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Abstract

Computational models predicting symptomatic progression at the individual level can be

highly beneficial for early intervention and treatment planning for Alzheimer’s disease (AD).

Individual prognosis is complicated by many factors including the definition of the prediction

objective itself. In this work, we present a computational framework comprising machine-

learning techniques for 1) modeling symptom trajectories and 2) prediction of symptom tra-

jectories using multimodal and longitudinal data. We perform primary analyses on three

cohorts from Alzheimer’s Disease Neuroimaging Initiative (ADNI), and a replication analysis

using subjects from Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing

(AIBL). We model the prototypical symptom trajectory classes using clinical assessment

scores from mini-mental state exam (MMSE) and Alzheimer’s Disease Assessment Scale

(ADAS-13) at nine timepoints spanned over six years based on a hierarchical clustering

approach. Subsequently we predict these trajectory classes for a given subject using mag-

netic resonance (MR) imaging, genetic, and clinical variables from two timepoints (baseline

+ follow-up). For prediction, we present a longitudinal Siamese neural-network (LSN) with

novel architectural modules for combining multimodal data from two timepoints. The trajec-

tory modeling yields two (stable and decline) and three (stable, slow-decline, fast-decline)

trajectory classes for MMSE and ADAS-13 assessments, respectively. For the predictive

tasks, LSN offers highly accurate performance with 0.900 accuracy and 0.968 AUC for

binary MMSE task and 0.760 accuracy for 3-way ADAS-13 task on ADNI datasets, as well

as, 0.724 accuracy and 0.883 AUC for binary MMSE task on replication AIBL dataset.

Author summary

With an aging global population, the prevalence of Alzheimer’s disease (AD) is rapidly

increasing, creating a heavy burden on public healthcare systems. It is, therefore, critical
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to identify those most likely to decline towards AD in an effort to implement preventative

treatments and interventions. However, predictions are complicated by the substantial

heterogeneity present in the clinical presentation in the prodromal stages of AD. Longitu-

dinal data comprising cognitive assessments, magnetic resonance images, along with

genetic and demographic information can help model and predict the symptom progres-

sion patterns at the single subject level. Additionally, recent advances in machine-learning

techniques provide the computational framework for extracting combinatorial longitudi-

nal and multimodal feature sets. To this end, we have used multiple AD datasets consist-

ing of 1000 subjects with longitudinal visits spanned up to six years for 1) modeling stable

versus declining clinical symptom trajectories and 2) predicting these trajectories using

data from both baseline and a follow-up visits within one year. From a computational

standpoint, we validated that a machine-learning model is capable of combining longitu-

dinal, multimodal data towards accurate predictions. Our validations demonstrate that

the presented model can be used for early detection of individuals at risk for clinical

decline, and therefore holds crucial clinical utility for AD, as well as, other neurodegenera-

tive disease interventions.

Introduction

Clinical decline towards Alzheimer’s disease (AD) and its preclinical stages (significant mem-

ory concern [SMC] and mild cognitive impairment [MCI]) increases the burden on healthcare

and support systems [1]. Identification of the declining individuals a priori would provide a

critical window for timely intervention and treatment planning. Individual level clinical fore-

casting is complicated by many factors that includes the definition of the prediction objective

itself. Several previous efforts have focused on diagnostic conversion, within a fixed time-win-

dow, as a prediction end point (e.g. the conversion of MCI to frank AD onset) [2–11]. Other

studies, which model clinical states as a continuum instead of discrete categories, investigate

prediction problems pertaining to symptom severity. These studies define their objective as

predicting future clinical scores from assessments such as mini-mental state exam (MMSE)

and Alzheimer’s Disease Assessment Scale-cognitive (ADAS-cog) [6,12,13]. All of these tasks

have proved to be challenging due to the heterogeneity in clinical presentation comprising

highly variable and nonlinear longitudinal symptom progression exhibited throughout the

continuum of AD prodromes and the onset [14–19].

In the pursuit of predictive biomarkers identification, several studies have reported varying

neuroanatomical patterns associated with functional and cognitive decline in AD and its pro-

dromes [7,16,20][14–19][21–25]. The lack of localized, canonical atrophy signatures could be

attributed to cognitive reserve, genetics, or environmental factors [21,26] [17,27–30]. As a

result, local anatomical features, such as hippocampal volume, may be insufficient for predict-

ing future clinical decline at a single subject-level [16,19,31][14–19]. Thus, models incorporat-

ing an ensemble of imaging features, clinical and genotypic information have been proposed

[6,8,9]. However, in such multimodal models, the performance gains offered by the imaging

data are unclear. Particularly, insight into prediction improvement from magnetic resonance

(MR) images is crucial, as it may aid decision making regarding the necessity of the MR acqui-

sition (a relatively expensive, time-consuming, and possibly stressful requirement) for a given

subject in the aims of improving prognosis. Furthermore, there is increasing interest in incor-

porating data from multiple timepoints (i.e. follow-up patient visits), in an effort to improve
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long-term prognosis. However, this is a challenging task requiring longitudinally consistent

feature selection and mitigation of missing timepoints [6,10].

The overarching goal of this work is to provide a longitudinal analysis framework for pre-

dicting symptom progression in AD that addresses the aforementioned challenges pertaining

to task definition (model output) as well as ensemble feature representation (model input).

The contributions of this work are two-fold. First, we present a novel data-driven approach for

modeling long-term symptom trajectories derived solely from clustering of longitudinal clini-

cal assessments. We show that the resultant trajectory classes represent relatively stable and

declining trans-diagnostic subgroups of the subject population. Second, we present a novel

machine-learning (ML) model called longitudinal Siamese network (LSN) for prediction of

these symptom trajectories based on multimodal and longitudinal data. Specifically, we use

cortical thickness as our MR measure due to its higher robustness against typical confounds,

such as head size, total brain volume, etc., compared to local volumetric measures [32] and its

previous use in biomarker development and clinical applications in AD [16,21,33,34]. The

choice of excluding other potential biomarkers related to AD-progression, such as PET or CSF

data in the analysis was based on their invasive acquisition and lack of availability in practice

and in the databases leveraged in this work.

We evaluate the performance of trajectory modeling and prediction tasks on Alzheimer’s

disease Neuroimaging Initiative (ADNI) datasets (ADNI1, ADNIGO, ADNI2) [http://adni.

loni.usc.edu/]. Moreover, we also validate the predictive performance on a completely inde-

pendent replication cohort from Australian Imaging, Biomarker & Lifestyle Flagship Study of

Ageing (AIBL) [http://adni.loni.usc.edu/study-design/collaborative-studies/aibl/]. We com-

pare LSN with other ML models including logistic regression (LR), support vector machine

(SVM), random forest (RF), and classical artificial neural network (ANN). We examine the

added value of MR information in combination with clinical and demographic data, as well as,

the benefit of the follow-up timepoint information towards the prediction task to assist priori-

tization of MR data acquisition and periodic patient monitoring.

Materials and methods

Datasets

ADNI1, ADNIGO, ADNI2, and AIBL datasets were downloaded from Alzheimer’s disease

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). The Australian Imaging,

Biomarker & Lifestyle (AIBL) Flagship Study of Ageing is a collaborative study that shares

many common goals with ADNI (http://adni.loni.usc.edu/study-design/collaborative-studies/

aibl/). Only ADNI-compliant subjects with at least three timepoints from AIBL were included

in this study. For all ADNI cohorts, subjects with clinical assessments from at least three visits,

in timespan longer than one year, were included in the analysis. Subjects were further excluded

based on manual quality checks after MR preprocessing pipelines (described below). Age,

Apolipoprotein E4 (APOE4) status, clinical scores from mini-mental state exam (MMSE) and

Alzheimer’s Disease Assessment Scale (ADAS-13), and T1-weighted MR images were used in

the analysis. Subject demographics are shown in Table 1, and the complete list of included sub-

jects is provided in S1 File.

The ADNI sample comprising pooled ADNI1, ADNIGO, and ADNI2 subjects was used to

perform primary analysis comprising trajectory modeling and prediction tasks, whereas AIBL

subjects were used as the independent replication cohort for the prediction task. There are a

few important differences in the ADNI and AIBL cohorts: ADNI has clinical measures from

both MMSE and ADAS-13 scales with visits separate by 12 months or less spanning 72
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months; while AIBL collected MMSE data with visits separated by 18 months or more span-

ning 54 months.

Preprocessing

T1-weighted MR images were used in this study. First, the MR images were preprocessed

using the bpipe pipeline (https://github.com/CobraLab/minc-bpipe-library/) comprising

N4-correction [35], neck-cropping to improve linear registration, and BEaST brain extraction

[36]. Then, the preprocessed images were input into the CIVET pipeline [37–40] to estimate

cortical surfaces measures at 40,962 vertices per hemisphere. Lastly, cortical vertices were

grouped into 78 region of interests (ROIs) based on the Automated Anatomical Labeling

(AAL) atlas [41] that were used to estimate mean cortical thickness across each ROI.

Analysis workflow

The presented longitudinal framework comprises two tasks, 1) trajectory modeling and 2) tra-

jectory prediction. The overall process is outlined in Fig 1.

Trajectory modeling

We aim to characterize the symptomatic progression of subjects based on clinical scores from

multiple timepoints using a data driven approach. In this pursuit, we used 69 late-MCI subjects

from ADNI1 cohort (see Table 1) with all 6 years (total 9 timepoints) of available clinical data

as input to hierarchical clustering (see Fig 2). The goal here is to group subjects with similar

clinical progression in order to build a template of differential trajectories. We note that the

primary goal of this exercise is not to discover unknown subtypes of AD progression, but to

create trajectory prototypes against which all participants can be compared and assigned a tra-

jectory (prognostic) label. These labels provide a goal for the prediction task, which in tradi-

tional settings is defined by diagnosis or change in diagnosis, or even symptom profile at a

specific timepoint. We used Euclidean distance between longitudinal clinical score vectors as a

similarity metric and Ward’s method as linkage criterion for clustering. Note that the number

of clusters is a design choice in this approach, which depends on specificity of the trajectory

progression that we desire. Higher number of clusters allows modeling of trajectory progres-

sion with higher specificity (e.g. slow vs. fast decline). Clinically, it would be useful have more

specific prognosis to prioritize and personalize intervention and treatment options. However,

it also increases the difficulty of early prediction. In this work, the choice of 2 vs. 3 clusters is

made based on the dynamic score range of the clinical assessment. Each of the resultant clus-

ters represents stable or declining symptom trajectories. We modeled MMSE and ADAS-13

trajectories separately. We note that this does not assume independence between the two

scales. This is primarily due to high prevalence of these scales in research and clinic, as well as,

to demonstrate the feasibility of clustering approach that allows modeling of>2 trajectories

with a more symptom specific clinical assessment such as ADAS-13. After clustering, we

Table 1. Demographics of ADNI and AIBL datasets. TM: trajectory modeling cohort, TP: trajectory prediction cohort. R: replication cohort.

Dataset N Age (years) APOE4 (n_alleles) Sex Dx (at baseline)

ADNI1 (TM) 69 74.5 0: 30, 1: 32, 2: 7 M: 51, F: 18 LMCI: 69

ADNI1 (TP) 513 75.3 0: 275, 1: 180, 2: 58 M: 289, F: 224 CN: 177, LMCI: 226, AD: 110

ADNI2 (TP) 515 72.4 0: 277, 1: 187, 2: 51 M: 281, F: 234 CN: 150, SMC: 26, EMCI: 142, LMCI: 130, AD: 67

ADNIGO (TP) 88 71.1 0: 54, 1: 26, 2: 8 M: 47, F: 41 EMCI: 88

AIBL (R) 117 71.7 0: 65, 1: 46, 2: 6 M: 61, F: 56 CN: 99, MCI: 18

https://doi.org/10.1371/journal.pcbi.1006376.t001
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Fig 1. Analysis workflow of the longitudinal framework. The workflow comprises two tasks, 1) trajectory modeling (TM), and 2)

trajectory prediction (TP). Data from 69 ADNI-1 MCI subjects with 9 visits within 6 years are used for TM task using hierarchical

clustering. 1116 ADNI subjects pooled from ADNI1, ADNIGO, and ADNI2 cohorts are used towards TP task. Data (CA: clinical

attributes, CT: cortical thickness) from baseline and a follow-up timepoint is used towards trajectory prediction. The trained models

from k-fold cross validation of ADNI subjects are then tested on 117 AIBL subjects as part of the replication analysis.

https://doi.org/10.1371/journal.pcbi.1006376.g001

Fig 2. Trajectory modeling. A) 69 MCI subjects (rows) with six years of clinical scores (columns) were used as input

to hierarchical clustering. The color indicates the clinical score at a given timepoint. Euclidean distance between score

vectors was used as a similarity metric between two subjects. Ward’s method was used as a linkage criterion. B)

Clinical score distribution at each timepoint of different trajectories (stable vs. decliners) derived from hierarchical

clustering. Mean scores at each timepoints are used to build a template for each trajectory class.

https://doi.org/10.1371/journal.pcbi.1006376.g002
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simply average the clinical scores of subjects from each cluster at each individual timepoint to

determine trajectory-templates for each of the classes (i.e. stable, decline).

Subsequently these trajectory-templates are used to assign trajectory labels to the rest of the

subjects (not used in clustering) based on Euclidean proximity computed from all available

timepoints of a given subject (see Figure B in S5 File). There are two advantages to this

approach. First it allows us to group subjects without having to enforce strict cut-offs for defin-

ing boundaries, such as MCI to AD conversion within a certain number of months [6,8,10,42].

Second, it offers a relatively simple way of dealing with missing timepoints, as the trajectory-

template can be sampled based on clinical data availability of a given subject. In contrast, pre-

diction tasks that are defined based on specific time window have to exclude subjects with

missing data and ignore data from additional timepoints beyond the set cut-off (e.g. late AD

converters). We assign trajectory labels to all remaining ADNI and AIBL subjects based on

their proximity to each of the trajectory-templates computed from at least 3 timepoints in a

timespan longer than one year. The demographics stratified by trajectory labels are shown in

Tables 2 and 3. Whereas Table 4 shows the subject membership overlap between MMSE and

ADAS-13 based trajectory assignment. These trajectory labels are then used as task outcome

(ground truth) in the predictive analysis described next.

Trajectory prediction

The goal of this predictive analysis is to identify the prognostic trajectories of individual sub-

jects as early as possible. In the simplest (and perhaps the most ideal) case, the prediction mod-

els use information available from a single timepoint, also referred as the baseline timepoint.

However, input from a single timepoint lacks information regarding short-term changes (or

rate of change) in neuroanatomy and clinical status, which would potentially be useful for

increasing specificity of future predictions of decline. In order to leverage this information, we

Table 2. Cluster demographics of ADNI trajectory prediction (TP) cohort based on MMSE.

MMSE N Age (years) APOE4 (n_alleles) Sex Dx (at baseline) Geriatric Depression Scale (at baseline)

T1 (stable) 674 72.8 0: 443, 1: 195, 2: 36 M: 371, F: 303 CN: 319, SMC: 23, EMCI: 187, LMCI: 144, AD: 1 Mean: 1.21, Stdev: 1.37

T2 (decline) 442 74.8 0: 163, 1: 198, 2: 81 M: 246, F: 196 CN: 8, SMC: 3, EMCI: 43, LMCI: 212, AD: 176 Mean: 1.63, Stdev: 1.39

https://doi.org/10.1371/journal.pcbi.1006376.t002

Table 3. Cluster demographics of ADNI trajectory prediction (TP) cohort based on ADAS-13.

ADAS-13 N Age (years) APOE4 (n_alleles) Sex Dx (at baseline) Geriatric Depression Scale (at baseline)

T1 (stable) 585 72.3 0: 399, 1: 163, 2: 23 M: 308, F:

277

CN: 307, SMC: 25, EMCI: 167, LMCI: 83, AD:

3

Mean: 1.18, Stdev: 1.38

T2 (slow

decline)

184 74.9 0: 98, 1: 61, 2: 25 M: 122, F: 62 CN: 19, SMC: 1, EMCI: 51, LMCI: 105, AD: 8 Mean: 1.50, Stdev: 1.38

T3 (fast decline) 346 74.8 0: 108, 1: 169, 2: 69 M: 186, F:

160

CN: 1, SMC: 0, EMCI: 12, LMCI: 168, AD: 165 Mean:1.66, Stdev: 1.38

https://doi.org/10.1371/journal.pcbi.1006376.t003

Table 4. Trajectory membership comparison between MMSE and ADAS-13 scales. Note that MMSE only has sin-

gle decline trajectory.

Trajectory comparison ADAS-13

Stable Slow-decline Fast-decline

MMSE Stable 558 107 9

Decline 27 77 337

https://doi.org/10.1371/journal.pcbi.1006376.t004
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propose a longitudinal Siamese network (LSN) model that can effectively combine data from

two timepoints and improve the predictive performance.

We build the LSN model with two design objectives. First, we want to combine the MR

information from two timepoints that encodes the structural changes predictive of different

clinical trajectories. Second, we want to incorporate genetic (APOE4 status) and clinical infor-

mation with the structural MR information in an effective manner. We achieve these objec-

tives with an augmented artificial neural network architecture (see Fig 3) comprising a

Siamese network and a multiplicative module, that combines MR, genetic and clinical data

systematically.

The first stage of LSN is an artificial neural network model based on a Siamese architecture

with twin weight-sharing branches. Typically, Siamese networks are employed for tasks, such

as signature or face verification, that require learning a “similarity” measure between two

comparable inputs [43,44]. Here, we utilize this architecture towards encoding a “difference

embedding” between two MR images in order to represent the amount of atrophy over time

that is predictive of clinical trajectory. In the second stage, this encoding is modulated by the

APOE4 status with a multiplicative operation. The choice of multiplicative operation is based

on an underlying assumption of non-additive interaction between MR and genetic modalities.

Subsequently, the modulated distance embedding is concatenated with the baseline and

Fig 3. Longitudinal Siamese network (LSN) model. LSN consists of three stages. The first stage is a Siamese artificial

neural network with twin weight-sharing branches. Weight-sharing implies identical weight configuration at each

layer across two branches. These branches process an MR input (2 x 78 CT values) from the same subject at two

timepoints and produce a transformed output that is representative of change (atrophy) over time. This change pattern

is referred as “distance embedding”. In the second stage, this embedding is modulated by the APOE4 status with a

multiplicative operation. Lastly, in the third stage, the modulated distance embedding is concatenated with the two

clinical scores and age, and used towards final trajectory prediction. The weights (model parameters) of all operations

are learned jointly in a single unified model framework.

https://doi.org/10.1371/journal.pcbi.1006376.g003
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follow-up clinical scores and age, which is used towards final trajectory prediction. The

weights (model parameters) of all operations are learned jointly in a single unified model

framework. The complete design specification of the model are outlined in Table 5. The com-

plete input data consists of 2 x 78 CT values, 2 x clinical score, age, and APOE4 status. Two dif-

ferent LSN models are trained separately to perform binary classification task for MMSE based

trajectories and three-way classification task for ADAS-13 based trajectories. All models are

trained using the TensorFlow library (version: 0.12.1, https://www.tensorflow.org/), and code

is available at (https://github.com/CobraLab/LSN).

Selection of second-timepoint as input

LSN model is agnostic to the time difference between two MR scans. Therefore, we use the lat-

est available datapoint for a given subject within 1 year from the baseline visit. This allows us

to include subjects with missing data at the 12-month timepoint, but have available MR and

clinical data at the 6-month timepoint (N = 43). We note that this is an “input” timepoint

selection criterion, as the ground truth trajectory labels (output) are assigned based on all

available timepoints (3 or more) for each subject.

Performance gains from MR modality and the second timepoint

In order to gain insight into identifying subjects that would benefit from added MR and sec-

ond timepoint information, we divide the subjects into three groups based on a potential clini-

cal workflow as shown in Fig 4.

• Baseline edge-cases (BE): Subjects with very high or very low cognitive performance at

baseline

• Follow-up edge-cases (FE): Subjects with non-extreme cognitive performance at baseline but

marked change in performance at follow-up

• Cognitively consistent (CC): Subjects with non-extreme cognitive performance at baseline

and marginal change in performance at follow-up

The cutoff thresholds for the quantitative stratification, and the corresponding subject-

group memberships are shown in Fig 4. We note that these threshold values are not a fixed

Table 5. Longitudinal Siamese network (LSN) architecture.

Network module Specifications

Siamese net • Input: 2 x 78 CT values per subject

• Number of hidden layers: 4 each branch (fixed for all folds)

• Number of nodes per layer: 25 to 50 (grid search)

• Output: distance embedding

• Number of nodes: 10 to 20 (grid search)

Multiplicative modulation • Input: distance embedding, APOE4 status (0, 1, 2)

• Number of hidden layers: 1 (fixed for all folds)

• Number of nodes: 1 (fixed for all folds)

• Output: modulated distance embedding

Concatenation and prediction • Input: modulated distance embedding, clinical scores, age

• Number of hidden layers: 1 (fixed for all folds)

• Number of nodes: 10 to 20 (grid search)

• Output: trajectory class

https://doi.org/10.1371/journal.pcbi.1006376.t005
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choice, and are selected here only for the purpose of demonstrating a clinical use case. Based

on this grouping, we can expect that the clinical scores of CC subjects provide very little infor-

mation regarding potential trajectories and thus we need to rely on MR information for pre-

diction, making it the target group for multimodal, longitudinal prediction.

Performance evaluation

We computed the performance of 2x3 input choices based on two timepoints: 1) baseline, 2)

baseline+follow-up and three feature sets: 1) clinical attributes (CA) comprising clinical score,

age and apoe4 status, 2) cortical thickness (CT) data comprising 78 ROIs, and 3) combination

of CA and CT features. This allows us to evaluate the benefits of added MR-derived informa-

tion and the second timepoint. Evaluating the added benefit of the MR modality is critical due

to the implicit dependency between clinical scores and outcome variables commonly encoun-

tered during prognostic predictions. Accuracy, area under the curve (AUC), confusion matrix

(CM), and receiver operating characteristic (ROC) were used as evaluation metrics.

All models were evaluated using pooled ADNI1, ADNI2, and ADNIGO subjects in a

10-fold nested cross-validation paradigm (see S6 File). By pooling subjects from ADNI1,

ADNIGO, and ADNI2 we show that the models trained in this work are not sensitive to differ-

ences in acquisition and quality of the MR data (e.g. 1.5T vs. 3T). Hyper-parameter tuning was

performed using nested inner folds. The ranges for hyperparameter grid search are provided

in S2 File. The train and test subsets were stratified by cohort membership and the trajectory

class distribution. The stratification minimizes the risk of overfitting models towards particu-

lar cohort and reduces cohort specific biases during evaluation of results.

We compare the performance of LSN with four reference models: logistic regression with

Lasso regularizer (LR), support vector machine (SVM), random forest (RF), and default

Fig 4. Potential clinical workflow for subject specific decision-making. The goal of this flowchart is to identify

subjects benefitting from MR and additional timepoint information. Qualitatively, baseline edge-cases (BE) group

includes subjects with very high or very low cognitive performance at baseline. Follow-up edge-cases (FE) group

includes subjects with non-extreme cognitive performance at baseline but substantial change in performance at follow-

up. And cognitively consistent (CC) group includes subjects with non-extreme cognitive performance at baseline and

marginal change in performance at follow-up. The table shows the threshold values used for MMSE and ADAS-13

scales and corresponding trajectory class distribution within each group.

https://doi.org/10.1371/journal.pcbi.1006376.g004
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artificial neural network (ANN). The comparison of LSN against other models allows us

to quantify the performance gains offered by LSN with data from two timepoints. We

hypothesize that LSN would provide better predictive performance over existing prediction

modeling approaches comprising single as well as two timepoints. For reference models,

all input features under consideration were concatenated into a single array. For LR and

SVM models, all features in a given training set were standardized by removing the mean

and scaling to unit variance. The test set was standardized using the mean and standard

deviation computed from the training set. The statistical comparison of LSN against other

models was performed using Mann-Whitney-U test. All trained models were later directly

used to test predictive performance with AIBL subjects. The AIBL performance statistics

were averaged over 10 instances of trained models (one from each fold) for each input

combination.

Results

Trajectory modeling

MMSE and ADAS-13 based clustering yielded two and three clusters, respectively. The bigger

score range of ADAS-13 scale (see Figure A in S3 File) allows modeling of symptom progres-

sion with higher specificity providing slow and fast decline trajectories. The cluster assignment

of the entire ADNI dataset based on the trajectory-templates yielded 674 stable and 442 decline

subjects for MMSE scale, and 585 stable, 184 slow decline, and 346 fast decline subjects for

ADAS-13 scale. The complete cluster demographics are shown in Tables 2 and 3. Notably, sta-

ble clusters comprise higher percentage subjects with zero copies of APOE4 allele, and con-

versely declining clusters comprise higher percentage of subjects with two copies of APOE4

allele. Subjects with single APOE4 copy are evenly distributed across stable and declining clus-

ters. Table 4 shows the trajectory membership overlap between MMSE and ADAS-13. The

results indicate that large number of subjects belong to similar trajectories for MMSE and

ADAS-13. In the non-overlapping cases, especially the stable MMSE subjects predominantly

belong to slow-decline ADAS-13 trajectory.

Trajectory prediction

Below we provide the MMSE and ADAS-13 based trajectories prediction results for

single (baseline) and two timepoint (baseline + follow-up) models for 1) CA 2) CT, and 3)

CA+CT input. Results are summarized in Figs 5–9 and Tables A-G in S4 File. Note that

ADAS-13 based trajectory results are from a 3-class prediction task. We first report the per-

formance LSN model, which is only applicable to the two timepoint input comprising com-

bined CA and CT features, followed by performance of single and two timepoint reference

models.

MMSE trajectories (binary classification)

The combined CA and CT input feature set with two timepoints provides the most accurate

prediction of trajectory classes. LSN outperforms all four reference models with 0.94 accuracy

and 0.99 AUC (see Figs 5 and 6, Table C in S4 File) with all subjects, and 0.900 accuracy and

0.968 AUC for “cognitively consistent” group.

Single (baseline) timepoint models

With only CA input, all four reference models (LR, SVM, RF, ANN) provide highly similar

performance with top accuracy of 0.84 and AUC of 0.91 (see Figs 5 and 6, Tables A-C in
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Fig 5. MMSE prediction AUC and accuracy performance for ADNI dataset. Top panel: Area under the ROC curve

(AUC), Bottom panel: Accuracy. Results are stratified by groups defined by the clinical workflow. Abbreviations are as

follows. BL: baseline visit, CA: clinical attributes, CT: cortical thickness. BE: baseline edge-cases, FE: follow-up edge-

cases, CC: cognitively consistent. The statistical comparison of LSN against other models was performed using Mann-

Whitney-U test. Note that only BL+followup, CA+CT input is relevant for this comparison. For AUC comparison,

LSN offered significantly better performance over all four models for ‘All’, ‘BE’, and ‘CC’ subsets. LSN also offered

statistically significant results over RF and ANN models for ‘FE’ subset. For accuracy comparison, LSN offered

significantly better performance over SVM, RF, and ANN models for ‘All’, ‘FE’, and ‘CC’ subsets. No statistically

significant results were obtained for ‘BE’ subset.

https://doi.org/10.1371/journal.pcbi.1006376.g005
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S4 File). With CT input, the performance diminishes for all models with top accuracy of 0.77

and AUC of 0.83. With combined CA+CT input, all four models see a boost with top accuracy

of 0.86 and AUC of 0.93.

Two timepoints (baseline + second-timepoint)

With only CA input, all four models (LR, SVM, RF, ANN) provide highly similar performance

with top accuracy of 0.91 and AUC of 0.97 (see Figs 5 and 6, Tables A-C in S4 File). With CT

input, the performance diminishes for all models with top accuracy of 0.77 and AUC of 0.83.

With combined CA+CT input, the performance stays similar to CA input for all four models

with top accuracy of 0.91 and AUC of 0.96.

Fig 6. MMSE prediction ROC curves for ADNI dataset. Receiver operating characteristic curves for CA+CT input. Results are

stratified by groups defined by the clinical workflow. Abbreviations are as follows. BL: baseline visit, CA: clinical attributes, CT:

cortical thickness. BE: baseline edge-cases, FE: follow-up edge-cases, CC: cognitively consistent.

https://doi.org/10.1371/journal.pcbi.1006376.g006
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Clinical group trends

The groupwise results (see Figs 5 and 6, Tables A-C in S4 File) show that the trajectories of

“baseline edge-cases (BE)” can be predicted with high accuracy by their baseline clinical attri-

butes. Consequently, inclusion of CT and a second timepoint features offers minimal gains to

predictive accuracy. Nevertheless, the two-timepoint LSN model with CA and CT inputs does

offer the best performance with 0.95 accuracy and 0.992 AUC. Interestingly, trajectory predic-

tion of “follow-up edgecase (FE)” yields poor performance with baseline CA features. Inclu-

sion of baseline CT features improves performance for the FE group. Higher predictive gains

are seen after inclusion of second timepoint information, with LSN model offering the best

performance with 0.942 accuracy and 0.987 AUC. Lastly, trajectory prediction of “cognitively

consistent (CC)” subjects, shows in between performance compared to BE and FE subjects

with baseline data. However, inclusion of second timepoint does not improve performance

substantially, causing poorer prediction of CC subjects compared to FE and BE with two-time-

points, with LSN still offering the best performance.

ADAS-13 trajectories (3-way classification)

Similar to MMSE task, the combined CA and CT feature set with two timepoints provides the

most accurate prediction of trajectory classes. LSN outperforms all four reference models with

0.91 accuracy (see Fig 7, Table F in S4 File) with all subjects, and 0.76 accuracy for “cognitively

consistent” group.

Fig 7. ADAS-13 prediction accuracy performance for ADNI dataset. Results are stratified by groups defined by the clinical

workflow. Abbreviations are as follows. BL: baseline visit, CA: clinical attributes, CT: cortical thickness. BE: baseline edge-cases, FE:

follow-up edge-cases, CC: cognitively consistent. The statistical comparison of LSN against other models was performed using

Mann-Whitney-U test. Note that only BL+followup, CA+CT input is relevant for this comparison. For accuracy comparison, LSN

offered significantly better performance over LR, SVM, RF, and ANN models for ‘All’, ‘FE’, ‘BE’, and ‘CC’ subsets.

https://doi.org/10.1371/journal.pcbi.1006376.g007
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Single (baseline) timepoint (all subjects)

With only CA input, LR provides the top accuracy of 0.81. The confusion matrix (CM) shows

that all four models perform relatively better at distinguishing subjects in stable and fast-

declining trajectories, compared to identifying slow-declining trajectory from the other two

(see Fig 7, Tables D-F in S4 File). The ANN model does not offer consistent performance for

slow-declining trajectory prediction as it fails to predict that class in at least one fold of cross

validation. With CT input only, the performance diminishes for all models with top accuracy

of 0.68 with LR model. The issue regarding the slow-declining trajectory prediction is

Fig 8. MMSE prediction AUC and accuracy performance for AIBL replication cohort. Top pane: Area under the ROC curve

(AUC), Bottom pane: Accuracy. Abbreviations are as follows. BL: baseline visit, CA: clinical attributes, CT: cortical thickness.

https://doi.org/10.1371/journal.pcbi.1006376.g008
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persistent with CT features as both LR and RF models fail to predict that class in at least one

fold of cross validation. With combined CA+CT input, the performance remains similar to

CA input for all four models with top accuracy of 0.81.

Two timepoints (baseline + second-timepoint) (all subjects)

With only CA input, LR and SVM provide similar performance with accuracy of 0.88. Similar

to single timepoint models, the confusion matrix (CM) shows that all four models perform rel-

atively better at distinguishing subjects in stable and fast-declining trajectories, compared to

identifying slow-declining trajectory from the other two (see Fig 7, Tables D-F in S4 File).

With CT input only, the performance diminishes for all models with top accuracy of 0.67 with

LR model. Both LR and RF models fail to predict slow-declining trajectory with CT features in

at least one-fold of cross validation. With combined CA+CT input, the performance dimin-

ishes compared to CA input for all four models with top accuracy of 0.84.

Fig 9. MMSE prediction ROC curves for AIBL replication cohort. Receiver operating characteristic curves for CA+CT input.

Abbreviations are as follows. BL: baseline visit, CA: clinical attributes, CT: cortical thickness.

https://doi.org/10.1371/journal.pcbi.1006376.g009
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Clinical group trends

The groupwise results (see Fig 7, Tables D-F in S4 File) show that the trajectories of “baseline

edge-cases (BE)” can be predicted with high accuracy by their baseline clinical attributes. Con-

sequently, inclusion of CT and the second timepoint features offers minimal gains to predic-

tive accuracy. The confusion matrix shows that only stable and fast declining trajectories can

be predicted due to extreme scores of BE subjects. The two-timepoint LSN model with CA and

CT features offers the best performance with 0.98 accuracy. Trajectory prediction of “follow-

up edgecase (FE)” yields poor performance with baseline CA features. Inclusion of baseline

CT features only incrementally improves performance. Substantial predictive gains are seen

after inclusion of second timepoint information, with LSN model offering the best perfor-

mance with 0.86 accuracy. The confusion matrix shows predictability of all three classes.

Lastly, trajectory prediction of “cognitively consistent (CC)” subjects shows in between perfor-

mance with baseline data compared to BE and FE. However, inclusion of a second timepoint

does not improve performance substantially, causing poorer prediction of CC subjects com-

pared to FE and BE with two-timepoints. Nevertheless, LSN still offers the best performance

compared to the reference models.

AIBL results

The use of AIBL as a replication cohort has a few caveats due to differences in the study design

and data collection. Notably, AIBL has an 18-month interval between timepoints with at most

4 timepoints per subject and does not have ADAS-13 assessments available. Therefore, the

results are provided only with MMSE assessments. The trajectory membership assignment

based on ADNI templates, yielded 99 stable and 18 declining subjects in the AIBL cohort. For

MMSE based trajectory classification task, LSN offers 0.724 accuracy and 0.883 AUC with

combined CA and CT feature set from two timepoints.

Single (baseline) timepoint (all subjects)

With only CA input, LR, SVM, RF provide similar performance with SVM offering the best

results with 0.85 accuracy and 0.88 AUC. With only CT input, performance of all models

degrades substantially with maximum of 0.72 accuracy and 0.74 AUC. With combined

CA+CT input, performance of reference models is similar to CA input, with ANN offering

the best performance with 0.85 accuracy and 0.85 AUC values (see Figs 8 and 9, Table G in

S4 File).

Two timepoints (baseline + second-timepoint) (all subjects)

With only CA input, LR, SVM, RF provide similar performance with LR and SVM offering the

best results with 0.90 accuracy and 0.95 AUC. With only CT input, performance of all models

degrades, and especially LR and SVM offer biased performance with at least one model

instance predicting only the majority class (i.e. stable). With combined CA+CT input, again

LR, SVM, and ANN offer biased performance with at least one model instance predicting only

the majority class (i.e. stable). RFC offers relatively balanced performance with 0.87 accuracy

and 0.80 AUC (see Figs 8 and 9, Table G in S4 File).

Effect of trajectory modeling on predictive performance

The use of variable number of clinical timepoints per subject based on the availability during

trajectory assignment (groundtruth) impacts the predictive performance. The stratification of

performance based on last available timepoint for a given subject yielded 605, 510 subjects for
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18 to 36 months (near future) and 48 to 72 month (distant future) spans, respectively. The

AUC results for MMSE based trajectories show (see Figure B in S5 File) that all models per-

form better while predicting trajectories for subjects with visits from shorter timespan (up

to 36 months). The predictive performance worsens for subjects with available timepoints

between 48 and 72 months. This difference in the performance is largest with CA input and

lowest with CA+CT input. The 3-way accuracy results for ADAS-13 based trajectories (see

Figure C in S5 File) show a similar trend with CA input as all models perform better for sub-

jects with visits from shorter time span. However with CT and CA+CT input, the amount of

bias varies with the choice of model. While comparing models, LSN shows the least amount

of predictive bias subjected to timepoint availability for both prediction tasks (MMSE and

ADAS-13).

Computational specifications and training times

The computation was performed on Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00GHz machine

with 16 cores and a GeForce GTX TITAN X graphic card. Scikit-learn (http://scikit-learn.org/

stable/) and TensorFlow (version: 0.12.1, https://www.tensorflow.org/) libraries were used

to implement and evaluate machine-learning models. The training times can vary based on

hyperparameter grid search. The average training times for a single model are as follows: 10

minutes for LSN, 3 minutes for ANN, and less than a minute for LR, SVM, and RF.

Discussion

In this manuscript, we aimed towards building a framework for longitudinal analysis compris-

ing modeling and prediction tasks that can be used towards accurate clinical prognosis in AD.

We proposed a novel data-driven method to model clinical trajectories based on clustering of

clinical scores measuring cognitive performance, which were then used to assign prognostic

labels to the individuals. Subsequently, we demonstrated that longitudinal clinical and struc-

tural MR imaging data along with genetic information can be successfully combined to predict

these trajectories using machine-learning techniques. Below, we highlight the clinical implica-

tions of the proposed work, followed by the discussion of trajectory modeling, prediction, rep-

lication task, comparisons to related work in the field, and the limitations.

Clinical implications

A critical component of any computational work seeking to predict patient outcome is its clin-

ical relevance. How can the proposed methodology be integrated into a clinical workflow? Is

the use of expensive and potentially stressful tests worthwhile in a clinical context? How can

we use change in clinical status and neuroanatomical progression in a short-term to better pre-

dict long-term outcomes for patient populations? We envision two overarching clinical uses

for the presented work. First our trajectory modeling efforts provide a symptom-centric prog-

nostic objective across AD and prodromal population. Then the prediction model facilitates

decision-making pertaining to frequency and types of assessments that should be conducted in

preclinical and prodromal individuals. If an individual is predicted to be in fast-decline, then

this may lead a clinician to recommend more frequent assessments, additional MRI sessions,

and preventative therapeutic interventions. Conversely, if an individual is deemed as being sta-

ble (in spite of an MCI diagnosis) this may lead a clinician to reduce the frequency of assess-

ments. Another application would be assisting clinical trial recruitment based on the projected

rate of decline. Pre-selection of individuals for clinical trials has become an important topic in

AD given the recent challenges in the drug development [45–47]. LSN can help identify the

suitable candidates who are at high risk for decline over the next few years.

Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006376 September 14, 2018 17 / 25

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
https://doi.org/10.1371/journal.pcbi.1006376


The workflow shown in Fig 4 provides a use case for motivating continual monitoring and

adopting LSN in the clinic. We note that the stratification of clinical spectrum is not a trivial

problem [18], and is confounded by several demographic and genetic factors. Nonetheless, the

example clinical scenario in Fig 4 may help identification of specific individuals whose progno-

sis may be improved by acquiring additional data (such MRI or a follow-up time point). The

results (see Figs 5 and 7) suggest that prognosis of subjects on the extreme ends of the spec-

trum i.e. baseline edge-cases (BE), can be simply predicted by their CA features. However,

same features yield poor performance for follow-up edge-cases (FE) subjects, which exhibit

substantial change in clinical performance in the one year period from baseline. This shows

that models using baseline CA inputs simply predict continuation of symptom severity as seen

at baseline. Inclusion of CT features does help compensate some of this prediction bias as seen

by improved performance with the CA+CT input at baseline. Lastly cognitively consistent

(CC) subjects, which perform in the mid-ranges of clinical performance at baseline and do not

show substantial change within a year, are predicted poorly with CA input at baseline and with

the inclusion of second timepoint. This is expected since unlike the BE and FE groups, clinical

scores from two timepoints for CC group do not point towards one trajectory or the other.

Inclusion of MR features from both timepoints seems to be highly beneficial for these subjects,

especially with LSN model. These observations demonstrate the utility of short-term longitudi-

nal MR input towards long-term clinical prediction.

Trajectory modeling

Of importance to our modeling work are the challenges addressed in the longitudinal clinical

task definition. The modeling approach defines stable and declining trajectories over six years

without the need for hard thresholds (e.g. time window, four-point change etc.). Moreover, it

also offers a solution to deal with subjects with missing timepoints. The hierarchical clustering

approach provides control over desired levels of trajectory specificity. The higher memory

related specificity of ADAS-13 coupled with the larger score ranges allows us to resolve three

trajectories (clusters), with further subdivision of decline trajectory. The trajectory member-

ship comparison between MMSE and ADAS-13 scales (see Table 4) shows that there is large

number of subjects that overlap in the stable and fast declining group. This is expected due to

several commonalities between the two assessments. The non-overlapping cases could be

resultant of assessments of specific symptom subdomain performance and higher specificity

offered by the three ADAS-13 trajectories over two MMSE trajectories.

Trajectory prediction

Pertaining to prognostic performance, it is imperative to discuss 1) prediction accuracy versus

trajectory specificity trade-off and 2) prediction gains offered by the additional information

(MR modality, follow-up timepoint). The comparison between MMSE and ADAS-13 predic-

tion confirms that the choice of three trajectories for ADAS-13 offers more prognostic specific-

ity, with lower mean accuracy for the 3-way prediction. While evaluating longitudinal clinical

prediction, it is important to note the implicit dependency between the task outcomes (e.g.

future clinical score prediction, diagnostic conversion etc.) and baseline clinical scores. Sel-

domly do studies disambiguate between what can be achieved in longitudinal prediction tasks

using only baseline clinical scores. Our results on the entire cohort (Figs 5 and 7, subset = All)

suggests that at baseline, for large number of subjects, high prediction accuracy can be

achieved solely with clinical inputs with incremental gains from CT inputs. Interestingly, fol-

low-up clinical information improves predictions over multimodal performance at baseline.

Lastly, the multimodal, two-timepoint input offers the best performance compared to all other
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inputs with LSN, underscoring the importance of model architecture for multimodal, longitu-

dinal input. We attribute this performance to the design novelties that allow the model to learn

feature embeddings that are more predictive of the clinical task compared to models that sim-

ply concatenate all the features into a single vector, as is often done [13,48]. Siamese network

with shared weights provides an effective way for combining temporally associated multivari-

ate input to represent change patterns using two CT feature sets from the same individual.

Subsequently, LSN modulates the anatomical change by APOE4 status and combines with

clinical scores. We also note that LSN can be extended to incorporate high dimensional voxel

or vertex-wise input as well; however, considering the performance offered by ROI based fea-

ture selection approach, we estimate marginal improvements at substantially higher computa-

tional costs.

AIBL analysis

The goal of AIBL analysis was to go beyond standard K-fold cross validation and evaluate

model robustness with subjects from an independent study that was not used to train the

model. The differences in the study design and data collection such as the 18 month interval

between timepoints and the last visit at 54 month mark, do introduce a few issues. First,

although the flexibility of trajectory modeling approach allows trajectory membership assign-

ment with any number of available timepoints, the shorter study span introduces bias com-

pared to ADNI subjects with typically more number of available timepoints spread over larger

timespan. Consequently, we see a highly skewed trajectory membership assignment with 99

stable and 18 declining subjects. As a result, the accuracy and confusion matrix results show

that references models are skewed towards prediction of majority class with baseline and two

timepoint. Especially with inclusion of CT features in two-timepoint LR and SVM models

seems to predict only majority class. This can be potentially attributed to the feature standardi-

zation issue. Different datasets have different MR feature distribution, which can make

application of scaling factors learned on one dataset (ADNI) onto the other dataset (AIBL)

problematic—especially for subject level prediction tasks. The prediction with CA input from

two timepoints with the 18 month interval are highly accurate, diminishing the need for MR

features. This again can be attributed to shorter timespan availability (near future) during the

trajectory assignment for the AIBL subjects. We speculate that with the availability of more

timepoints (distant future), LSN would see a boost in performance. Nevertheless, from a

model stability perspective, LSN offers the best AUC (0.883) with CA+CT input from two

timepoints validating its robustness with multi-modal, longitudinal input data types.

Effect of trajectory modeling on predictive performance

To better understand performance, it is critical to understand the impact of the number of

timepoints available for establishing a ground truth classification based on the data that was

used. Specifically for MMSE-based predictions (see Figure B in S5 File), the models provide

improved performance for individual trajectories over near future (36 months) as opposed to

long-term predictions (72 months). There is variable bias shown by models with CT and CA

+CT inputs for ADAS-13 based trajectories (see Figure C in S5 File). This could be attributed

to the different performance metrics (accuracy vs. AUC) and the 3-way classification task as

opposed to the binary MMSE task. LSN shows the least amount of predictive bias offering best

results for short-term and long-term predictions for both MMSE and ADAS-13. This could be

potentially due to the set of features extracted by the LSN model which captures not only the

pronounced short-term markers but also the subtle changes that are indicative of long-term

clinical progression.
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Comparison with related work

Past studies [14,15] propose different methods for trajectory modeling and report varying

number of trajectories. Authors of [14] construct a two-group quadratic growth mixture

model that characterizes the MMSE scores over a six year period. Authors of [15] used a latent

class mixture model with quadratic trajectories to model cognitive and psychotic symptoms

over 13.5 years. The results indicated presence of 6 trajectory courses. The more popular,

diagnostic change-based trajectory models usually define only 2 classes such as AD converters

vs. non-converters, or more specifically in the context of MCI population, and stable vs. pro-

gressive MCI groups [8,10,42]. The two-group model is computationally convenient; hence

the nonparametric modeling approach presented here starts with two trajectories, but can be

easily extended to incorporate more trajectories, as shown by 3-class ADAS-13 trajectory

definitions.

Pertaining to prediction tasks, it is not trivial to compare LSN performance with previous

studies due to differences in task definitions and input data types. Authors of [8,10,42] have

provided a comparative overview of studies tackling AD conversion tasks. In these compared

studies, the conversion times under consideration range from 18 to 54 months, and the

reported AUC from 0.70 to 0.902, with higher performance obtained by studies using combi-

nation of MR and cognitive features. The best performing study [8] among these propose a

two-step approach in which first MR features are learned via a semi-supervised low density

separation technique, which are then combined with cognitive measures using a random forest

classifier. Authors report AUC of 0.882 with cognitive measures, 0.799 with MR features, and

0.902 with aggregate data on 264 ADNI1 subjects. Another recent study [9] presents a probabi-

listic multiple kernel learning (pMKL) classifier with input features comprising variety of risk

factors, cognitive and functional assessments, structural MR imaging data, and plasma proteo-

mic data. The authors report AUC of 0.83 with cognitive assessments, 0.76 with MR data, and

0.87 with multi-source data on 259 ADNI1 subjects.

A few studies have also explored longitudinal data towards predictive tasks. The authors

of [6] use a sparse linear regression model on imaging data and clinical scores (ADAS and

MMSE), with group regularization for longitudinal feature extraction, which is fed into an

SVM classifier. The authors report AUC of 0.670 with cognitive scores, 0.697 with MR fea-

tures, and 0.768 with the proposed longitudinal multimodal classifier on 88 ADNI1 subjects.

The authors also report AUC of 0.745 using baseline multimodal data. Another recent study

[10] uses a hierarchical classification framework for selecting longitudinal features and report

AUC of 0.754 with baseline features and 0.812 with longitudinal features solely derived from

MR data from 131 ADNI1 subjects. Despite the differences in task definition, sample sizes,

etc., we note a couple of trends. First, as mentioned earlier due to implicit dependency between

task definition and cognitive assessments, we see a strong contribution by clinical scores

towards the predictive performance with larger cohorts. Then, the longitudinal studies show

promising results with performance gains from the added timepoint further motivating mod-

els that can handle both multimodal and longitudinal data.

Limitations

In this work, we used 69 LMCI subjects for trajectory modeling based on availability of com-

plete clinical data. Ideally, this cohort could be expanded in the future to better represent clini-

cal heterogeneity in the at-risk population, as more longitudinal data of subjects across the

pre-AD spectrum become available. This would help improve the specificity of the clinical pro-

gression patterns used as trajectory templates.
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The proposed LSN model is designed to leverage data from two timepoints. Therefore,

availability longitudinal CT and CA data along with the APOE4 status is essential for predic-

tion. Although we offer solutions to mitigate issues with missing timepoints (i.e. flexibility of

choice for baseline and follow-up visits for LSN), addressing scenarios with missing modal-

ity (i.e. APOE4 status) is beyond the scope of this work. We acknowledge that missing data

is an important open challenge in the field that affects the sample size of subjects under con-

sideration, making it harder to train and test models. Potentially, one can employ flexible

model architectures that can aggregate predictions independently or via Bayesian framework

from available modalities. However we defer investigation of these strategies to future work.

Then in this work, we compared LSN against standard implementations of the reference

model. We note that modification can be made to reference models to incorporate longitu-

dinal input instead of simple concatenation of variables through regularization and feature

selection techniques [6,49]. However, such modifications are not trivial, and flexibility

offered by the reference models is limited in comparison with ANNs. Lastly, the hierarchical

architecture (multiple hidden layers) poses challenges in interpreting the learned features

from the CT data. Inferring the most predictive cortical regions from the distance embed-

ding learned by a Siamese network is not a trivial operation. Computationally, the weights

in the higher layers that learn robust combinatorial features cannot be uniquely mapped

back onto input (i.e. cortical regions). Moreover, from the biological perspective, if there is

significant heterogeneity within spatial distribution of atrophy patterns, as observed in MCI

and AD, then presence of underlying neuroanatomical subtypes relating to disparate neuro-

anatomical atrophy patterns is quite plausible. In such scenario, the frequentist ranking of

ROI contribution, even if computable, will not be accurate, as it would average the feature

importance across subtypes. These limitations are common trade-offs encountered with

multivariate, ANN based ML approaches in order to gain more predictive power. We plan

to address these issues in future work as suitable techniques become available for neuroim-

aging data.

Conclusions

In summary, we presented a longitudinal framework that provides a data-driven, flexible way

of modeling and predicting clinical trajectories. We introduced a novel LSN model that com-

bines clinical and MR data from two timepoints and provides state of the art predictive perfor-

mance. We demonstrated the robustness of the model via successful cross-validation using

three different ADNI cohorts with varying data acquisition protocol and scanner resolutions.

We also verified the generalizability of LSN on a replication AIBL dataset. Lastly, we provide

an example use case that could further help clinicians identify subjects that would benefit the

most from LSN model predictions. We believe this work will further motivate the exploration

of multi-modal, longitudinal models that would improve the prognostic predictions and

patient care in AD.
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