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Abstract— Although deep networks have been shown to
perform very well on a variety of medical imaging tasks,
inference in the presence of pathology presents several
challenges to common models. These challenges impede
the integration of deep learning models into real clinical
workflows, where the customary process of cascading
deterministic outputs from a sequenceof image-based infer-
ence steps (e.g. registration, segmentation) generally leads
to an accumulation of errors that impacts the accuracy of
downstream inference tasks. In this paper, we propose that
by embedding uncertainty estimates across cascaded infer-
ence tasks, performance on the downstream inference tasks
should be improved. We demonstrate the effectiveness of
the proposed approach in three different clinical contexts:
(i) We demonstrate that by propagating T2 weighted lesion
segmentation results and their associated uncertainties,
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subsequent T2 lesion detection performance is improved
when evaluated on a proprietary large-scale, multi-site,
clinical trial dataset acquired from patients with Multiple
Sclerosis. (ii) We show an improvement in brain tumour
segmentation performance when the uncertainty map asso-
ciated with a synthesised missing MR volume is provided
as an additional input to a follow-up brain tumour seg-
mentation network, when evaluated on the publicly avail-
able BraTS-2018 dataset. (iii) We show that by propagating
uncertainties from a voxel-levelhippocampus segmentation
task, the subsequent regression of the Alzheimer’s disease
clinical score is improved.

Index Terms— Bayesian deep learning, uncertainty, brain
tumour, multiple sclerosis, Alzheimer’s, segmentation,
detection, synthesis, classification.

I. INTRODUCTION

DEEP learning methods have been shown to outperform
classical computer vision methods on a variety of med-

ical imaging inference tasks [1]–[6]. However, challenges
remain in applying deep networks to medical imaging tasks
in the presence of pathologies, including the limited size of
publicly available datasets, the lack of reliable ground truth
labels, the small and sometimes subtle pathological structures
of interest, among others. These challenges can lead to errors
in the results, impeding the integration of deep learning models
into real clinical workflows. Furthermore, in a real clinical
context, a typical medical image analysis pipeline [7], [8]
consists of a sequence of image-based inference steps (e.g.,
multi-modal registration, intensity normalization, pathology
segmentation). Recent trends indicate that deep learning mod-
els [9]–[11] are increasingly used at each of these steps, where
their deterministic outputs are propagated from one inference
step to the next. Given the additional challenges introduced
by the presence of pathological structures, errors in each of
these steps can accumulate and hinder performance on the
downstream clinical task of interest (e.g. survival prediction).
For example, networks that synthesize missing MRI sequences
(e.g. FLAIR) have significantly lower fidelity in the presence
of tumours [12]. Recent work has shown that these poorly
synthesized images negatively affect the downstream tasks
that include tumour classification, staging, and sub-type seg-
mentation [2], [13]. In this paper, we hypothesize that the
performance of the downstream tasks in a medical image
analysis pipeline should improve if, in addition to mean output
predictions, the uncertainty estimates are propagated across
cascaded inference tasks.
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Recently, Bayesian machine learning approaches have
begun to address the limitations of deterministic deep learn-
ing methods by providing uncertainties associated with each
prediction. Gal and Ghahramani [14] showed that by train-
ing a neural network with dropout regularization [15] and
taking Monte Carlo (MC) samples of the prediction using
dropout at test time, one could estimate the uncertainties
associated with the outputs of deep learning models. Other
popular uncertainty estimation methods based on Bayesian
Neural Networks include Dropout Ensemble [16], Mean-Field
Variational Inference [17], and Laplace Approximation [18].
Uncertainty estimation methods based on ensembling include
Stochastic-Weight Averaging - Gaussian (SWAG) [19], Batch
Ensemble [20], Snapshot Ensemble [21] and Deep Ensem-
ble [22]. These methods allow us to generate combinations of
aleatoric (data) and epistemic (model) uncertainties, given one
set of provided “ground truth” labels. [23].

Several recent Bayesian machine learning
approaches [24]–[26] address an additional type of uncertainty
in medical image analysis caused by the fact that a unique
label cannot necessarily be attained in some regions of an
image (e.g., at boundaries between tumour and healthy tissue
in MRI). These papers focus on the context where different
annotators might systematically label things differently and
where multiple annotations are available. They then model
these inherent uncertainties (in various ways) using label
variability as a proxy. Given the requirement of having access
to multiple annotations, a context that is not common in
practice due to the expenses incurred in attaining them, we do
not focus on this type of ambiguity directly.

Recently, MC-Dropout based uncertainty estimation has
been applied to a variety of medical imaging problems
[27]–[29], ranging from modality synthesis [2] to lung nodule
detection [27] and brain lesion detection and segmentation [5].
Many of these papers report that uncertainty can be used to
estimate regions of an image where the network is prone to
error, enabling the triage of highly uncertain cases for further
review [2], [5], [28], [29]. Uncertainty estimation is also used
in semi-supervised scenarios for improved segmentation of
left atrium from chest MRI [30] and retinal layers from OCT
images [31]. Recent papers [28], [32]–[34] show that estimated
model confidence and model performance are correlated for a
variety of medical imaging tasks. Uncertainty estimation-based
active learning [35], [36] and omni-learning [37] methods try
to address data scarcity problems in medical imaging.

While these approaches illustrate how estimating uncer-
tainty in medical imaging tasks is helpful in a clinical scenario,
they do not show how uncertainty can be used to inform or
improve network performance on a downstream task. Recent
work in medical imaging has demonstrated how uncertainty
estimates can be used to improve model performance [27],
[38]. In [27], the focus is limited to a single 2D application
and a single uncertainty measure, the sample variance. Recent
medical imaging papers [5], [38] have shown that different
measures derived from MC-Dropout capture different types
of uncertainties. Other work [39], [40] shows that Deep
Ensemble [22] and Dropout Ensemble [16] provide better
uncertainties compared to MC-Dropout. Furthermore, existing
works [27], [38] only explore uncertainty propagation when

both inference steps are similar to each other. It remains an
open problem to explore and validate whether the propagation
of uncertainty maps from an upstream task can improve
performance on a related but dissimilar task.

This paper presents a general framework for propagating
uncertainties across different classes of inference steps. This
manuscript extends previous work [41] where a deep learn-
ing framework was developed to propagate sample variance
derived from MC-Dropout at inference across cascading tasks
for the contexts of Multiple Sclerosis (MS) lesion detection
and brain tumour segmentation. This work presents a uni-
fied analysis of a variety of popular uncertainty generation
methods (MC-Dropout, Deep Ensembles, Dropout Ensemble),
uncertainty measures (e.g., entropy, sample variance, mutual
information), and propagation techniques (summary statistics,
random sampling) across three distinct contexts: (i) voxel-
level binary MS T2 lesion segmentation to lesion detection,
(ii) voxel-level MR modality synthesis to voxel-level multi-
class brain tumour segmentation, and (iii) voxel-level hip-
pocampus binary segmentation to volume-level Alzheimer’s
Disease clinical score regression.

Extensive experimentation shows that uncertainty propaga-
tion from a previous task to a downstream task of interest
results in performance improvements in all three contexts
(1-5%) and for all three model sampling methods, with
Deep Ensemble and Dropout Ensemble achieving significant
performance improvements over MC-Dropout (1-5%). The
maximum increase in performance gain with uncertainty prop-
agation (2-5%) is achieved when the entire set of different
uncertainty measures are propagated together to the down-
stream task of interest, indicating that they provide helpful
complementary information. However, the quantitative results
only tell part of the story. The qualitative results illustrate
that uncertainty propagation does indeed assist in correcting
clinically relevant errors even when improvement in terms
of absolute numbers are small. Finally, experiments indicate
that, should the clinical context permit that the multiple
samples resulting from the first inference task themselves
be available to the downstream task, rather than just the
uncertainty information in the form of summary statistics (e.g.,
entropy, variance), comparable performance improvements on
the downstream task of interest result. This might be helpful
for other tasks where more complex distributions prevail.

II. METHODOLOGY: PROPAGATING UNCERTAINTY

ACROSS INFERENCE TASKS

In this paper, we consider a general medical imaging
pipeline (see Fig. 1), where input images, xi , are passed
through a sequence of inference tasks (Task-1, Task-2,…,
Task-K) before producing the downstream output of interest
(see Freesurfer [7] or ANTs [8].) The model is general,
but here the context explored is one where the images may
reflect some patient pathology (e.g. tumour, lesion), leading
to additional challenges. The framework follows a protocol
where each task is performed by a separate deep learning
model sequentially. This is typical for most clinical con-
texts, where access to the individual training label sets for
each of the tasks (e.g. reconstruction, segmentation), (y1

i ,
y2

i , . . . , yK
i ), is not typically available for the same input
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Fig. 1. An example of a medical image analysis pipeline. During inference, the input image xi (and output of previous task, ŷk
i ) is passed through

a cascade of inference tasks (1,2, . . . ,K). The neural network for any task, Task-k, is parameterized by θk. The output for Task-k is defined as
ŷk

i = fk(θk; xi, ŷ
k−1
i ). In the proposed framework, we also estimate uncertainties (ûk

i ) associated with output (ŷk
i ) for each task. These uncertainties

are used as an additional input to the subsequent task (ŷk
i = fk(θk; xi, ŷ

k−1
i , ûk−1

i )). Here, Task-K represents the final downstream task of interest.

images, xi . This hinders end-to-end training of the whole med-
ical image analysis pipeline. Each task model is parameterized
by its corresponding parameters (θ1, θ2, . . . , θK ) such that
ŷk

i = fk(θk; xi , ŷk−1
i ).

We adopt a Bayesian deep learning [14], [16], [22] frame-
work, whereby model predictions (ŷk

i ), as well as uncertainties
(ûk

i ) associated with these predictions can be generated for
each task. These uncertainties are estimated by acquiring
multiple output samples (ŷk

i (t)) for the same input images
(Sec. III-A). The model prediction becomes the mean of the
samples (ŷk

i ), and the uncertainties (ûk
i ) are derived from

statistics across the samples (Sec. III-B).
In the proposed framework, depicted in Fig. 1, in addition

to passing the model predictions (ŷk
i ) from each preceding

task to its subsequent task, uncertainties (ûk
i ) are also passed

onto the subsequent tasks. The hypothesis is that this would
lead to better performance for the downstream task of interest.
We also explore a premise where instead of passing the mean
prediction and its associated uncertainties from the previous
task to the subsequent task, the samples (ŷk

i (t)) themselves
(should they be available) are passed individually to the next
task. Direct sample propagation would help in scenarios where
the output distribution might be multi-modal, for example,
and not well represented by a single statistic (e.g. variance).
It should be noted that this comes at the cost of increased stor-
age requirements and substantial increases in inference time.

In order to prove the generality of the proposed framework,
experiments are performed for three different clinical contexts
with diverse inference steps: (i) T2 weighted MS lesion
segmentation and detection, (ii) Brain tumour segmentation,
and (iii) Alzheimer’s (AD) clinical score prediction. Here,
pipelines include two different sequential inference tasks,
as depicted in Fig. 2. Note that the uncertainties produced
on training cases would not properly reflect the uncertainties
on unseen test cases [14], [22], [39]. In the proposed frame-
work, the Task-1 network and the Task-2 network are trained
separately to provide the Task-2 network with meaningful
Task-1 uncertainties as input.

A. MS T2 Lesion Segmentation
One of the hallmarks of Multiple Sclerosis (MS) is the pres-

ence of multiple hyperintense lesions visible on T2-weighted
MRI (i.e. T2 lesions). The detection and segmentation of
T2 lesions in MRI is therefore important to monitor disease
activity and treatment efficacy. However, T2 lesions can be
very small (3-10 voxels) and difficult to detect. Popular neural
networks, including U-Nets, have not yet proven to be effective
at the detection and segmentation of small MS lesions in
MRI when deployed with commonly used settings [5]. How-
ever, uncertainties based on MC-Dropout have been shown

Fig. 2. Overview of the proposed general framework for propagating
inference results and their associated uncertainties across sequential
tasks in medical image analysis. (A) MS T2 lesion segmentation,
(B) MR synthesis - brain tumour segmentation, and (C) Alzheimer’s
disease clinical score prediction.

to correlate well with network errors in the context of MS
lesion segmentation [5]. In this work, we propose to first
segment T2 lesions from multi-sequence MRI (xi ) acquired
from patients with MS using a Bayesian U-Net [5] (Task-1).
The resulting mean T2 lesion segmentation map (ŷ1

i ) and
its associated voxel-level uncertainties (û1

i ), along with the
original MRI patient sequences (xi ), are then provided as
inputs to a second T2 lesion segmentation U-Net (Task-2).
The conjecture is that the second network will learn to improve
the lesion segmentation/detection (ŷ2

i ) performance by learning
to interpret the predictions and associated uncertainties from
the first network (see Fig. 2(A)). This includes learning, for
example, which regions with high uncertainties should indeed
be labeled as lesions and which should not, thus assisting in
detecting and segmenting subtle lesions.

B. Brain Tumour Segmentation

The accuracy of detecting and segmenting brain tumours
increases significantly should several MRI channels be avail-
able. Different contrasts generally assist in differentiating
healthy tissues from focal pathologies (e.g., T1, T1c, T2,
FLAIR) [12], [42]. However, in real clinical practice, the avail-
ability of all sequences is not guaranteed for each patient
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for various reasons, including cost or time constraints, and
corruption from noise or patient motion. As such, accurate
synthesis of one or more of the missing 3D MRI volumes
based on those acquired would be beneficial to both clinical
practice [43] and automatic downstream segmentation tech-
niques [13], [44], [45]. Synthesizing high-resolution volumes
in the presence of pathological structures presents significant
challenges to current machine learning methods. As a result,
any resulting synthesized MR volumes may not be reliable on
their own. In this context, voxel-level uncertainties associated
with the synthesized volume can be helpful to guide a clinician
towards regions of lower confidence where further inspection
is needed [2] or towards detecting an anomaly in a synthesized
volume [46].

In this work, we suggest that by propagating the uncertain-
ties associated with the synthesized missing MRI sequence
provided by the synthesis network (Task-1) to a downstream
tumour segmentation network (Task-2), the final results should
improve. Details are shown in Fig. 2(B). The Task-1 network is
a synthesis network, which takes multi-modal MR sequences
acquired from a brain tumour patient as inputs. It regresses
a full, synthesized image volume for the mean missing MR
sequence (ŷ1

i ) as well as the uncertainties (û1
i ) associated with

the synthesis at each voxel. The synthesis network chosen here
is the multi-task Regression-Segmentation Network (RS-Net)
proposed in [2]. The Task-2 network is a multi-class tumour
segmentation network that takes the original MRI sequences
(xi ), and the synthesized (mean) missing sequence volume
(ŷ1

i ) and associated uncertainties (û1
i ) produced from Task-1 as

inputs, and produces multi-class tumour labels (ŷ2
i ) at each

voxel. The network is a U-Net [47] with instance normaliza-
tion [48] added in order to improve performance on small
batch sizes.

C. Alzheimer’s Disease Clinical Score Prediction

Alzheimer’s disease (AD) is the most common form of
neurodegenerative disorder in elderly people [49]. Machine
learning methods have been shown to perform well in pro-
viding an AD diagnosis (i.e., a classification task) [50], [51].
However, clinicians are more likely to treat symptoms based
on structured clinical assessments (e.g., Alzheimer’s Disease
Assessment Scale – ADAS-13, Mini-Mental State Examina-
tion – MMSE) than on a specific diagnosis [52]. In this work,
the objective is to develop an accurate model to estimate clin-
ical disease severity scores, specifically the commonly used
ADAS13 [53] and MMSE [54], directly from neuroimaging
data (i.e., T1 MR image) [55]. A recognized biomarker for AD
is the presence of reduced hippocampal volume as measured
from a single time point, high-resolution T1-weighted MR
image [56]. As such, automatic hippocampal segmentation has
previously been shown to effectively diagnose AD [57], [58].

In this work, we hypothesize that a downstream clinical
score prediction network’s accuracy can be increased by
propagating the estimated uncertainty maps from a preceding
hippocampus segmentation network. Details are shown in
Fig. 2(C). The hippocampal segmentation network (Task-1) is
a BU-Net, which takes a T1 MR image (xi ) as input and pro-
duces a mean segmentation of the hippocampus (ŷ1

i ), as well
as an estimate of its associated segmentation uncertainty map

(û1
i ). The two outputs (ŷ1

i and û1
i ), along with the original

T1 MR image (xi ), are then provided to a downstream deep
network (3D ResNet-34 [59]) which regresses two clinical
scores, ADAS-13 and MMSE (ŷ2

i ).

III. BACKGROUND: UNCERTAINTY ESTIMATION AND

COMMON UNCERTAINTY MEASURES

This section provides background on sample-based uncer-
tainty measures and various uncertainty estimation methods.

A. Uncertainty Estimation Methods

In this work, we focus on MC Dropout [14], Deep Ensem-
bles [22], and Dropout Ensemble [16], which are the most
widely used methods for uncertainty estimation. However,
we expect that the method can be generalized to any method
that estimates uncertainty based on multiple predicted samples.

1) MC-Dropout: Bayesian Neural Networks can estimate
the uncertainty associated with model outputs. Uncertainty
is estimated by placing a prior distribution over the neural
network weights, though exact inference is computationally
expensive and many times intractable [60], [61]. In [14],
authors proposed a method known as Monte-Carlo Dropout
(MC-Dropout) which uses a commonly used regularization
method (Dropout [15]) at test time to approximate uncertain-
ties associated with neural network outputs. The same input is
passed through the neural network multiple times, leading to
a collection of T different samples. Uncertainty is estimated
using statistics computed across these samples.

2) Deep Ensemble: Deep Ensemble methods [20]–[22] have
become popular due to their demonstrated reliability in pre-
dicting uncertainties. The idea behind the method is that T
neural networks are trained independently, and T deterministic
predictions are collected from each. These predictions then
form an ensembled prediction that can be used to estimate
uncertainties. While their theoretical connection to Bayesian
posteriors is still a topic of active research [62], deep ensem-
bles have been shown to work well empirically in many
domains [20]–[22].

3) Dropout Ensemble: MC-Dropout captures local variabil-
ity across a single network and, in turn, captures how uncertain
a single network is about its prediction. Deep Ensemble
captures global variability in the prediction across different
networks in an ensemble and uncertainty associated with
this variability [40]. Dropout Ensemble [16] combines both
MC-Dropout and Deep Ensemble by training N independent
networks in an ensemble and using dropout at test time for
each of these networks to collect M different samples for each
network. This results in a total of T = M ∗ N sample outputs
across these networks.

B. Uncertainty Measures

We can use the samples generated using the above men-
tioned methods as a proxy for uncertainty captured by the
models, or we can calculate statistics across these sam-
ples (e.g. sample variance) and consider these statistics as
measures of uncertainty associated with the model output.
The predicted output (ŷi ) is the mean value across samples
(ŷi = 1

T

∑T
t=1 ŷi (t)).
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In this section, we give details about three popular uncer-
tainty measures: sample variance, predictive entropy, and
mutual information.

1) Sample Variance: The simplest uncertainty measure,
sample variance, is estimated by computing the variance
across the T samples collected using either Bayesian Neural
Networks (ex. [14]) or Ensembles (ex. [22]). For a regression
task, such an image sequence synthesis (Sec.II-B), the variance
in the output ŷi for any input xi , is defined as follows:

Var(ŷi ) = 1

T

T∑
t=1

ŷi
2
(t) −

(
1

T

T∑
t=1

ŷi (t)

)2

. (1)

where ŷi (t) is a prediction for sample t.
For the segmentation tasks with C classes considered here,

whether it is MS lesion segmentation (Sec.II-A), or hippocam-
pus segmentation (Sec.II-C), the variance in the output ŷi is
defined as follows for any input xi :

Var(ŷi )

= 1

C

C∑
c=1

(
1

T

T∑
t=1

p(ŷi (t)=c|xi )
2−

( 1

T

T∑
t=1

p(ŷi (t) =c|xi)
)2

)
.

(2)

Here, p(ŷi (t) = c|xi) denotes output softmax probability for
class c for a sample t . Sample variance can be more simply
interpreted as a measure of model output consistency across
different samples.

2) Predictive Entropy: The predictive entropy is a measure of
the informativeness of the model’s predictive density function
for each model output ŷi . It is defined as:

H [ŷi |xi ] = −
C∑

c=1

p(ŷi = c|xi) log
(

p(ŷi = c|xi)
)

≈ −
C∑

c=1

( 1

T

T∑
t=1

p(ŷi (t) = c|xi)
)

log
( 1

T

T∑
t=1

p(ŷi (t) = c|xi)
)
. (3)

where C is the total number of class labels, and p(ŷi (t) = c|xi)
denotes output softmax probability for class c for sample
t [14], [16], [22]. High entropy implies a flatter probabil-
ity distribution across classes, while low entropy implies a
more peaky probability distribution. Lower entropy shows
that model is more confident in its prediction of the output
class. Predictive entropy measures both epistemic and aleatoric
uncertainties (which will be high whenever either epistemic is
high or aleatoric is high) [63], [64]. Here we only consider
entropy for a segmentation task. The calculation of entropy for
a regression task (e.g., modality synthesis) requires calculating
a normalized histogram, a computationally intensive process.

3) Mutual Information: The mutual information (MI) cap-
tures how much information we gain about the model para-
meters by knowing the label for input xi . Similar to sample
variance, mutual information also captures the variability in
model predictions. MI is calculated as the difference between
the entropy of the average model prediction (ŷi ) and the

average of the entropies of each model prediction (ŷi(t)) [64]:

M I [ŷi , xi ] ≈ H [ŷi |xi ] − 1

T

T∑
t=1

H [ŷi(t)|xi ]. (4)

MI measures a difference between predictive entropy and
aleatoric uncertainty [63], [64]. Propagating both predictive
entropy and MI together could allow the network to isolate
aleatoric uncertainty component through a simple subtraction
if needed [63]. Like entropy, MI is also only considered for
a segmentation task as extending it to the regression task is
non-trivial.

IV. IMPLEMENTATION DETAILS, DATASETS, AND

EVALUATION METRICS

A. Task Specific Details1

1) MS T2 Lesion Segmentation: As depicted in Fig. 2(A),
both the MS T2 lesion labels and their associated uncer-
tainties produced from a Bayesian U-Net are propagated to
a second T2 lesion segmentation U-Net. A large proprietary
dataset of multi-modal MRI sequences acquired from a total
of 1073 patients with relapsing-remitting MS (RRMS) at
different stages of the disease was used for training and testing.
The dataset consists of over 2700 multi-modal MRI sequences
(T1, T2, Fluid Attenuated Inverse Recovery – FLAIR, and
Proton Density – PD) federated from three different multi-
site, multi-scanner clinical trials. The majority of the patients
were scanned annually or bi-annually over 24 months. MRI
sequences were acquired at 1mm × 1mm × 3mm resolution.
T2 lesion labels were provided with the dataset and were
produced through an external process where trained expert
human annotators manually corrected a proprietary automated
segmentation method. The dataset was split as follows: 40% of
the available data was used for training/validating the first net-
work, with a 90/10 training/validation split. Another 40% was
used for training/validating the second network, again with a
90/10 training/validation split. The final 20% of the available
data was used for testing the second network. The dataset was
carefully divided this way to provide the second network with
consistent and meaningful uncertainties reflective of unseen
test cases.

The downstream outcome of interest is accurate detection of
T2 lesions. Therefore, the performance is evaluated based on
lesion-level detection metrics. A connected component analy-
sis is performed on the voxel-based segmentation provided
by the network to group lesion voxels in an 18-connected
neighbourhood [5]. The detection level metrics, namely True
Positive Rate (TPR) vs. False Detection Rate (FDR), are
calculated at the lesion level and are used to plot receiver
operating characteristic (ROC)-like curves. Given that MS
lesions vary significantly in size, lesions are grouped into
three sized bins for performance evaluation: small (3-10 vox),
medium (11-50 vox), and large (51+ vox). Given that the
detection of small lesions is particularly challenging and 40%
of the lesions in the dataset are small, we mainly focus on the
overall detection performance for all the lesions and show the
performance on only the small lesions separately. We calculate

1Network architecture and training details specific to each pipeline is
provided in Appendix:A.
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the area under the curve (AUC) for ROC-like curves and use
it as a quantitative measure of the network performance.

2) Brain Tumour Segmentation: RS-Net (Task-1 network) [2]
was developed to take in 3 real MRI sequences and synthesize
the missing fourth sequence. This paper focuses on the synthe-
sis of T1 post-contrast (T1ce) and FLAIR MRIs as previous
work [2], [13] has shown that their absence significantly
decreases brain tumour segmentation performance compared
to either T1 or T2 sequences. T1ce is the most challenging
sequence to synthesize, as it is the only MR sequence that
indicates enhancement within the tumour post-injection with
a contrast agent, providing a signal of new disease activity. T1,
T2, and FLAIR sequences are presented to RS-Net to synthe-
size the T1ce MRI, and T1, T1ce, and T2 MRI sequences are
used as inputs to synthesize the FLAIR MRI.

This pipeline is evaluated using the 2018 MICCAI
BraTS [42] dataset. The BraTS training dataset comprises
210 HGG and 75 LGG patients with T1, T1ce, T2, and
FLAIR MRI sequences. Ground truth tumour labels were
provided by expert human annotators and consist of 3
classes: edema, necrotic/non-enhancing core, and enhancing
tumor core. 228 patients were randomly selected for training
the network and another remaining 57 for network valida-
tion. A separate BraTS 2018 validation dataset was used
to test the segmentation performance. This dataset contains
66 patient multi-channel MRI. The BraTS challenge provides
pre-processed volumes that were skull-stripped, co-aligned,
and resampled to isotropic (1mm × 1mm × 1mm) reso-
lution. As we mentioned before, uncertainties on a training
dataset would not reflect uncertainties on an unseen dataset.
The RS-Net was trained in two folds, with each fold comprised
of 114 volumes. This training strategy allows us to generate
uncertainties on the whole training dataset in two folds, and
should reflect uncertainties on an unseen dataset. The down-
stream segmentation U-Net was trained using all 228 volumes
in a single fold.

In line with the BraTS challenge [42], the brain tumour
segmentation performance is evaluated by calculating Dice
scores for three different tumour sub-types: enhancing tumor,
whole tumor, and tumour core. Quantitative assessment was
generated by uploading the segmentation results on the chal-
lenge portal as there are no ground-truth labels available for
the validation set.

3) Alzheimer’s Disease Clinical Score Prediction: As depicted
in Fig. 2, a BU-Net [5] is used for hippocampus segmentation
with T1 MRI as the input (Task-1). The segmentation maps
and their associated voxel-wise uncertainties are propagated
to a volume-level clinical score regression network (Task-2),
which produces values for MMSE and ADAS-13 scores. A 3D
ResNet-34 [59] network was used for clinical score regression.
MMSE is one of the most widely used cognitive assessments
for diagnosing Alzheimer’s disease and related dementias. The
scores range from 0 to 30, with lower scores indicating greater
cognitive impairment. The ADAS-13 is a modified version of
the ADAS-cog assessment, and it has a maximum score of 85.
In contrast to MMSE, higher scores on the ADAS-13 indicate
greater cognitive impairment.

The EADC-ADNI/HARP dataset [65] is used for training
the hippocampus segmentation network. This dataset consists

of a subset of 135 volumes selected from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset, with expert
manual 3D segmentations of the hippocampus. There are
45 AD, 46 Mild Cognitive Impairment (MCI), and 44 Cogni-
tive Normal (CN) patients in this dataset. All volumes were in
isotropic resolution, brain-extracted, and linearly registered to
MNI152 space. We divide this dataset into an 80/20 train-
ing/validation split. The clinical score regression network
(3D ResNet-34) is trained and tested using the ADNI [66]
dataset. Specifically, we used baseline data from participants
in the ADNIGO (n = 69), ADNI1 (n = 442) and ADNI2
(n = 354) databases. We divide this dataset into a train-
ing/validation/testing (70/10/20) split such that the ratio of
AD/MCI/CN is maintained across the split. We perform 5-fold
cross-validation on this dataset. Performance evaluation for
both ADAS-13 and MMSE scores is based on the Pearson
correlation (r), and root mean square error (RMSE) between
true and predicted clinical scores.

B. Sampling for Uncertainty Estimation

The proposed framework requires producing uncertainties
at the outputs of the Task-1 network along with the estimated
predictions (e.g., voxel-based segmentation, regression). This
is achieved by calculating various statistics (See Section III-B)
across multiple samples generated using different uncertainty
estimation methods (See Section III-A).

In this work, we also explore propagating the samples from
the Task-1 network directly (if available) as inputs to the
Task-2 networks. Details about sampling are now provided:

1) MC-Dropout: For all three clinical contexts, 20 samples
are generated for the Task-1 network using dropout (dropout
rate = 0.2) at test-time. We chose this as previous studies have
shown that there is a marginal improvement in performance
with more samples [67].

2) Deep Ensemble: 5 different Task-1 networks are trained
with different weight initializations on the same training set to
get an ensemble of size 5 for each clinical pipeline. This choice
is based on previous studies [22], [39] which showed that
only marginal improvement was attained with ensembles with
sizes larger than 5. During test time, the 5 networks provide
5 different samples for the same input.

3) Dropout Ensemble: Each of the 5 trained networks devel-
oped for the Deep Ensemble model generates 20 samples using
dropout at test time. This results in a total 100 samples for
Dropout Ensembles.

V. EXPERIMENTS AND RESULTS

Several experiments were performed for each of the clin-
ical pipelines. The goal was to evaluate the effectiveness
of propagating the uncertainties from Task-1 to Task-2 in
improving the final downstream results. Evaluations and com-
parisons were made based on (a) different uncertainty esti-
mation methods: MC-Dropout [14], Deep Ensemble [22], and
Dropout Ensemble [16], (b) different uncertainty measures:
sample variance, entropy, MI, and finally (c) propagating the
uncertainties derived from the samples (e.g., sample variance)
against propagating the samples themselves.

A. Effectiveness of Uncertainty Propagation

The first set of experiments were designed to evaluate the
effectiveness of propagating uncertainties from the Task-1
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TABLE I
COMPARING OVERALL MS T2 LESION DETECTION PERFORMANCE USING AREA UNDER CURVE (AUC) OF ROC-LIKE CURVES, ILLUSTRATING

TPR (TRUE POSITIVE RATE) VS. FDR (FALSE DETECTION RATE) ACROSS (A) ALL LESIONS, AND (B) SMALL LESIONS (3-10 VOXELS) WITH

SEVERAL INPUT COMBINATIONS. THE INCLUSION OF THE ASSOCIATED UNCERTAINTIES WITH OUTPUTS FROM TASK-1, IN ADDITION TO

TASK-1 OUTPUTS, AS INPUTS TO THE TASK-2 NETWORK RESULTS IN IMPROVED DETECTION PERFORMANCE. BOLD VALUES INDICATE THE BEST

PERFORMANCE FOR EACH METHOD, WHILE UNDERLINED VALUES INDICATE OVERALL BEST PERFORMANCE ACROSS DIFFERENT METHODS. THE

PERFORMANCE OF THE MS T2 LESION DETECTION FOR MEDIUM AND LARGE LESION IS PROVIDED IN TABLE IV IN APPENDIX: A

network to the Task-2 network. To this end, we first examine
the results of the proposed framework for all three clini-
cal pipelines (Fig. 2) based on a set of fixed experimental
parameters: using MC-Dropout [14] during inference to pro-
vide 20 samples from the Task-1 network, and estimating
and propagating the sample mean and variance across these
samples to the Task-2 network along with the original MRI.2

Sample variance was chosen as it is the simplest and the
most commonly used uncertainty measure [6], [27], [29], [37],
[46], [67]. Results were compared against (1) Baseline-1:
only passing the MR sequences to Task-2 and (2) Baseline-2:
passing the MRIs and the sample mean outputs from the Task-
1 network to Task-2. Comparisons between Baseline-1 and
Baseline-2 indicate the effectiveness of cascading inference
results in general. A comparison of the proposed method
with Baseline-2 should reflect the effectiveness of additionally
propagating uncertainties.

Tables I, II, and III illustrate the results for the MS lesion
segmentation/detection, brain tumour segmentation, and AD
clinical score prediction pipelines, respectively. We perform
two-sided paired sample t-test to find statistical significant
difference between methods which propagates uncertainty
and the baseline method which doesn’t consider uncertainty
propagation.3

2Fig. 9 in the Appendix:A shows the effect of varying the number
MC-Dropout of sample for uncertainty estimation on a downstream task of
interest for MS lesion detection.

3We do not report the statistical significance test result for Table I as it
would require us to run multiple different runs for the large MS dataset,
where each training setup takes approximately four days to run, which is
practically infeasible. In this case, we have kept the folds constant across
different experiments throughout the paper (and even the random seeds for the
neural network initialization), which gives a fair comparison without repeated
runs.

Fig. 3. Examples demonstrating the corrective effect of uncertainty
propagation for MS lesion detection for three patient cases (Rows 1-
3). From left to right: T2 weighted MRI input, expert T2 lesion labels
(in magenta), T2 lesion labels produced by the Task-1 network, sample
variance uncertainty estimates for the Task-1 network output, and the
T2 lesion labels produced by the Task-2 network.

Row-1 to Row-3 in each of these tables illustrate that, for
all three pipelines, the network for the downstream task of
interest (Task-2) shows performance improvements of 0.5-4%
when the Task-1 sample mean output is passed to the Task-
2 network, relative to only passing MR sequences (Baseline-
1). Propagating uncertainties leads to a further 2-12% per-
formance improvement over only passing the Task-1 sample
mean output to the Task-2 network (Baseline-2).

Although quantitative improvements are important, they do
not tell the entire story. In some cases, the overall numerical
improvements based on the standard performance metrics
seem relatively small, however there still can be significant
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TABLE II
COMPARISON OF MULTI-CLASS BRAIN TUMOUR SEGMENTATION PERFORMANCE ON THE BRATS VALIDATION DATASET. THE INCLUSION OF THE

ASSOCIATED UNCERTAINTIES FROM THE SYNTHESIS NETWORK, IN ADDITION TO THE SYNTHESIS OUTPUT, AS INPUT TO THE SEGMENTATION

NETWORK RESULTS IN IMPROVED PERFORMANCE. QUANTITATIVE RESULTS ARE BASED ON PERCENTAGE DICE COEFFICIENTS FOR ENHANCING

TUMOR (DE), WHOLE TUMOR (DT), AND TUMOR CORE (DC). ∗ INDICATES STATISTICALLY SIGNIFICANT (P ≤ 0.05) DIFFERENCES BETWEEN

INCLUDING AND EXCLUDING UNCERTAINTY USING TWO-SIDED PAIRED SAMPLE T-TEST. BOLD VALUES INDICATE BEST PERFORMANCE FOR

EACH METHOD, WHILE UNDERLINES INDICATE OVERALL BEST PERFORMANCE ACROSS DIFFERENT METHODS. TABLE WITH ACTUAL P-VALUES

CAN BE FOUND IN SUPPLEMENTARY MATERIAL TABLE I

TABLE III
ADAS-13 AND MMSE SCORE PREDICTION PERFORMANCE COMPARISON ON THE ADNI TEST DATASET. THE INCLUSION OF THE ASSOCIATED

UNCERTAINTIES FROM THE HIPPOCAMPUS SEGMENTATION NETWORK, IN ADDITION TO THE HIPPOCAMPUS SEGMENTATION OUTPUT, AS INPUT

TO THE CLINICAL SCORE PREDICTION NETWORK IMPROVES BOTH ADAS-13 AND MMSE. QUANTITATIVE PREDICTION PERFORMANCE IS BASED

ON ROOT MEAN SQUARED ERROR (RMSE) AND PEARSON CORRELATION COEFFICIENT (R). (∗) INDICATES STATISTICALLY SIGNIFICANT (P ≤
0.05) DIFFERENCES BETWEEN INCLUDING AND EXCLUDING UNCERTAINTY USING TWO-SIDED PAIRED SAMPLE T-TEST. BOLD VALUES INDICATE

BEST PERFORMANCE FOR EACH METHOD, WHILE UNDERLINED VALUES INDICATE OVERALL BEST PERFORMANCE ACROSS DIFFERENT

METHODS. TABLE WITH ACTUAL P-VALUES CAN BE FOUND IN SUPPLEMENTARY MATERIAL TABLE I

clinically relevant improvements. For example, Fig. 3 depicts
qualitative results for three MS patient cases (top to bottom),
where the propagation of uncertainties enabled the correction
of both false positive (bottom case) and false negative (top
two cases) lesions. The system learned how to interpret the
uncertainties in the (incorrect) inferences made in those areas,
and corrected the errors.

Fig. 4 shows example cases for three patients (top to
bottom), where the downstream brain tumour segmentation
network makes use of synthesized MRI sequences (here

T1ce and FLAIR). The first example (top row) shows that
propagating the synthesized T1ce image to the downstream
tumour segmentation network results in confusion between
enhancing tumour and core tumour, as the enhancing portion
is not well synthesized in the generated T1ce. This result
is not unsurprising as T1ce is the post-contrast injection
T1 MRI, and accurate synthesis of enhanced tumour without
injection remains an open problem. Importantly, the system
produces an uncertainty map that indicates that the synthesis
uncertainty is higher in this region, and conveys the uncertainty
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Fig. 4. Examples of three patient cases (top to bottom) demonstrating
the 3D U-Net performance on the multi-class brain tumour segmentation
task [42] based on synthesized MRI sequences. From Left to Right:
Expert manual segmentation, synthesized MR sequence, segmentation
using real MRI (3 sequences) + synthesized MRI, synthesis uncertainty,
segmentation using real MRI (3 sequences) + synthesized MRI +
synthesis uncertainty. First two rows: T1ce synthesis. Last row: FLAIR
synthesis. Labels: edema (green), non-enhancing or necrotic tumour
core (red), enhancing tumour (yellow).

information to the segmentation network. This enables the
segmentation network to learn to correct these errors and
leads to an improvement in the results. This can also be seen
in the example in second row, where the uncertainty allows
the network to fix errors and correctly identify enhancing
and non-enhancing core. The third example shows the results
of FLAIR synthesis, where an erroneous bright spot appears
within the ventricle. This leads to the segmentation network
erroneously predicting edema within the ventricle (which is
clinically impossible) when the uncertainty is not propagated.
However, the uncertainty maps indicate that the network is not
confident in its synthesis prediction in this region. As such,
cascading the uncertainty maps permits the network to learn
to correct its error.

The results for all 3 clinical pipelines demonstrate that
in multi-step medical image processing pipelines, that would
otherwise accumulate errors can benefit from including the
network uncertainty for each task as input to subsequent tasks.

B. MC-Dropout vs. Deep Ensemble vs. Dropout
Ensemble

The next set of experiments compare the performance of
uncertainty propagation using different methods for estimat-
ing sample variance uncertainties: MC-Dropout [14], Deep
Ensemble [22], and Dropout Ensemble [16]. Tables I, II, and
III, Row-2 and Row-3, Row-8 and Row-9, and Row-14 and
Row-15 report results for MC-Dropout, Dropout Ensemble,
and Deep Ensemble, respectively. These results indicate that
ensemble methods, Deep Ensemble and Dropout Ensemble,
achieve 1-5% higher performance over MC-Dropout when
only mean predictions are propagated across tasks. The per-
formance gains improve by a further 1-4% when the sample
variance uncertainties are additionally propagated to the down-
stream task of interest. A marginal performance gain of
Dropout Ensemble over Deep Ensemble can be seen, both
with and without uncertainty propagation.

C. Effect of Different Uncertainty Measures

Experiments were devised in order to compare the effects of
propagating each of the different uncertainty measures: sample
variance, entropy and MI (Sec: III-B), as well as the effec-
tiveness of cascading all three measures at once for all three
uncertainty estimation strategies. Experiments were performed
for the clinical pipelines of MS lesion segmentation/detection
and AD clinical score prediction, but not for the brain tumour
segmentation pipeline as estimating entropy or MI in the
context of image regression (synthesis) in this context is an
open research problem. (Sec.III-B.1) [64]. Tables I and III
show that the sample variance gives better performance gains
over entropy and MI for both the MS T2 lesion detection
task and AD clinical score prediction task. However, passing
all three uncertainty measures simultaneously shows the best
improvement in the performance of downstream tasks (Row-7,
Row-13, and Row-19), indicating that each provides different
yet relevant summary statistics [5].

D. Statistics vs Samples

Finally, the effectiveness of passing summary statistics
calculated across samples are examined against propagating
the samples themselves for all three uncertainty estimation
strategies. Multiple samples are generated (Sec:IV-B) from
the Task-1 network for these uncertainty estimation strategies.
During Task-2 network training, one random sample from the
available Task-1 output samples is provided as input. During
inference, all Task-1 samples are independently passed to the
Task-2 network. The output samples from the Task-2 network
are then used to estimate the sample mean, which serves as
the final Task-2 output. Table I, Table II, and III indicate that
passing samples instead of statistics across samples results in
similar performance in the contexts explored in this paper.

VI. CONCLUSION

This work proposes a general deep learning framework
for propagating uncertainties across a sequence of inference
tasks within medical image analysis pipelines. It demonstrates
that cascading uncertainties (e.g., based on MC dropout,
Deep Ensemble) along with the outputs from the previous
inference module can lead to improvements in performance
of the downstream task. The framework was applied to
three different contexts. First, we showed that by propagating
voxel-based lesion segmentation uncertainties to a second seg-
mentation network, lesion-level detection performance could
be improved by reducing both FPs and FNs. Experiments were
performed on a large-scale, multi-site MS patient brain MRI
dataset acquired during different clinical trials. Next, using
the publicly available BraTS dataset, we demonstrated that
by propagating regression uncertainties from an MRI syn-
thesis network, the performance of a downstream multi-class
tumour segmentation task can be improved. In the last con-
text, we demonstrated that uncertainty propagation from a
voxel-level hippocampus segmentation network to a scan-level
clinical score regression task in the context of images acquired
from AD patients leads to improved predictions. These results
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Fig. 5. Network architecture diagram for the BU-Net [5]. BU-Net
provides the segmentation outputs and permits the estimation of the
uncertainties associated with the outputs. BU-Net was used for both
Task-1 and Task-2 in the MS lesion segmentation/detection pipeline
depicted here and as a Task-1 network for hippocampus segmentation
in the Alzheimer’s Disease clinical score prediction pipeline.

are encouraging and suggest that uncertainties can be propa-
gated to a downstream task of interest to improve performance
in cascaded medical image processing pipelines where the
upstream task is related to the downstream task of interest.4

The expectation is that the results are generalizable to other
clinical pipelines. Results can be further improved with better
calibrated uncertainties [39], [68]. Improvements on the per-
formance of downstream tasks based propagation of sample
free uncertainty estimations [69] or learned sample-based
models [70] should also provide benefits, with an added
decrease in inference time. Our experiments also showed that
by propagating Task-1 samples to the Task-2 network as a
proxy to the uncertainty associated with the Task-1 output,
we could achieve similar performance. This is important as
samples could better represent the Task-1 output distribution
when it is multi-modal, compared to a single statistic like sam-
ple variance. It should be noted that the performance improve-
ments resulting from uncertainty propagation are dependent
on the number of samples taken to estimate the uncertainties
(as we show in Appendix:A - Figure 9), as well as sample
generation method. As a result, it would be important to
tune these hyper-parameters for optimal performance in the
particular application of interest.

An end-to-end system for uncertainty propagation in a med-
ical image analysis pipeline requires access to ground-truth
labels at all inference stages for the same training data. This
data is generally not available in real clinical contexts (see,
for example, the ADNI clinical score prediction pipeline).
In general, the vast majority of medical image analysis tasks
are developed independently and without consideration of
downstream tasks of interest. Should it be possible, an end-
to-end system where relevant uncertainty measures for a task
are learned depending on the downstream task of interest may
be an exciting and essential research direction to explore.

Finally, future work will explore the impact of uncertainty
propagation on the uncertainties of the downstream task’s
outputs. One could expect better uncertainty quantification in
a downstream task of interest with uncertainty propagation.
It would also be interesting to propagate labeling uncertainties

4Propagating uncertainties from a skull stripping task to a hippocampus
segmentation task might not lead to performance improvement, as the two
tasks are not directly related.

Fig. 6. Network architecture diagram of RS-Net [2]. We use RS-Net for
the synthesis of the missing MRI sequence synthesis (Task-1) in the brain
tumour segmentation pipeline. Note that T1, T2, and T1ce are used as
inputs to the network when synthesizing FLAIR, while T1, T2, and FLAIR
are used as inputs when synthesizing T1ce.

Fig. 7. Network architecture diagram of the modified 3D-U-Net [47],
used for the multi-class brain tumour segmentation (Task-2) in the brain
tumour segmentation pipeline. The inputs to this network vary depending
on the experiment. For example, when assessing the effectiveness of
uncertainty propagation, we also pass the uncertainties associated with
the synthesized MR sequence as input to the network.

associated with different tasks [24], [25], if multiple annota-
tions for each patient case are available.

APPENDIX

A. Implementation Details

In section, we provide details about the network architec-
ture, implementation details and the training process for all
three pipelines explored in the paper: Multiple Sclerosis lesion
segmentation/detection (Sec:II-A), brain tumour segmentation
(Sec:II-B), and Alzheimer’s disease clinical score prediction
(Sec:II-C). Note that all our experiments were implemented
using PyTorch, and ran on a machine equipped with an
NVIDIA Titan Xp GPU with 12 GBs of memory.

1) MS T2 Lesion Segmentation Detection Pipeline: The
pipeline (Sec:II-A) consists of a cascade of two binary lesion
segmentation tasks. We chose an off-the-shelf BU-Net [5]
architecture5 for both Task-1 and Task-2 networks, which can
be seen in Figure 5. The only differences between the two
networks were their inputs. For the Task-1 network, the inputs
consisted of all the MR sequences. The Task-2 network takes
as input the MR sequences, the Task-1 network output, and
the uncertainties associated with the Task-1 network output
(in the case of the proposed framework). These additional
inputs marginally increase the total number of parameters for
the Task-2 network. For exact architecture details, readers can
refer to the BU-Net [5] paper.

Both the Task-1 and Task-2 networks were trained to
minimize a weighted binary cross-entropy loss function for

5We reimplemented the model architecture in PyTorch following the
code (link) provided by the authors.

Authorized licensed use limited to: University of Southern California. Downloaded on March 26,2022 at 21:44:14 UTC from IEEE Xplore.  Restrictions apply. 



370 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 2, FEBRUARY 2022

TABLE IV
COMPARING OVERALL MS T2 LESION DETECTION PERFORMANCE USING AREA UNDER CURVE (AUC) OF ROC-LIKE CURVES, ILLUSTRATING

TPR (TRUE POSITIVE RATE) VS. FDR (FALSE DETECTION RATE) ACROSS (A) LARGE LESIONS (51+ VOXELS), AND (B) MEDIUM LESIONS

(10-50 VOXELS) WITH SEVERAL INPUT COMBINATIONS. THE INCLUSION OF THE ASSOCIATED UNCERTAINTIES WITH OUTPUTS FROM TASK-1,
IN ADDITION TO TASK-1 OUTPUTS, AS INPUTS TO THE TASK-2 NETWORK RESULTS IN IMPROVED DETECTION PERFORMANCE. BOLD VALUES

INDICATE THE BEST PERFORMANCE FOR EACH METHOD, WHILE UNDERLINED VALUES INDICATE OVERALL BEST PERFORMANCE ACROSS

DIFFERENT METHODS

Fig. 8. Network architecture diagram of modified 3D-ResNet-34 [47] for
the Alzheimer’s Disease clinical regression pipeline for predicting both
ADAS-13 and MMSE scores. In our framework, input to this network
varies depending on the experiment. For example, when assessing the
effectiveness of uncertainty propagation, uncertainties associated with
the hippocampus segmentation is also provided as input to the network.

the lesion segmentation task. Here, class weights were taken
as an inverse of the frequency of both lesion/non-lesion voxels
within the brain mask. After every epoch, class weights
were decayed with a factor of 0.95, which results in equally
weighted binary cross-entropy after around 50 epochs. The
networks were trained using an Adam optimizer with an initial
learning rate of 0.0002 and a weight decay of 0.00001 for a
total of 250 epochs. The learning rate was decayed with a
factor of 0.995 after each epoch.

2) Brain Tumour Segmentation Pipeline: The pipeline
(Sec:II-B) consists of two different sequential inference tasks.
The first network (Task-1) is designed for a 3-to-1 synthesis
of a missing MRI sequence in the presence of a brain tumour.
RS-Net6 [2] was chosen for this task and can be seen in Fig. 6.
RS-Net is a multi-task network designed to jointly perform the
synthesis of the missing image while performing the segmen-
tation of the tumour, with the premise that this would improve
the synthesis in the tumor area. RS-Net was trained for a total
of 400 epochs using an Adam optimizer with a learning rate of
0.0002 and a weight decay of 0.00001. The learning rate was
decayed with a factor of 0.995 after each epoch. The network
was trained to minimize a combined weighted mean squared
error and weighted cross-entropy loss [2].

6Readers are requested to refer RS-Net paper for the exact network
architecture details.

A modified 3D U-Net [47], depicted in Fig. 7, was devel-
oped for multi-class brain tumour segmentation (Task-2 Net-
work). Similar to the original 3D U-Net, the network consists
of encoder and decoder paths that embed convolution, pool-
ing, and deconvolution operations. High-resolution features
from the encoder path were combined with the up-sampled
output of the decoder to preserve high-resolution features.
Each convolution was followed by rectified linear unit activa-
tion (ReLU). Instead of using the batch-normalization layer
used in the original U-Net, we used instance normaliza-
tion [48]. Instance normalization typically improves perfor-
mance for small batch sizes. The network was trained using
Adam optimizer with a learning rate of 0.0002 and weight
decay of 0.00001 for a total of 240 epochs to minimize
weighted cross-entropy loss. Here, the weights are defined
such that the weight increases whenever there are fewer
voxels in a particular class. After every epoch, class weights
were decayed with a factor of 0.95, which results in equally
weighted binary cross-entropy after around 50 epochs. Inputs
to the network varies depending on the experiment. For exam-
ple, in the proposed framework 3D U-Net takes as input the
real MR sequences, the RS-Net synthesized MR sequence, and
the uncertainties associated with the synthesized MR sequence.
These additional inputs result in a marginal increase in the total
number of parameters.

3) Alzheimer’s Disease Clinical Score Prediction Pipeline:
The pipeline described in Sec:II-C consists of two cascaded
inference tasks. The BU-Net [5] was used for the binary
hippocampus segmentation task (Fig. 5). The T1 weighted
MRI was provided as an input to the BU-Net. The network
was trained to reduce the weighted binary cross-entropy loss
using an Adam optimizer with a learning rate of 0.0002 and a
weight decay of 0.00001 for a total of 250 epochs. Here, class
weights were taken as an inverse of the frequency of both
hippocampus/background voxels within the brain mask. The
learning rate was decayed with a factor of 0.995 after each
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Fig. 9. Comparing overall MS T2 lesion detection performance using Area Under Curve (AUC) of ROC-like curves, illustrating TPR (true positive
rate) vs. FDR (false detection rate) across all lesions, and small lesions (3-10 voxels). Here we evaluate the impact of number of samples used to
estimate uncertainty (variance) measure for MC-Dropout uncertainty estimation method. From the plot we can see that for all lesion detection and
small lesion detection, highest performance is achieved when 20 samples are used to estimate uncertainty. With increase in number of samples,
performance saturates.

epoch. After every epoch, the class weights were decayed
with a factor of 0.95, which results in equally weighted
binary cross-entropy after around 50 epochs.

A 3D ResNet34 [59] architecture was designed for the task
of clinical score prediction (Task-2).7 The network (Fig. 8) was
modified to be a multi-task network, such that it predicts both
ADAS-13 and MMSE scores simultaneously. The network was
trained to reduce the combined mean squared error losses
for both ADAS-13 and MMSE. An Adam optimizer with a
learning rate of 0.0002 and a weight decay of 0.00001 was
used to train the network for a total of 200 epochs. The
learning rate was decayed with a factor of 0.995 after each
epoch.
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