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Abstract

Introduction:Amyloidmeasurement provides important confirmationof pathology for

Alzheimer’s disease (AD) clinical trials. However, many amyloid positive (Am+) early-

stage subjects do not worsen clinically during a clinical trial, and a neurodegenerative

measure predictive of decline could provide critical information. Studies have shown

correspondence between perfusion measured by early amyloid frames post-tracer

injection and fluorodeoxyglucose (FDG) positron emission tomography (PET), but with

limitations in sensitivity. Multivariate machine learning approaches may offer a more

sensitivemeans fordetectionofdisease related changesaswehavedemonstratedwith

FDG.

Methods:Using summed dynamic florbetapir image frames acquired during the first 6

minutes post-injection for 107 Alzheimer’s Disease Neuroimaging Initiative subjects,

we applied optimized machine learning to develop and test image classifiers aimed at

measuring AD progression. Early frame amyloid (EFA) classification was compared to

that of an independently developed FDG PET AD progression classifier by scoring the

FDG scans of the same subjects at the same time point. Score distributions and cor-

relation with clinical endpoints were compared to those obtained from FDG. Region

of interest measures were compared between EFA and FDG to further understand

discrimination performance.

Results: The EFA classifier produced a primary pattern similar to that of the FDG

classifier whose expression correlated highly with the FDG pattern (R-squared 0.71),

discriminated cognitively normal (NL) amyloid negative (Am–) subjects from all Am+

groups, and that correlated in Am+ subjects with Mini-Mental State Examination,

Clinical Dementia Rating Sum of Boxes, and Alzheimer’s Disease Assessment Scale–

13-item Cognitive subscale (R = 0.59, 0.63, 0.73) and with subsequent 24-month

changes in thesemeasures (R= 0.67, 0.73, 0.50).
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Discussion: Our results support the ability to use EFA with a multivariate machine

learning–derived classifier to obtain a sensitivemeasure ofAD-related loss in neuronal

function that correlateswith FDGPET in preclinical and early prodromal stages aswell

as in late mild cognitive impairment and dementia.
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Highlights

∙ The summed initial post-injectionminutes of florbetapir positron emission tomogra-

phy correlate with fluorodeoxyglucose.

∙ A machine learning classifier enabled sensitive detection of early prodromal

Alzheimer’s disease.

∙ Early frame amyloid (EFA) classifier scores correlate with subsequent change

in Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and

Alzheimer’s Disease Assessment Scale–13-itemCognitive subscale.

∙ EFA classifier effect sizes and clinical prediction outperformed region of interest

standardized uptake value ratio.

∙ EFA classificationmay aid in stratifying patients to assess treatment effect.

1 BACKGROUND

Dementia fromAlzheimer’s disease (AD) results in enormous economic

and emotional burden for patients, caregivers, and health-care sys-

tems, mounting as the population ages. This has stimulated investment

in development of therapeutic candidates to slow disease progres-

sion. However, in AD trials conducted over a 10-year period, 99.6%

of trials failed to demonstrate efficacy, with only a single symptomatic

treatment (memantine) approved during that period1 and one new

treatment, Aduhelm®, approved during the 10 years since. Aweakness

inmany trialswas the inaccuracy of clinical diagnosis. Amyloid positron

emission tomography (PET) substudies in pivotal trials of two mon-

oclonal antibodies targeting amyloid beta (Aβ) found many subjects

enrolled using accepted clinical criteria for probable AD did not have

significant brain amyloid burden.2–4 As a result, screeningwith amyloid

PET has been increasingly incorporated for subject inclusion.5 How-

ever, even in amyloid-positive populations, clinical phenotypes and

trajectories are highly variable. Identifying subjects with brain amyloid

burden who are at greatest risk for decline could significantly increase

the power to detect effects of treatments intended to slow progres-

sion and could inform decision making and when and to whom such

treatments should be offered.

AD-related neurodegeneration correlates with clinical decline.6 In

preclinical AD, the presence of neurodegeneration has been proposed

as abasis for disease staging.7 Glucosehypometabolismmeasuredwith

fluorodeoxyglucose (FDG) PET in amyloid-positive patients correlates

with ratesof cognitivedecline inpreclinical and later stages.8 Decline in

precuneus metabolism occurs 10 years before symptom onset in dom-

inantly inherited AD, preceding hippocampal volume reductions by 5

years.9,10 However, the need to reduce patient burden and the addi-

tional cost and radiation have led to the elimination of FDG PET as

a biomarker in most clinical trials. Disease-related changes in blood

flow parallel those in FDG PET as measured by [15O]water PET,11

[99mTc]-HMPAO single photon emission computed tomography,12,13

and arterial spin labeling magnetic resonance imaging (MRI),14 with

differences apparent even in cognitively normal subjects at risk.15,16

Blood flow measurement therefore represents a potential option for

detecting neurodegeneration, of particular value in early stages during

which cognitive and volumetric metrics may be less sensitive.17,18

The initial minutes post-injection of amyloid imaging have an estab-

lished correlationwith blood flow and have been explored as a possible

approach to characterizing neurodegeneration without requiring an

additional scan.19–22 The basis is that the extraction rate from arte-

rial plasma to tissue (K1 influx rate) of amyloid PET tracers such as

Pittsburgh compound B ([11C]-PiB23), [18F]-florbetapir,24 and [18F]-

florbetaben25 correlates with cerebral blood flow.19–21 This has been

extended to a simplified measurement obtained by summing the

first few amyloid frames post-tracer injection.19 These early frames

strongly correlate with FDG PET measures in cognitively normal (NL),

mild cognitive impairment (MCI), and AD subjects.20,26–28 However,

differences in dynamic range have been noted, and early frame amyloid

(EFA) has not shown significant differences between normal controls

and the earliest stages of disease defined by amyloid status and clini-

cal diagnosis.25,29 Recently, discrimination between cognitively normal

tau-negative versus tau-positive groups was demonstrated using EFA

hippocampal values.30

We previously demonstrated that an optimized FDG PET multi-

variate image classifier can improve detection of AD-related neuronal
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decline and prediction of subsequent clinical worsening in preclinical

and prodromal AD.31–34 In the present work, we evaluated the ability

of an EFA classifier to provide a similar measure of neurodegeneration

and to discriminate between cognitively normal amyloid-negative con-

trols and early prodromal aswell as later AD stages, and to predict rate

of subsequent clinical decline. Using EFA data, we first developed and

validateda classifier tomeasure thepresenceof anAD-likepattern. For

comparison, we developed an FDG classifier using the FDG scans of

the same subjects as available. To understand factors influencing per-

formance, we evaluated the EFA scans directly using the FDG classifier

and compared regional signal intensities in the EFA and FDG scans.

2 METHODS

2.1 Data

Data were obtained from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI, adni.loni.usc.edu). The dynamic amyloid PET scans of

111 ADNI2 subjects imaged with florbetapir for 20 minutes immedi-

ately post-injection were downloaded in their unprocessed form (four

15-second, four 30-second, three 1-minute, three 2-minute, and two

4-minute frames). Scans were acquired using several different scanner

models but a common acquisition protocol.

For comparison, we downloaded each subject’s FDG PET scan

acquired 30 to 60 minutes post-tracer injection from the same visit

as available. Amyloid standardized uptake value ratio (SUVR) nor-

malized to whole cerebellum and/or cerebrospinal fluid (CSF) Aβ42
levels were obtained to determine amyloid status. Visit-matched and

24-month follow-up Mini-Mental State Examination (MMSE), Clini-

cal Dementia Rating Sum of Boxes (CDR-sb), and Alzheimer’s Disease

Assessment Scale–13-item Cognitive subscale (ADAS Cog-13) scores

were obtained for clinical endpoint correlation.

2.2 Image processing

Scans were inspected for image artifact and inter-frame subject

motion. The discrete frames for each scan were aligned and co-

registered to each participant’s closest timepointMRI. Spatial warping

to a common template was performed using each subject’s MRI and

the VBM8 toolbox within SPM8,35 and applying the transformation

to the PET frames. To reconcile resolution across scanner models, an

8mmGaussian smoothing filterwas applied.36 Static imageswere gen-

erated by summing frames from the first 6 minutes of each scan,26 and

images were intensity normalized by z-scoring to whole brain without

ventricles.

2.3 Classifier development

In brief, “classifiers” in this work are image patterns that are visu-

ally interpretable and that optimize voxel intensities to maximize

RESEARCH INCONTEXT

1. Systematic Review: To support their analysis, the authors

conducted a review of relevant literature using PubMed

and abstracts and presentations available from confer-

ences. Published findings regarding early frame amyloid

(EFA) and its comparison to measures of blood flow and

glucose metabolism, and extensions to early frame tau,

have been appropriately cited.

2. Interpretation: The findings of this work build upon prior

studies by demonstrating sensitivity of measures of brain

blood flow as reflected by EFA positron emission tomog-

raphy to progression of Alzheimer’s disease (AD) using

multivariate machine learning classifiers. These findings

also illustrate robust relationships between quantitative

scores for EFA pattern expression, fluorodeoxyglucose

patternexpression, disease stage, and subsequent change

in clinical endpoints.

3. Future Directions: Next steps are to demonstrate these

relationships in a larger set of EFA data that is now

available, evaluate longitudinal variability and statistical

power, and further explore predictive relationships with

subsequent clinical endpoint progression.

those that contribute to AD-related neurodegeneration, minimizing

noise. For classifier development, we used the NPAIRS framework for

machine learning31,32,37 incorporated in our PipelineMax™ software

to develop classifiers to quantify AD pattern expression.33 In brief, N

training classes aredefined (in this case groupsof images).NPAIRSuses

principal component (PC) analysis to identify an uncorrelated set of

intensity patterns that in combination account for the variance across

the data set. Canonical variates analysis (CVA, a form of linear discrim-

inant analysis) is used to mathematically combine selected PCs into

a set of N-1 image intensity patterns (CVs) that discriminate classes.

By taking relationships between regions into account, and segregat-

ing out “noise” components that would be embedded in a univariate

analysis, the classifier canhelp increase statistical power. Toavoidover-

fitting,NPAIRS splits thedata set into twohalvesmany times, each time

developing a model from each half and generating metrics of repro-

ducibility (correlationbetween themodels for eachhalf) andprediction

(classification accuracy of each half by the other half). These are used

to select parameters for a robust, generalizable consensus classifier.

The model can then be used to evaluate (score) independent scans

(with no need for inputting other information, and without the need

to develop a new classifier for each study) by mathematically compar-

ing the voxel intensities in the scan to the relevant CV and assigning

a numeric score reflecting the degree to which the scan expresses the

associated pattern of intensities.

Our initial EFA classifier was based upon 63 training subjects allo-

cated to five classes defined based upon clinical diagnosis and amyloid
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(Am; positive [+] or negative [–]) status: NL–,10 SMC– (subjective

memory complaint),19 NL/SMC+,11 MCI+ (5 early MCI [EMCI+], 5

late MCI [LMCI+]), AD+,14 with consideration to balancing age and

sex. These classes were defined to provide a representative spectrum

of disease over which the classifier could identify progression pat-

tern(s). Subjects were selected for training if they had clearly defined

amyloid status including agreement between CSF Aβ and florbetapir

SUVR values regarding amyloid positive/negative status, and for MCI

and AD categories if they were amyloid positive. Positivity thresh-

olds were florbetapir SUVR > 1.1138 and a CSF Aβ value < 192.39

CSF Aβ values between 192 and 209 or florbetapir SUVR values

between 1.08 and 1.15 (14–27 centiloids [CL])40 were considered a

threshold zone and excluded from training due to variation in CSF

Aβ cutoffs reported by ADNI and amyloid PET measurement variabil-

ity. Am+ training subjects had SUVRs from 1.18 and 1.73 (33–136

CL). The classifier was validated using a leave-one-out (LOO) pro-

cess in which NPAIRS was applied to 63 sets of 62 subjects with

a stratified split-half across the classes. A normalized first canonical

variate (CV1) pattern that accounted for the largest between-class

variance of each of the 63 NPAIRS models was used to predict the

CV score of each of the 63 LOO subjects. A consensus classifier pat-

tern was determined based on a weighted average across the 63

models’ CV1 patterns. For comparison, we developed an FDG PET

classifier using the same subjects and class definitions, and the same

approach described above. FDG scans were available for 56 of the

63 subjects.

The consensus EFA classifier, FDG classifier, and a FDG AD pro-

gression classifier previously developed in a similar manner with 133

training subjects29 wereapplied to the remaining48 subjects to further

evaluate correlation between EFA and FDG classifier scores. Becauses

these subjects had clinical diagnoses of MCI or AD but negative or

threshold amyloid burden and did not meet training class criteria, they

were not used for independent testing of classification accuracy. How-

ever, their scores were compared to those of Am+ subjects with the

same clinical diagnoses to explore possible differentiation. EFA scans

were also scored directly by the FDG classifier.

2.4 Region of interest analysis

Mean signal intensities were measured in posterior cingulate, angular

gyrus, and temporal regions that exhibit progressive hypometabolism

in AD,41 and other regions including anterior cingulate and occipital

cortex. Regions in which metabolism is relatively preserved in AD, and

that have been used as reference regions in FDG analyses42 were eval-

uated including cerebellum, pons, and thalamus. A MetaROI (region

of interest) consisting of the average of values in posterior cingulate,

angular gyrus, and lateral (inferior and middle) temporal regions41

was evaluated using three different reference regions: whole brain,

cerebellar cortex, and pons. Probabilistic region masks were defined

based upon Automated Anatomical Labeling (AAL)43 boundaries, tai-

lored to fit the gray matter within the spatial normalization template,

and eroded by two voxels (three to four for pons and cerebellar cor-

tex) to minimize spillover from adjacent tissue. Mean intensities were

measured on spatially normalized images using PMOD v3.3 (PMOD

Technologies).

2.5 Statistical analyses

EFAclassifier score effect sizes (ES)were compared to those generated

for the same visit FDG scans by the FDG classifier and our previously

developed FDG AD Progression classifier33 (calculated using Hedge’s

g [(comparator group mean – control group mean)/(pooled, weighted

standard deviation], with bias adjustment), to account for group sizes

and differences in standard deviation between groups).44 Age effects

were assessed by regressing the EFA CV1 scores of NL–/SMC– sub-

jects with age to determine whether a significant relationship was

present. EFA and FDG ROI values were compared and percent devia-

tion fromwhole brain calculated as an indicator of dynamic range. Rela-

tionshipswere explored between classifiers and between each imaging

measure (EFA classifier scores, FDG classifier scores, EFA MetaROI

SUVRs) and MMSE, CDR-sb, and ADAS-Cog 13 at time of scan as well

as change over 24 months post-scan (Pearson’s R). Significance was

assessed using two-tailed t-tests; P< .05 was considered significant.

3 RESULTS

3.1 Subject characteristics and training selection

Characteristics of subjects whose EFA scans met quality control

requirements are summarized in Table 1. In this data set, 26% of sub-

jects diagnosed as AD, 55% of LMCI, 71% of EMCI, and 82% of NL

subjects (with or without SMC) were Am– as measured using the amy-

loid PET SUVR. Of the 90 subjects having CSF values available, 21%

had conflicting amyloid PET and CSF Aβ assignments or were in the

“threshold zone” and not used for training.

3.2 Classifier results

EFA classifier development resulted in a CV1 pattern of relative hypo-

and hyper- (or preserved) perfusion that characterized the cross-

sectional progression from NL– to AD+. Figure 1A shows the mean

LOO test scores by class, while Figure 1B shows representative slices

from the corresponding consensus CV1 pattern. Regions of declining

activity (blue) included posterior cingulate, precuneus, parietotempo-

ral cortices, medial temporal, and inferior lateral temporal regions,

while motor cortex and cerebellum were hyper- (or preserved; red) in

signal relative to whole brain. This pattern was similar to the FDG AD

progression classifier and consistent with neurodegenerative patterns

reported in the literature.32,33,45 TherewasnodifferencebetweenNL–

and SMC–. In comparisons of NL/SMC– to other groups, ES and P-

values were: NL/SMC+ ES 0.76 (P < .023), EMCI+ 0.94 (P < .054),

LMCI+ 1.47 (P < .004), MCI+ combined ES 1.39 (P < .0004), and AD+

ES 3.40 (P< .0000; Figure 2B, 2 g.3).
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TABLE 1 Subject characteristics

Dx N Age (years)

Sex

(%F)

APOE ε4
carrier

Educ

(years) MMSE LDEL-TOT CDR-sb ADAS-Cog 13

Florbetapir

SUVR AβCSF

Subjects used in training and Leave-One-Out (LOO) validation

NL– 10 77 (5.7) 40% 10% 16 (2.6) 29 (1.9) 15 (3.3) 0.1 (0.2) 9 (6.4) 1.00 (0.0) 24916

SMC– 19 74 (5.7) 63% 5% 17 (2.5) 29 (1.5) 14 (2.8) 0.2 (0.2) 8 (3.2) 1.01 (0.0) 24224

NL/SMC+ 11 78 (5.6) 55% 55% 16 (3.0) 28 (1.1) 13 (4.1) 0.5 (0.6) 9 (3.0) 1.51 (0.2) 13425

EMCI+ 4 75 (11.2) 50% 75% 14 (1.9) 29 (1.9) 12 (2.8) 1.4 (1.4) 13 (4.9) 1.42 (0.1) 14316

LMCI+ 5 76 (8.9) 40% 100% 15 (4.9) 28 (1.8) 5 (2.4) 2.2 (1.2) 17 (6.1) 1.46 (0.1) 1244

AD+ 14 74 (5.8) 50% 86% 15 (3.2) 23 (3.4) 1 (1.2) 4.6 (1.9) 30 (8.8) 1.48 (0.1) 11921

Additional subjects not included in training or LOO but scored using the classifier

NL/SMC 22 75 (8.9) 41% 27% 17 (3.2) 29 (1.0) 14 (4.3) 0.1 (0.2) 9 (4.3) 1.08 (0.1) 19539

EMCI 13 73 (8.2) 38% 23% 17 (2.5) 29 (1.6) 12 (4.4) 1.3 (0.8) 9 (5.0) 1.08 (0.2) 20930

LMCI 8 76 (10.2) 50% 25% 17 (2.7) 28 (1.8) 7 (4.1) 1.4 (1.6) 12 (5.3) 1.00 (0.1) 20237

AD 5 79 (12.9) 20% 0% 17 (2.8) 22 (2.7) 2 (3.4) 5.7 (3.4) 26 (6.4) 0.98 (0.0) 23323

Note: Among the additional subjects who were not used in training were subjects whose amyloid status was at threshold or conflicted between amyloid PET

and CSF Aβ values, and amyloid negativeMCI and AD subjects. Values aremean (SD) except where percentages are given.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; ADAS-Cog 13, Alzheimer’s Disease Assessment Scale–13-item Cognitive subscale; APOE,
apolipoprotein E; CDR-sb, Clinical Dementia Rating sumof boxes; CSF, cerebrospinal fluid; EMCI, earlymild cognitive impairment; LDEL-TOT, logicalmemory

delayed score; LMCI, latemild cognitive impairment;NL,Alzheimer’sDiseaseNeuroimaging Initiative clinical diagnosis of cognitively normal; SMC, subjective

memory complaint; SUVR, standardized uptake value ratio.

F IGURE 1 Mean CV1 scores (bars= SEM)
by training group generated during
independent LOO (A) EFA classifier scoring of
summed first 6-minute scans, and (B) FDG
classifier scoring of FDG scans for the same
subjects and visit where available. Consensus
CV1 pattern associated with the primary
canonical variates for the (C) EFA and (D) FDG
classifiers. Plots showing correlation between
(E) EFA and FDG classifier scores, and (F) EFA
classifier scores versus scores resulting from
evaluation of all FDG scans in the data set
(including subjects not used in training or
LOO) using the previously developed FDGAD
progression classifier. AD, Alzheimer’s
disease; CV1, first canonical variate; EFA,
early frame amyloid; FDG,
fluorodeoxyglucose; LOO, leave one out; MCI,
mild cognitive impairment; NL, cognitively
normal; SEM, standard error of themean;
SMC, subjectivememory complaint
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F IGURE 2 Mean values (with standard error of themean bars) for NL/SMC–, NL+, EMCI+, LMCI+, and AD+ subjects for (A) FDG classifier
developed using scans from this study; (B) EFA classifier; (C) EFAMetaROIs referenced to whole brain; (D) EFAMetaROIs referenced to cerebellar
cortex; (E) EFAMetaROIs referenced to pons; (F) posterior cingulate, angular gyrus, and lateral temporal ROIs referenced to whole brain; and (G)
comparison of effect sizes (ES) for1 FDG classifier developed in this study,2 FDGAD progression classifier developed using 133 subjects not in this
study,3 EFA classifier LOO results,4,5,6 Meta ROI referenced to whole brain, cerebellar cortex, and pons, respectively,7,8,9 posterior cingulate,
angular gyrus, and lateral temporal ROIs referenced to whole brain. Labels show the ES values for NL+ and AD+ versus NL/SMC–. A complete
listing is found in Table S1. AD, Alzheimer’s disease; CV1, first canonical variate; EFA, early frame amyloid; EMCI, early mild cognitive impairment;
ES, effect size; FDG, fluorodeoxyglucose; LOO, leave one out; LMCI, late mild cognitive impairment; MCI, mild cognitive impairment; NL,
cognitively normal; ROI, region of interest; SEM, standard error of themean; SMC, subjectivememory complaint

The FDG classifier developed using FDG scans from the same

subjects produced a similar primary CV1 pattern and mean scores

(Figure 1C) for each class, despite unavailability of scans for seven

subjects. The associated pattern (Figure 1D) showed relative hypo-

and hypermetabolism similar to the EFA classifier and the previously

developed FDGADprogression classifier. The difference betweenNL–

and SMC– was not significant. Comparing NL/SMC– to other groups,

ES and P-values were: NL/SMC+ ES 1.09, P < .002, EMCI+ ES 1.72

(P < .0008), LMCI+ ES 1.75 (P < .0007), MCI+ combined ES 2.04,

P< .0000, and AD+ ES 5.34, P< .0000 (Figure 2 g.1). The greater ES of

theFDGclassifier is due toa largerdynamic range combinedwith lower

variance. Results from applying the previously developed FDG classi-

fier to FDG scans of this data set were: NL/SMC+ ES 0.92 (P < .010),

EMCI+ ES 1.93 (P < .0000), LMCI+ ES 2.22 (P < .0000), and AD+ ES

4.38, P< .0000 (Figure 2 g.2).

EFA LOO CV1 scores correlate with FDG classifier CV1 scores for

the same subjects (N = 56, R = 0.90, P < .000, Figure 1E). A compari-

son of EFA CV1 scores for all subjects having FDG PET scans available

with the previously developed FDG AD progression classifier scores

for those subjects produced similar correlationvalues (N=96,R=0.90,

P< .000, Figure 1F). There was no correlation between EFA CV1 score

and age within Am– NL or SMC subjects (N = 29, age 68–86 years,

R = 0.24), and within Am+ NL or SMC subjects (N = 33, age 64–86

years, R= 0.02).

EFA CV1 scores for subjects not used in training were concordant

with FDG scores. EFACV1 scores for 17NL or SMC subjects whowere

amyloid PET negative but CSF Aβ positive or threshold were similar to

NL– scores (–1.39 +/- 0.85), while three subjects who were amyloid

PET positive had slightly higher scores (–0.60 +/- 0.80). For 12 EMCI

subjectswhowere amyloid PETnegative butwithmixedCSFAβ status,
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F IGURE 3 A,Mean fluorodeoxyglucose (FDG) image and (B) mean
early frame amyloid (EFA) image representing the average of scans
from cognitively normal Am– subjects, intensity normalized to whole
brain

EFA CV1 averaged 0.21 +/-1.71 and was the most variable, while the

amyloid PETpositive EMCI subjectwas pattern positive (–0.15). For six

LMCI subjects who were amyloid PET negative but with threshold or

positiveCSFAβ values as available, EFACV1 scores averaged–0.87+/-

0.80, resembling amyloid negative NL/SMC subjects. Of five amyloid

negative subjects with a clinical diagnosis of AD, four scored as having

CVscores in the rangeof theAm+MCIorADsubjects, drivenprimarily

by very low signal in temporal cortices. Two subjects exceeded thresh-

olds for positivity in CSF total tau and/or phosphorylated tau (80 pg/ml

and 39 pg/ml, respectively39) but twowere below threshold.

When EFA scans were scored directly by the FDG AD progres-

sion classifier, NL– and SMC– subjects scored similarly to EMCI+

subjects, and the progression slopewas greatly diminished until reach-

ing later MCI and AD stages, where scoring of EFA and FDG scans

approximately converged.

3.3 Region of interest comparisons

Similar patterns, but different in dynamic range, were evident when

comparing FDG and EFA images. As illustrated in Figure 3, cortical EFA

signal tended to be lower and subcortical and cerebellar signal higher

compared to FDG. Table 2 lists region of interest values normalized to

whole brain within NL/SMC–, MCI+, and AD+ groups, comparing EFA

and FDG. EFA signal in most cortical regions is lower than in FDG rel-

ative to whole brain, whereas EFA signal in typical reference regions

and in limbic structures such as hippocampus is greater. This results

in lower SUVR values in EFA overall, particularly in NL and EMCI+

subjects, and a reduced differential betweenNL– and stages of AD.

Comparisons of the posterior cingulate, angular gyrus, lateral tem-

poral, and MetaROI SUVR effect sizes to those of the EFA and FDG

classifiers are shown inFigure2andTable S1 in supporting information.

EFA ROIs referenced to pons lacked a consistent trajectory toward

AD+ until reaching LMCI+. EFA ROIs referenced to cerebellar cor-

tex showed no discrimination between NL– and NL+ or EMCI+. EFA

ROIs referenced towhole brain did not differ betweenNL– andNL+ or

EMCI+ but differed betweenNL– versus LMCI+ and AD+.

3.4 Comparisons to clinical endpoints

Within Am+ subjects, correlations were observed between EFA CV1

scores (N = 35) and MMSE (R = 0.61), CDR-sb (R = 0.62), and ADAS-

Cog 13 (R = 0.72; Figure 4A,E), between FDG CV1 scores (N = 29)

and MMSE (R = 0.76), CDR-sb (R = 0.79) and ADAS-Cog 13 (0.89;

Figure 4B,E), and between EFA MetaROI SUVRs referenced to whole

brain and MMSE (R = 0.63, P <), CDR-sb (R = 0.64), and ADAS-Cog 13

(R= 0.77). All P-values were<.0001.

Imaging measures showed significant relationships to the subse-

quent 24-month change in clinical endpoints as follows (Figure 4): EFA

CV1 scores versus ΔMMSE (N = 24, R = 0.67, P < .0003), ΔCDR-sb
(N = 27, R = 0.73, P < .00002), ΔADAS-Cog 13 (N = 24, R = 0.50,

P < .012; Figure 4C,E); FDG CV1 scores versus ΔMMSE (N = 19,

R = 0.71, P < .0008), ΔCDR-sb (N = 22, R = 0.67, P < .0007), ΔADAS-
Cog 13 (N = 19, R = 0.73, P < .0004; Figure 4D,E); and MetaROIs

referenced to whole brain versus ΔMMSE (N = 24, R = 0.39, P < .057

trend), ΔCDR-sb (N = 27, R = .49, P < .009), ΔADAS-Cog 13 (N = 24,

R = 0.73, P < .057 trend; Figure S1 in supporting information). When

evaluating EFAmeasures using only those subjects forwhomFDGdata

were available, R-values remained very similar forΔMMSE andΔCDR-
sb and increased forΔADAS-Cog 13 (EFACV1R=0.59, EFAMetaROIs

R= 0.47; Figure 4E).

4 DISCUSSION

In this exploratory work, we have shown that using a multivariate clas-

sifier developedwith the early post-injection frames of florbetapir PET

can be used to quantify expression of a pattern that is highly corre-

latedwith FDGPETacross theADprogression spectrum. EFAclassifier

scores also showed strong correlation with both same-visit scores and

subsequent clinical decline inMMSEandCDR-sb, suggesting the ability

to identify patientswhoaremost likely toworsenaswehavepreviously

demonstrated using FDG PET.33 The EFA classifier showed superior

performance in detecting early (NL+ and EMCI+) changes and predict-

ing clinical decline compared to ROI approaches used in this study and

in prior publishedwork.29

The correlation between EFA and FDG is consistent with published

research.26,29,46 As in prior studies,26,29,47 we found lower EFA signal

in cortical regions and greater EFA signal in typically preserved sub-

cortical structures. Differences between blood flow and metabolism,

and a slower K2 efflux rate of the amyloid tracer, could contribute

to this. The 28% difference in pons, for example, was equivalent to

that found by Gur et al., who directly measured blood flow using O15
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F IGURE 4 Correlation between (A) EFA classifier scores and (B) FDG classifier scores withMMSE, CDR- sb, and ADAS-Cog 13 scores at the
same visit time point as the scan; (C) EFA classifier scores and (D) FDG classifier scores with the change inMMSE, CDR-sb, and ADAS-Cog 13
scores over the 24months after the scan. The two unfilled circles in each case are the subjects where only 12-month follow-up was available and
the slope applied to estimate a 24-month change. E, Comparison of Pearson’s R-values for the FDG classifier, EFA classifier, and EFAMetaROI
referenced to whole brain, using only those subjects who had both EFA and FDGPET scans available. Bar labels are R-values. ADAS-Cog 13,
Alzheimer’s Disease Assessment Scale–13-itemCognitive subscale; CDR-sb, Clinical Dementia Rating sum of boxes; CV, canonical variate; EFA,
early frame amyloid; EMCI, early mild cognitive impairment; ES, effect size; FDG, fluorodeoxyglucose; LOO, leave one out; LMCI, late mild
cognitive impairment; MCI, mild cognitive impairment; MMSE,Mini-Mental State Examination; NL, cognitively normal; PET, positron emission
tomography; ROI, region of interest
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PET.47 In either case, the net effect is to reduce the dynamic range

of the signal that is relevant to detection of preclinical and prodromal

ADusing standardROImethods.26,29 Comparison amongROImethods

demonstrated the criticality of reference region, potentially related to

differences described here.

Previous studies using imaging endpoints to detect neurodegener-

ation in clinically healthy elderly as a contributor to cognitive decline

have often used a MetaROI for FDG PET,41 brain atrophy by MRI, or a

combination.8,48,49 Studies of EFAas apotential surrogate for FDGPET

have also used ROI approaches and have not demonstrated discrim-

ination from cognitively normal Am– subjects until reaching LMCI,29

consistentwithROI findings in this data set. An important aspect of our

work is that we have addressed limitations in sensitivity encountered

when applying standard ROImeasurement to EFA to detect preclinical

and early prodromal AD.26,29 The hippocampus, reported to discrim-

inate tau-positive versus negative cognitively normal subjects,26 is

a prominent feature of the classifier pattern although other regions

in the pattern (e.g., posterior cingulate, precuneus) likely aid in dis-

criminating AD versus non-AD states, staging disease, and predicting

likely decline. EFA data could be particularly important for preclinical

populations, in which neurodegeneration is a key element of staging

guidelines7 and given evidence that amyloid positivity combined with

neurodegeneration is associated with greater subsequent decline.8

In differentiating progressive disease stages, the FDG classifier ES

exceeded those of EFA (57% greater for NL– vs. AD+); however, EFA

classifier correlation to subsequent change in clinical endpoints was

nearly identical to FDG for ΔMMSE and exceeded FDG for ΔCDR-sb
given the same subjects. Superior FDG performance may be offset by

the burden of adding an extra scan.

Of note in this data set were the relatively high proportions of

Am– AD and MCI subjects and the number of subjects whose amy-

loid burden was near threshold, or with disagreement between CSF

Aβ values and florbetapir PET SUVR. The uncertainty of amyloid sta-

tus close to threshold suggests the further benefit of characterizing

subjects with regard to an AD-specific neurodegeneration pattern. In

theAD+ stage, the classifier did not always discriminate betweenAm+

and Am–. This is due to overlapping regional effects between different

dementias, but differentiation can be achieved46 using an additional

classification step aswe andothers have previously demonstratedwith

FDGPET.33

Limitations in this study were the number and range of subjects

with conclusive Am+ burden available for classifier development. This

constrained the ability to rigorously evaluate classifier performance

over different stages and in predicting subsequent clinical decline. The

data were cross sectional only. A longitudinal EFA study of florbetapir

and florbetaben PET scans was added to ADNI3, which should provide

information on signal variability over time50 and a larger number of

subjects for classifier development and validation. Conditions for sub-

jects during the uptake period for an amyloid PET scan differ from the

standards used during FDGPET scans, andwhether standardization of

conditions would improve predictive value remains to be determined.

Target-related binding emerging in the latter part of early frames could

argue for using R1 values derived from the two-phase data instead.

R1 values for [11C]-PiB have been reported to have higher test–retest

reliability for longitudinal studies22 and greater sensitivity to disease

severity51 and can be used in kinetic modeling to dissociate blood flow

effects from amyloid.48

The logistics of acquiring EFA scans must be considered for this

approach to be routinely implemented in clinical trials. Imaging a

patient immediately post-tracer injection requires additional scanner

time as well as staff time and training related to acquisition, recon-

struction, storage, and transfer of the additional frames, as they are

separated in time from the amyloid burden acquisition. The need to ini-

tiate image acquisition just after injection introduces complexity but

can be addressed with brief assistance by a second person who needs

only to activate the control to start the scan upon cue from the PET

technologist.

While EFA is not proposed here to determine patient inclu-

sion/exclusion, our findings suggest that it could provide a powerful

additional tool to determine which patients are at greatest risk for

clinical decline, to better assess treatment effect in these patients. By

using optimized classification methods, this benefit becomes feasible

in preclinical and early prodromal stages during which identification of

neurodegenerative progressionmay bemost critical.
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