 ± 3.0 15.9 ± 2.6 14.0 ± 3.4 15.6 ± 2.5 16.2 ± 3.0

ApoE4 48% 37% 54% 45% 57%

MMSE 26.3 ± 2.6 25.9 ± 2.9 26.6 ± 2.4 26.2 ± 2.7 26.5 ± 2.4

Categorical variables are expressed as counts and percentages. Continuous variables are expressed as mean ± standard deviation. Number next to the disease groups

indicate the proportion of that group in the cluster. CN: Cognitive normal. MCI: Mild cognitive impairment. AD: Alzheimer’s disease. ApoE4: Apolipoprotein E4.

MMSE: mini-mental state

https://doi.org/10.1371/journal.pone.0211121.t003
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Tau and amyloid-related markers, which are commonly associated with dementia [9, 28,

29], are not ranked highly. However, as per Table 3, we know that the defined subgroups have

a diagnostic distribution similar to the whole population: if markers that were highly corre-

lated to the disease stage (such as the tau and amyloid related markers) had been selected by

the algorithm, then that distribution would have been biased.

Interaction analysis

We analyzed the heterogeneity between the different groups and the interactions between the

stages of the disease and the brain volume and cortical thickness phenotypes depending on the

blood profiles in each subgroup, as described in the Methods section.

Whole cluster analysis. We compared subcortical brain volumes in each subgroup

against the rest of the population, corrected for different group sizes and false positives using

permutation tests. Fig 6 shows the differences in the characteristics of the population in each

subgroup. C1 presents significant differences in the ventricles, putamen, accumbens area, left-

vessel, right-pallidum, choroid plexus and posterior corpus callosum. C2 and C3 are similar to

Fig 4. Marker weights. Top 10 marker weights in the kernel combination.

https://doi.org/10.1371/journal.pone.0211121.g004
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Fig 5. Marker distributions. Distribution of top ten ranked markers for each cluster. Normalized values.

https://doi.org/10.1371/journal.pone.0211121.g005

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0211121 March 4, 2019 11 / 20

https://doi.org/10.1371/journal.pone.0211121.g005
https://doi.org/10.1371/journal.pone.0211121


the general population: C2 only shows differences in the corpus callosum central and anterior,

whereas C3 is only different to the rest in the right accumbens area. C4 shows many differences

in the choroid plexus, ventricles, putamen and pallidum, among others.

We also tested for cortical thickness differences. Fig 7 shows the results. C1 presents differ-

ences in the superior parietal, supramarginal and central regions. C4 also shows differences in

the supramarginal and central, and additionally in a region in the frontal cortex. We did not

detect any differences in C2 and C3, which is consistent with the previous results on subcorti-

cal volume analysis.

Fig 6. Whole cluster analysis. Differences in volume for each of the presentations against the rest. Corrected using

permutation. Inf: Inferior. WM: White Matter. CC: Cingular Cortex.

https://doi.org/10.1371/journal.pone.0211121.g006

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0211121 March 4, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0211121.g006
https://doi.org/10.1371/journal.pone.0211121


Diagnostic group analysis. To identify differences between diagnostic groups in each of

the subgroups, we compared between diagnostic groups (CN, MCI, AD) for each of the differ-

ent subgroups (C1 to C4). In this task, permutation tests allow us to detect differences between

diagnostic groups that are specific to that subgroup, by correcting the result against random

subgroups. Figs 8 and 9 show the difference between diagnostic groups in: (i) each of the sub-

groups (Fig 8) and (ii) the whole population (Fig 9).

There are significant differences in C3 between CN and AD subjects in the corpus callosum,

the third ventricle and the choroid plexus, and in C4 between CN and MCI subjects in the cor-

pus callosum and the ventricles. C1 and C2 have more sparse differences with respect to the

whole population. Most of the statistically significant differences correspond to volumes that

show less significant differences on the whole population analysis. Intra-group heterogeneity

between disease stages is located in specific regions that are usually less affected by the disease.

We only detected differences in cortical thickness when testing on CN vs MCI in C4, after

correcting for multiple comparisons. Fig 10 shows the detected regions on the cortical surface,

located on the frontal cortex and on the right temporal and parietal regions.

Diagnostic interaction analysis. To detect different interactions between blood profiles

and brain phenotypes across different stages of the disease, we tested for differences across

same diagnostic subgroups for each cluster against the rest of the population with the same

diagnosis. Fig 11 shows the results.

We observed differences in volume across all the subgroups:

• C1 differs in CN, presenting differences in the 3rd and 4th ventricles, and in MCI, with dif-

ferences in the lateral ventricle, left vessel, left and right choroid plexus, among others. No

differences were found in the AD group.

• C2 presents very small differences in the three diagnostic groups compared to the rest of the

population.

Fig 7. Whole cluster analysis, cortical thickness. Differences in cortical thickness for each of the presentations against

the rest. Corrected using permutation.

https://doi.org/10.1371/journal.pone.0211121.g007
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• C3 does not present many significant differences: small volume differences in the MCI

group, in the right accumbens, right caudate and right inferior lateral ventricle, and in the

AD group in the left vessel.

• C4 shows many differences in the CN and MCI subgroups. CN presents differences in ven-

tricles, both left and right, and the 3rd ventricle, and in various zones of the cingular cortex.

MCI presents differences in the ventricles, left and right choroid plexus and left accumbens

area, among others. AD also shows some differences esspecially in the left pallidum.

In cortical analysis, we found significant differences in MCI and AD patients of C4 -which

also presented many differences in our subvolume analysis- in the central and frontal regions

of both hemispheres (see Fig 12).

Fig 8. Diagnostic group analysis. Differences between diagnostic groups for each of the presentations. Corrected

using permutation. Inf: Inferior. WM: White Matter. CC: Cingular Cortex.

https://doi.org/10.1371/journal.pone.0211121.g008
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Fig 9. Diagnostic group analysis, whole population. Differences between diagnostic groups on the whole population. Inf: Inferior. WM: White

Matter. CC: Cingular Cortex.

https://doi.org/10.1371/journal.pone.0211121.g009
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Fig 10. Diagnostic group analysis, cortical thickness. Differences in cortical thickness between diagnostic groups for each of the presentations.

Corrected using permutation.

https://doi.org/10.1371/journal.pone.0211121.g010

Fig 11. Diagnosis interaction analysis. Differences between diagnosis stages across presentations. Corrected using

permutation. Inf: Inferior. WM: White Matter. CC: Cingular Cortex.

https://doi.org/10.1371/journal.pone.0211121.g011
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Discussion

We applied a multivariate data-driven procedure for AD subtyping using blood-based mark-

ers, to obtain heterogeneous groups with different blood marker profiles. We showed that

patients with different profiles present different interactions between disease stage and brain

phenotypes. Although existing blood markers can still not be used to properly diagnose the

disease [7, 30, 31], using blood markers to detect patient profiles where the disease could

behave differently and could provide valuable biological insights is a promising research

direction.

The method identifies natural subgroups of patients in a multivariate way, finding hidden

associations between the markers and automatically weighting the most important ones. The

method is scalable to a large number of subjects and to a large number of features, allowing for

an easier incorporation of other types of data, such as genotypes or other not-included blood

markers. It also has some limitations: the obtained subgroups do not have a high stability. We

also did not compare to other possible subtyping methods to further validate the obtained

results.

From a clinical point of view, a study of the detected profiles is needed to investigate possi-

ble implications of the found markers. The different presentations of the disease detected in

this work could be useful for a more personalized treatment in such an heterogeneous disease.

Further validation of the results on a larger, independent cohorts of patients will be important

to confirm the results and detect more complex profiles. Interactions of the profiles could also

be further validated in other phenotypes, such as longitudinal brain atrophy.

Supporting information

S1 File. PTID list. List of Patient ID (PTID) of the ADNI subjects used in this study.

(CSV)

Fig 12. Diagnostic interaction analysis, cortical thickness. Differences in cortical thickness between diagnostic stages

across presentations. Corrected using permutation.

https://doi.org/10.1371/journal.pone.0211121.g012

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0211121 March 4, 2019 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211121.s001
https://doi.org/10.1371/journal.pone.0211121.g012
https://doi.org/10.1371/journal.pone.0211121


S2 File. Volumes list. List of subcortical zones from FreeSurfer segmentation used in this

study.

(CSV)

S3 File. Blood markers list. List of blood markers available in the ADNI website used in this

study.

(CSV)

S4 File. Full set of weights. List of the weights assigned to each blood marker during computa-

tion.

(CSV)

Acknowledgments

Data collection and sharing for the preparation of this article were obtained from the Alzhei-

mer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) led by Principal

Investigator Michael W. Weiner, MD, at UC San Francisco, and generated by the Alzheimer’s

Disease Metabolomics Consortium (ADMC), lead by Dr. Kaddurah-Daouk, at Duke Medical

Center. Data used in preparation of this article were obtained from the ADNI and the ADMC

(adni.loni.usc.edu). As such, the investigators within the ADNI and the ADMC contributed to

the design and implementation of ADNI and/or provided data but did not participate in analy-

sis or writing of this report. A complete listing of ADNI investigators can be found at: adni.

loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf, and a

complete listing of ADMC investigators can be found at: https://sites.duke.edu/adnimetab/

team/.

Author Contributions

Conceptualization: Gerard Martı́-Juan, Gerard Sanroma, Gemma Piella.

Data curation: Gerard Martı́-Juan.

Investigation: Gerard Martı́-Juan.

Methodology: Gerard Martı́-Juan, Gerard Sanroma, Gemma Piella.

Software: Gerard Martı́-Juan.

Supervision: Gerard Sanroma, Gemma Piella.

Validation: Gerard Martı́-Juan, Gerard Sanroma, Gemma Piella.

Visualization: Gerard Martı́-Juan.

Writing – original draft: Gerard Martı́-Juan.

Writing – review & editing: Gerard Sanroma, Gemma Piella.

References

1. Alzheimer’s Association. Alzheimer’s & Dementia: Global Resources; [Internet]. [cited 2018 Apr 12].

Available from: https://www.alz.org/global/.

2. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Frame-

work: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018; 14(4):535–562.

https://doi.org/10.1016/j.jalz.2018.02.018 PMID: 29653606

3. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysio-

logical processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers; Lan-

cet Neurol. 2013; 12:207–16. https://doi.org/10.1016/S1474-4422(12)70291-0 PMID: 23332364

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0211121 March 4, 2019 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211121.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211121.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211121.s004
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://sites.duke.edu/adnimetab/team/
https://sites.duke.edu/adnimetab/team/
https://www.alz.org/global/
https://doi.org/10.1016/j.jalz.2018.02.018
http://www.ncbi.nlm.nih.gov/pubmed/29653606
https://doi.org/10.1016/S1474-4422(12)70291-0
http://www.ncbi.nlm.nih.gov/pubmed/23332364
https://doi.org/10.1371/journal.pone.0211121


4. Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B, et al. Cerebro-

spinal fluid tau and Aβ42 as predictors of development of Alzheimer’s disease in patients with mild cog-

nitive impairment. Neurosci Lett. 1999; 273(1):5–8. https://doi.org/10.1016/S0304-3940(99)00617-5

PMID: 10505638

5. Weiner M, Khachaturian Z. The Use of MRI and PET for Clinical Diagnosis of Dementia and Investiga-

tion of Cognitive Impairment: A Consensus Report. Alzheimer’s Assoc Chicago, IL. 2005;(1):1–15.

6. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for

imaging β-amyloid pathology. JAMA. 2011 Jan 19; 305(3):275–283. https://doi.org/10.1001/jama.2010.

2008 PMID: 21245183

7. Schneider P, Hampel H, Buerger K. Biological Marker Candidates of Alzheimer’s Disease in Blood,

Plasma, and Serum. CNS Neurosci Ther. 2009 Dec; 15(4):358–374. https://doi.org/10.1111/j.1755-

5949.2009.00104.x PMID: 19840034

8. O’Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, et al. Blood-based bio-

markers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for

advancing from discovery to clinic. Alzheimers Dement. 2017 Jan; 13(1):45–58. https://doi.org/10.

1016/j.jalz.2016.09.014 PMID: 27870940

9. Dage JL, Wennberg AM, Airey DC, Hagen CE, Knopman DS, Machulda MM, et al. Levels of tau protein

in plasma are associated with neurodegeneration and cognitive function in a population-based elderly

cohort. Alzheimers Dement. 2016 Dec 1; 12(12):1226–1234. https://doi.org/10.1016/j.jalz.2016.06.001

PMID: 27436677

10. Mattsson N, Andreasson U, Zetterberg H, Blennow K. Association of Plasma Neurofilament Light With

Neurodegeneration in Patients With Alzheimer Disease. JAMA neurology. 2017 May 1; 74(5):557–566.

https://doi.org/10.1001/jamaneurol.2016.6117 PMID: 28346578

11. Thambisetty M, Simmons A, Hye A, Campbell J, Westman E, Zhang Y, et al. Plasma biomarkers of

brain atrophy in Alzheimer’s disease. PLoS ONE. 2011 Dec 21; 6(12):e28527. https://doi.org/10.1371/

journal.pone.0028527 PMID: 22205954

12. Thambisetty M, An Y, Kinsey A, Koka D, Saleem M, Güntert A, et al. Plasma clusterin concentration

is associated with longitudinal brain atrophy in mild cognitive impairment. Neuroimage. 2012 Jan;

59(1):212–217. https://doi.org/10.1016/j.neuroimage.2011.07.056 PMID: 21824521

13. Noh Y, Jeon S, Lee JM, Seo SW, Kim GH, Cho H, et al. Anatomical heterogeneity of Alzheimer disease

Based on cortical thickness on MRIs. Neurology. 2014 Nov 18; 83(21):1936–1944. https://doi.org/10.

1212/WNL.0000000000001003 PMID: 25344382

14. Nettiksimmons J, Harvey D, Brewer J, Carmichael O, DeCarli C, Jack CR, et al. Subtypes based on

cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline.

Neurobiol Aging. 2010 Aug 1; 31(8):1419–1428. https://doi.org/10.1016/j.neurobiolaging.2010.04.025

PMID: 20542598

15. Nettiksimmons J, Beckett L, Schwarz C, Carmichael O, Fletcher E, DeCarli C. Subgroup of ADNI nor-

mal controls characterized by atrophy and cognitive decline associated with vascular damage. Psychol

Aging. 2013 Mar; 28(1):191–201. https://doi.org/10.1037/a0031063

16. Nettiksimmons J, DeCarli C, Landau S, Beckett L. Biological heterogeneity in ADNI amnestic mild cog-

nitive impairment. Alzheimers Dement. 2014; 10(5):511–521. https://doi.org/10.1016/j.jalz.2013.09.003

PMID: 24418061

17. Young AL, Oxtoby NP, Huang J, Marinescu RV, Daga P, Cash DM, et al. Multiple Orderings of Events

in Disease Progression for the Alzheimer’s Disease Neuroimaging Initiative. Inf Process Med Imaging.

2015 Jun 28:711–722. Springer, Cham.

18. Young AL, Marinescu RV, Oxtoby NP, Bocchetta M, Yong K, Firth N, et al. Uncovering the heterogene-

ity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. bioRxiv.

2017 Jan 1;236604.

19. Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular

mechanisms underlying survival. bioRxiv. 2018 Jan 1:267245.

20. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, et al. The Alzheimer’s disease neu-

roimaging initiative. Neuroimaging Clin 2005 Nov 1; 15(4):869–77. https://doi.org/10.1016/j.nic.2005.

09.008

21. ADNI Biomarker Consortium. Use of Targeted Multiplex Proteomic Strategies to Identify Plasma-Based

Biomarkers in Alzheimer’s Disease. 2013 Aug 02. Available in: http://adni.loni.usc.edu/wp-content/

uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf

22. Fischl B. FreeSurfer. Neuroimage. 2012 Aug 15; 62(2):774–81. https://doi.org/10.1016/j.neuroimage.

2012.01.021 PMID: 22248573

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0211121 March 4, 2019 19 / 20

https://doi.org/10.1016/S0304-3940(99)00617-5
http://www.ncbi.nlm.nih.gov/pubmed/10505638
https://doi.org/10.1001/jama.2010.2008
https://doi.org/10.1001/jama.2010.2008
http://www.ncbi.nlm.nih.gov/pubmed/21245183
https://doi.org/10.1111/j.1755-5949.2009.00104.x
https://doi.org/10.1111/j.1755-5949.2009.00104.x
http://www.ncbi.nlm.nih.gov/pubmed/19840034
https://doi.org/10.1016/j.jalz.2016.09.014
https://doi.org/10.1016/j.jalz.2016.09.014
http://www.ncbi.nlm.nih.gov/pubmed/27870940
https://doi.org/10.1016/j.jalz.2016.06.001
http://www.ncbi.nlm.nih.gov/pubmed/27436677
https://doi.org/10.1001/jamaneurol.2016.6117
http://www.ncbi.nlm.nih.gov/pubmed/28346578
https://doi.org/10.1371/journal.pone.0028527
https://doi.org/10.1371/journal.pone.0028527
http://www.ncbi.nlm.nih.gov/pubmed/22205954
https://doi.org/10.1016/j.neuroimage.2011.07.056
http://www.ncbi.nlm.nih.gov/pubmed/21824521
https://doi.org/10.1212/WNL.0000000000001003
https://doi.org/10.1212/WNL.0000000000001003
http://www.ncbi.nlm.nih.gov/pubmed/25344382
https://doi.org/10.1016/j.neurobiolaging.2010.04.025
http://www.ncbi.nlm.nih.gov/pubmed/20542598
https://doi.org/10.1037/a0031063
https://doi.org/10.1016/j.jalz.2013.09.003
http://www.ncbi.nlm.nih.gov/pubmed/24418061
https://doi.org/10.1016/j.nic.2005.09.008
https://doi.org/10.1016/j.nic.2005.09.008
http://adni.loni.usc.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
https://doi.org/10.1371/journal.pone.0211121


23. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: neu-

rotechnique automated labeling of neuroanatomical structures in the Human Brain. Neuron. 2002 Jan

31; 33(3):341–355. https://doi.org/10.1016/S0896-6273(02)00569-X PMID: 11832223

24. Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S.Visualization and analysis of single-cell rna-seq

data by kernel-based similarity learning. Nat Methods. 2017 Mar 6; 14(4):414. https://doi.org/10.1038/

nmeth.4207

25. Zelnik-manor L, Perona P. Self-tuning spectral clustering. Adv Neural Inf Process Syst. 2005; 2:1601–

1608.

26. Maaten LV, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008; 9:2579–2605.

27. Good P. Permutation tests: a practical guide to resampling methods for testing hypotheses. 1st ed.

Springer New York; 2000.

28. Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, et al. Amyloid β concentra-

tions and stable isotope labeling kinetics of human plasma specific to central nervous system amyloid-

osis. Alzheimers Dement. 2017 Aug 1; 13(8):841–9. https://doi.org/10.1016/j.jalz.2017.06.2266

29. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma
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31. Lövheim H, Elgh F, Johansson A, Zetterberg H, Blennow K, Hallmans G, et al. Plasma concentrations

of free amyloid β cannot predict the development of Alzheimer’s disease. Alzheimers Dement. 2017 Jul

1; 13(7):778–782. https://doi.org/10.1016/j.jalz.2016.12.004 PMID: 28073031

Heterogeneity of Alzheimer’s disease based on unsupervised clustering of blood marker profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0211121 March 4, 2019 20 / 20

https://doi.org/10.1016/S0896-6273(02)00569-X
http://www.ncbi.nlm.nih.gov/pubmed/11832223
https://doi.org/10.1038/nmeth.4207
https://doi.org/10.1038/nmeth.4207
https://doi.org/10.1016/j.jalz.2017.06.2266
https://doi.org/10.1038/nature25456
https://doi.org/10.1038/nature25456
http://www.ncbi.nlm.nih.gov/pubmed/29420472
https://doi.org/10.1016/j.jalz.2016.12.004
http://www.ncbi.nlm.nih.gov/pubmed/28073031
https://doi.org/10.1371/journal.pone.0211121

