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Alzheimer's disease (AD), the most common type of dementia, is a severe neurodegenerative disorder. Iden-
tifying biomarkers that can track the progress of the disease has recently received increasing attentions in AD
research. An accurate prediction of disease progression would facilitate optimal decision-making for clini-
cians and patients. A definitive diagnosis of AD requires autopsy confirmation, thus many clinical/cognitive
measures including Mini Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale cog-
nitive subscale (ADAS-Cog) have been designed to evaluate the cognitive status of the patients and used as
important criteria for clinical diagnosis of probable AD. In this paper, we consider the problem of predicting
disease progression measured by the cognitive scores and selecting biomarkers predictive of the progression.
Specifically, we formulate the prediction problem as a multi-task regression problem by considering the pre-
diction at each time point as a task and propose two novel multi-task learning formulations. We have
performed extensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Specifically, we use the baseline MRI features to predict MMSE/ADAS-Cog scores in the next 4 years. Results
demonstrate the effectiveness of the proposed multi-task learning formulations for disease progression in
comparison with single-task learning algorithms including ridge regression and Lasso. We also perform lon-
gitudinal stability selection to identify and analyze the temporal patterns of biomarkers in disease progres-
sion. We observe that cortical thickness average of left middle temporal, cortical thickness average of left
and right Entorhinal, and white matter volume of left Hippocampus play significant roles in predicting
ADAS-Cog at all time points. We also observe that several MRI biomarkers provide significant information
for predicting MMSE scores for the first 2 years, however very few are shown to be significant in predicting
MMSE score at later stages. The lack of predictable MRI biomarkers in later stages may contribute to the lower
prediction performance of MMSE than that of ADAS-Cog in our study and other related studies.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD), a severe neurodegenerative disorder, is
characterized by loss of memory and reduction of cognitive function
due to progressive impairment of neurons and their connections, lead-
ing directly to death (Khachaturian, 1985). AD accounts for 60–70% of
age-related dementia; it currently affects about 5.3 million individuals
in United States and more than 30 million worldwide and the number
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is projected to be over 114 million by 2050 (A. Association, 2010;
Wimo et al., 2003). Alzheimer's disease has been not only the substan-
tial financial burden to the health care systembut also the psychological
and emotional burdens to patients and their families. Currently there is
no cure for Alzheimer's and efforts are underway to develop sensitive
and consistent biomarkers for AD. In order to better understand the
disease, an important area that has recently received increasing
attention is to understand how the disease progresses and identify re-
lated pathological biomarkers for the progression. Realizing its impor-
tance, NIH in 2003 funded the Alzheimer's Disease Neuroimaging
Initiative (ADNI). The initiative is facilitating the scientific evaluation
of neuroimaging data including magnetic resonance imaging (MRI),
positron emission tomography (PET), other biomarkers, and clinical
and neuropsychological assessments for predicting the onset and pro-
gression ofMCI (Mild Cognitive Impairment) and AD. The identification
of sensitive and specific markers of very early AD progression will facil-
itate the diagnosis of early AD and the development, assessment, and
monitoring of new treatments.
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A definitive diagnosis of AD can only be made through an analysis
of brain tissue during a brain biopsy or autopsy (Jeffrey et al., 2003).
Many clinical/cognitive measures such as Mini Mental State Examina-
tion (MMSE) and Alzheimer's Disease Assessment Scale cognitive
subscale (ADAS-Cog) have been designed to evaluate the cognitive
status of the patients and they have been used as important criteria
for clinical diagnosis of probable AD (McKhann et al., 1984). Previous
studies have shown the correlation between MMSE and the underly-
ing AD pathology and progressive deterioration of functional ability
(Jeffrey et al., 2003). ADAS-Cog is the gold standard in AD drug
trial for cognitive function assessment (Rosen et al., 1984). Since
neurodegeneration of AD proceeds years before the onset of the dis-
ease and the therapeutic intervention is more effective in the early
stage of the disease, there is thus an urgent need to (1) accurately
predict the progression of the disease measured by cognitive scores,
e.g., MMSE and ADAS-Cog, and (2) identify a small set of biomarkers
(measurements) and risk factors most predictive of the progression.
The prime candidate biomarkers and risk factors for tracking disease
progression include neuroimages such as MRI, cerebrospinal fluid
(CSF), and baseline clinical assessments (Dubois et al., 2007).

Several previous works have studied the relationship between the
cognitive scores and possible risk factors such as age, APOE gene,
years of education and gender (Ito et al., 2010; Tombaugh, 2005).
The relationship between cognitive scores and imaging markers
based on MRI such as gray matter volumes, density and loss
(Apostolova et al., 2006; Chetelat and Baron, 2003; Frisoni et al.,
2002; Frisoni et al., 2010; Stonnington et al., 2010), shape of ventri-
cles (Ferrarini et al., 2008; Thompson et al., 2004) and hippocampal
(Thompson et al., 2004) has been explored by correlating these fea-
tures with baseline MMSE scores. Duchesne et al. showed that the in-
tensity and volume of medial temporal lobe altogether with other risk
factors and the gray matter were correlated with the one-year MMSE
score (Duchesne et al., 2009), which allowed us to predict near-future
clinical scores of patients. Murphy et al. examined the relations be-
tween 6-month atrophy patterns in medial temporal region and
memory reduction in terms of clinical scores (Murphy et al., 2010).
To predict the longitudinal response to AD progression, Ashford and
Schmitt built a model with horologic function using “time-index” to
measure the rate of dementia progression (Ashford and Schmitt,
2001). In (Davatzikos et al., 2009), the so-called SPARE-AD index
was proposed based on spatial patterns of brain atrophy and its linear
effect against MMSE was reported. In a more recent study, Ito et al.
modeled the progression rate of cognitive scores using power func-
tions (Ito et al., 2010).

There are two types of progressionmodels that have been common-
ly used in the literature: the regression model (Duchesne et al., 2009;
Stonnington et al., 2010) and the survival model (Pearson et al., 2005;
Vemuri et al., 2009). The correlation between the ground truth and
the prediction, and the squared error between the two are commonly
used to evaluate the progression models (Duchesne et al., 2009;
Stonnington et al., 2010).Many existingworks consider a small number
of input features, and themodel building involves an iterative process in
which the features are added to themodel sequentially (Ito et al., 2010;
Walhovd et al., 2010); alternatively, univariate analysis is performed
individually on all covariates and those who exceed a certain sig-
nificance threshold are included in the model (Murphy et al., 2010).
For high-dimensional data, such as neuroimages (i.e., MRI and/or
PET), the methods of sequentially evaluating individual features are
suboptimal. In such cases, dimension reduction techniques such as prin-
ciple component analysis are commonly applied to project the data into
a lower-dimensional space (Duchesne et al., 2009). One disadvantage of
dimension reduction is that the models are no longer interpretable. A
better alternative is to use feature selection inmodeling the disease pro-
gression (Stonnington et al., 2010). Most existing works focus on the
prediction of target at a single time point (baseline Stonnington et al.,
2010, or one year Duchesne et al., 2009); however, a joint analysis of
the tasks from multiple time points is expected to improve the perfor-
mance especially when the number of subjects is small and the number
of input features is large.

To address the aforementioned challenges, we propose to develop
novel multi-task learning formulations to model disease progression.
The idea of multi-task learning is to utilize the intrinsic relationships
among multiple related tasks in order to improve the prediction per-
formance; it is most effective when the number of samples for each
task is small. One of the key issues in multi-task learning is to identify
how the tasks are related and build learning models to capture such
task relatedness. One way of modeling multi-task relationship is
to assume that all tasks are related and the task models are closed
to each other (Evgeniou et al., 2006), or the tasks are clustered into
groups (Bakker and Heskes, 2003; Jacob et al., 2009; Thrun and
O'Sullivan, 1998; Zhou et al., 2011). Alternatively, one can assume
that the tasks share a common subspace (Ando and Zhang, 2005;
Chen et al., 2009), or a common set of features (Argyriou et al.,
2008; Obozinski et al., 2006).

In this paper, we propose novel multi-task learning formulations for
predicting disease progression measured by the clinical scores
(ADAS-Cog and MMSE). Specifically, we formulate the prediction of
clinical scores at a sequence of time points as a multi-task regression
problem, where each task concerns the prediction of a clinical score at
one time point. For the disease progression considered in this paper, it
is reasonable to assume that a small subset of features is predictive of
the progression, and the multiple regression models from different
time points satisfy the smoothness property, that is, the difference of
the cognitive scores between two successive time points is small. To
this end, we develop a novel multi-task learning formulation based on
a temporal group Lasso regularizer (TGL). The regularizer consists of
two components including an ‘2,1-norm penalty (Yuan and Lin, 2006)
on the regression weight vectors, which ensures that a small subset of
features will be selected for the regression models at all time points,
and a temporal smoothness term, which ensures a small deviation
between two regression models at successive time points. In order to
better capture the temporal patterns of the biomarkers in disease pro-
gression (Caroli et al., 2010; Jack et al., 2010), we further propose a con-
vex fused sparse group Lasso (cFSGL) formulation that allows the
simultaneous selection of a common set of biomarkers at all time points
and the selection of a specific set of biomarkers at different time points
using the sparse group Lasso penalty, and in themeantime incorporates
the temporal smoothness using the fused Lasso penalty. The proposed
formulation is challenging to solve due to the use of non-smooth penal-
ties including the sparse group Lasso and fused penalties.We show that
the proximal operator associated with the optimization problem of
cFSGL exhibits a certain decomposition property and can be solved effi-
ciently. Therefore cFSGL can be efficiently solved using the accelerated
gradient method (Nemirovski, 2005; Nesterov, 2004).

We have performed extensive experiments to demonstrate the effec-
tiveness of the proposedmodels using data from the Alzheimer's Disease
Neuroimaging Initiative (ADNI). Specifically, we use the baseline MRI
features to predict MMSE/ADAS-Cog scores in the next 4 years. A set of
648 subjects including 191 cognitively normal older individuals (NL),
319 patientswithmild cognitive impairment (MCI), and 138Alzheimer's
disease patients (AD), are included in our study. Our experimental re-
sults show that the proposed multi-task learning formulations
outperform single-task learning algorithms including ridge regression
and Lasso for predicting futureMMSE/ADAS-Cog scores.We also observe
that including demographic and ApoE genotyping information as addi-
tional covariates further improves the prediction performance. We
apply our models on the subgroup that only consists of MCI converters
and AD patients and we observe similar improved performance from
the proposed models. We have also performed longitudinal stability se-
lection using our proposed formulations to identify and analyze the tem-
poral patterns of biomarkers selected in ourmodels.We observe that the
cortical thickness average of left middle temporal, the cortical thickness



Table 1
Demographic information of subjects at different time points. There are three types of
subjects included in the study: cognitively normal older individuals (NL), patients with
mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. In this study,
if an MCI patient converts to AD patient within the 48 months after screening, then we
consider the patient to be an MCI convert patient (MCI-C), or it is an MCI stable patient
(MCI-S). The methods in this paper use MRI features only from the baseline. In this
table the sample size indicates the number of patients that has baseline MRI features
and corresponding target cognitive scores (MMSE or ADAS-Cog) at future time points.

Time point Attribute MMSE ADAS-Cog

M06 Sample size (NL, MCI-S,
MCI-C, AD)

648 (191, 177,
142, 138)

648 (191, 177,
142, 138)

ApoE-ε4 copies (0, 1, 2) (335, 242, 71) (335, 242, 71)
Age 75.2 ± 6.7 75.2 ± 6.7

M12 Sample size (NL, MCI-S,
MCI-C, AD)

642 (190, 173,
142, 137)

638 (188, 173,
141, 136)

ApoE-ε4 copies (0, 1, 2) (332, 240, 70) (311, 238, 69)
Age 75.2 ± 6.7 75.2 ± 6.7

M24 Sample size (NL, MCI-S,
MCI-C, AD)

569 (183, 144,
125, 117)

564 (182, 144,
125, 113)

ApoE-ε4 copies (0, 1, 2) (290, 216, 63) (287, 214, 63)
Age 75.2 ± 6.6 75.2 ± 6.6

M36 Sample size (NL, MCI-S,
MCI-C, AD)

389 (161, 119,
99, 10 )

377 (156, 116,
95, 10)

ApoE-ε4 copies (0, 1, 2) (226, 131, 32) (216, 129, 32)
Age 75.2 ± 6.4 75.2 ± 6.3
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average of left and right Entorhinal, and the white matter volume of left
Hippocampus play significant roles in predicting ADAS-Cog at all time
points. We also observe that several MRI biomarkers provide significant
information for predicting MMSE scores for the first 2 years, however
very few are shown to be significant in predicting MMSE score at later
stages. The lack of predictable MRI biomarkers in later stages may con-
tribute to the lower prediction performance of MMSE than that of
ADAS-Cog in our study and other related studies. We further study the
specific progression model for MCI patients and observe that in most
cases the prediction performance witnesses improvement with AD and
NL samples included in the training step.

Subjects and methods

Subjects

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public-private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians in developing new treatments and monitor their effec-
tiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to partic-
ipate in the research, approximately 200 cognitively normal older in-
dividuals (NL) to be followed for 3 years, 400 people with MCI to be
followed for 3 years and 200 people with early AD to be followed
for 2 years. For up-to-date information, see www.adni-info.org.

The ADNI project is a longitudinal study, where a variety of mea-
surements are collected repeatedly over a 6-month or 1-year interval.
The date when the patient performs the screening in the hospital for
the first time is called baseline, and the time point for the follow-up
visits is denoted by the duration starting from the baseline. For in-
stance, we use the notation “M06” to denote the time point half
year after the first visit. Currently ADNI has up to 48 months'
follow-up data available for some patients. However, many patients
drop out from the study for many reasons.

In ADNI, all participants received 1.5 Tesla (T) structural MRI. The
MRI image features in this study were based on the imaging data from
the ADNI database processed by the UCSF team, who performed cortical
reconstruction and volumetric segmentationswith the FreeSurfer image
analysis suite (http://surfer.nmr.mgh.harvard.edu/). Details of the analy-
sis procedure are available at http://adni.loni.ucla.edu/research/mri-
post-processing/. More details on ADNI MRI imaging instrumentation
and procedures (Jack et al., 2008) may be found at ADNI website
(http://adni.loni.ucla.edu). We downloaded the MRI data from ADNI
website and further performed the following preprocessing steps:

• remove featureswithmore than 1000missing entries (for all patients
and all time points)2;
2 The following features are deleted due to too many missing entries: ST100SV,
ST122SV, ST126SV,ST22CV, ST22SA, ST22TA, ST22TS, ST28CV, ST33SV, ST41SV, ST63SV,
ST67SV, ST81CV, ST81SA, ST81TA, ST81TS, ST87CV, ST92SV and ST8SV.
• remove image records with failed quality control;
• exclude patients without baseline MRI records;
• complete the missing entries using the average value.

After the preprocessing procedure, there are a total of 648 subjects
(138 AD, 319 MCI and 191 NC) and 305 MRI features. The MRI features
can be grouped into 5 categories: average cortical thickness, standard
deviation in cortical thickness, the volumes of cortical parcellations
(based on regions of interest automatically segmented in the cortex),
the volumes of specific whitematter parcellations, and the total surface
area of the cortex. The demographic information of subjects used in this
study at different time points is given in Table 1.

Modeling disease progression via temporal group Lasso

In the longitudinal AD study, we measure the cognitive scores of se-
lected patients repeatedly at multiple time points. By considering the
prediction of cognitive scores at a single time point as a regression task,
we formulate the prediction of clinical scores at multiple future time
points as amulti-task regression problem.We employmulti-task regres-
sion formulations instead of solving a set of independent regression
problems since the intrinsic temporal smoothness information among
different tasks can be incorporated into the model as prior knowledge.

Consider a multi-task regression problem of t time points with n
training samples of d features. Let {x1, x2···, xn} be the input data at
the baseline, and {y1, y2···, yn} be the targets, where each xi ∈ ℝd

represents a sample (patient), and yi ∈ ℝt is the corresponding target
(clinical scores) at different time points. In this paper we employ lin-
ear models for the prediction. Specifically, the prediction model for
the ith time point is given by fi (x) = xTwi, where wi is the weight
vector of the model. Let X = [x1, ···, xn]T ∈ ℝn × d be the data matrix,
Y = [y1, ··, yn]T ∈ ℝn × t be the target matrix, and W = [w1, w2,…,
wt] ∈ ℝd × t be the weight matrix. One simple approach is to estimate
W by minimizing the following objective function:

min
W

XW−Yk k2F þ θ1 Wk k2F ;

where the first term measures the empirical error on the training
data, θ1 > 0 is a regularization parameter, and ∥W∥F is the Frobenius
M48 Sample size (NL, MCI-S,
MCI-C, AD)

87 (47, 13, 25, 2) 85 (47, 13, 23, 2)

ApoE-ε4 copies (0, 1, 2) (51, 27, 9) (49, 27, 9)
Age 74.7 ± 5.2 74.6 ± 5.2

http://www.adni-info.org
http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.ucla.edu/research/mri-post-processing/
http://adni.loni.ucla.edu/research/mri-post-processing/
http://adni.loni.ucla.edu
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norm, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑d

i¼1∑
t
j¼1W

2
i;j

q
. The formulation is illustrated in

Fig. 1. The regression method above is known as the ridge regression
and it admits an analytical solution given by:

W ¼ XTX þ θ1I
� �−1

XTY :

In building models with high dimensional features (d ≫ n), fea-
ture selection methods are typically employed to identify a small set
of relevant features. Lasso (Tibshirani, 1996), is a popular method
for sparse linear regression, which simultaneously performs feature
selection and regression. In the context of disease progression, the
Lasso formulation solves the following optimization problem:

min
W

XW−Yk k2F þ θ1 Wk k1;

where ∥W∥1 is the ‘1 norm of W defined as ∑i=1
d ∑j=1

t |Wi,j|.
One major limitation of the regression models above is that the

tasks at different time points are assumed to be independent with
each other, which is not the case in the longitudinal AD study consid-
ered in this paper.

Temporal smoothness prior
Applying single task learning methods such as ridge or Lasso re-

gression on modeling disease progression often yields fluctuated pre-
diction values at different time points for one patient, as shown in
Fig. 2. In the course of disease progression, it is reasonable to assume
that the difference of the cognitive scores between two successive
time points is relatively small. During the inference of our models,

for a patient i with two consecutive predictions ŷ jð Þ
i and ŷ jþ1ð Þ

i at
time point j and j + 1 respectively, a large difference between the

predictions ŷ jð Þ
i −ŷ jþ1ð Þ

i

��� ��� is discouraged. Since we use linear models

ðy jð Þ
i ≈ŷ jð Þ

i ¼ xT
i w

jÞ, the difference between the predictions can be re-
lated to the difference between models at those time points:

ŷ jð Þ
i −ŷ jþ1ð Þ

i

��� ��� ¼ xT
i w

j−xT
i w

jþ1
��� ��� ¼ xT

i wj−wjþ1
� ���� ���: ð1Þ
Fig. 1. Illustration of the prediction model. We denote X ¼ x1; ⋯; xn½ �T∈Rn�d as the data ma
weight matrix. Specifically, for the input matrix X, each row represents a patient and each
sponds to a patient, and each column corresponds to the score at a future time point. In
i.e., for the ith patient, we have xiTW ≈ yiT.
Inspired by Eq. (1), in order to capture the temporal smoothness
of the cognitive scores at different time points, we introduce a regu-
larization term in the regression model that penalizes large devia-
tions between predictions at neighboring time points, resulting in
the following formulation:

min
W

XW−Yk k2F þ θ1 Wk k2F þ θ2
Xt−1

i¼1

wi−wiþ1
��� ���2

2
; ð2Þ

where θ2 ≥ 0 is a regularization parameter controlling the temporal
smoothness. This temporal smoothness term can be expressed as:

Xt−1

i¼1

wi−wiþ1
��� ���2

F
¼ WHk k2F ;

where H ∈ ℝtx(t − 1) is defined as follows: Hij = 1 if i = j, Hij = −1 if
i = j + 1, and Hij = 0 otherwise. The formulation in Eq. (2) becomes:

min
W

XW−Yk k2F þ θ1 Wk k2F þ θ2 WHk k2F : ð3Þ

The optimization problem in Eq. (3) admits an analytical solution,
as shown in Appendix A. We want to emphasize that the temporal
smoothness is only employed during the inference of the model,
and when it comes to the prediction phase only baseline features
are needed to compute the predicted cognitive scores at the future
time points. This is also the case for other models proposed in the
paper.

Dealing with incomplete data
The clinical scores for many patients are missing at some time

points, i.e., the target vector yi ∈ ℝt may not be complete. A simple
strategy is to remove all patients with missing target values, which,
however, significantly reduces the number of samples. We consider
extending the formulation in Eq. (3) with missing target values in
the training process. In this case, the analytical solution to Eq. (3)
no longer exists. We show how the algorithm above can be adapted
to deal with missing target values.
trix, Y ¼ y1; ⋯; yn½ �T∈Rn�t as the target matrix, and W ¼ w1; ;w2;…; ;wt
� �

∈Rd�t as the
column represents a feature at baseline, and for the output matrix Y, each row corre-
the prediction model we assume a linear relationship between input X and output Y,



Fig. 2. Illustration of temporal smoothness. We assume that the difference of the cognitive scores between two successive time points is relatively small (right figure). Since we use
linear predictive models, the difference between the predicted cognitive scores can be related to the difference between models at those time points, and therefore the temporal
smoothness can be enforced by penalizing the difference between models of consecutive time points. In single task learning formulations, such as Ridge and Lasso, the predicted
scores of the same patient at different time points may fluctuate as shown in the left figure.
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We use a matrix S ∈ ℝnxt to indicate missing target values, where
Si,j = 0 if the target value of sample i is missing at the jth time point,
and Si,j = 1 otherwise. We use the componentwise operator ⊙ as
follows: Z = A ⊙ B denotes zi,j = ai,jbi,j, for all i, j. The formulation
in Eq. (3) can be extended to the case with missing target values as:

min
W

S⊙ XW−Yð Þk k2F þ θ1 Wk k2F þ θ2 WHk k2F : ð4Þ

The optimization problem in Eq. (4) can be solved efficiently as
shown in Appendix B.

Temporal group Lasso regularization
Because of the limited availability of subjects in the longitudinal

AD study and a relatively large number of features (e.g., MRI features)
at ADNI, the prediction model suffers from the so called “curse of di-
mensionality”. In addition, many patients drop out from the longitu-
dinal study after a certain period of time, which reduces the
effective number of samples. One effective approach is to reduce the
dimensionality of the data. However, traditional dimension reduction
techniques such as PCA are not desirable since the resulting model is
not interpretable, and traditional feature selection algorithms are not
suitable for multi-task regression with missing target values. In the
proposed formulation, we employ the group Lasso regularization
based on the ‘2,1-norm penalty for feature selection (Yuan and Lin,
2006), which assumes that a small set of features are predictive of
the progression. The group Lasso regularization ensures that all re-
gression models at different time points share a common set of fea-
tures. Together with the temporal smoothness penalty, we obtain
the following Temporal Group Lasso (TGL) formulation:

min
W

S⊙ XW−Yð Þk k2F þ θ1 Wk k2F þ θ2 WHk k2F þ δ Wk k2;1 ð5Þ

where Wk k2;1 ¼ ∑d
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑t

j¼1W
2
i;j

q
, and δ is a regularization parame-

ter. When there is only one task, i.e., t = 1, the above formulation re-
duces to Lasso (Tibshirani, 1996). When t > 1, the weights of one
feature over all tasks are grouped using the ‘2-norm, and all features
are further grouped using the ‘1-norm. Thus, the ‘2,1-norm penalty
tends to select features based on the strength of the feature over all
t tasks.

The objective in Eq. (5) can be considered as a combination of a
smooth term and a non-smooth term. The gradient descent or accel-
erated gradient method (AGM) (Nemirovski, 2005; Nesterov, 2004)
can be applied to solve the optimization. One of the key steps in
AGM is the computation of the proximal operator associated with
the ‘2,1-norm regularization. We employ the algorithm in the SLEP
package (Liu et al., 2009), which computes the proximal operator as-
sociated with the general ‘1/‘q-norm efficiently.
Modeling disease progression via fused sparse group Lasso

The TGL formulation constrains the models from all time points to
share a common set of features. In order to better capture the tempo-
ral patterns of the biomarkers in disease progression (Caroli et al.,
2010; Jack et al., 2010), we further propose a convex fused sparse
group Lasso (cFSGL) formulation which allows simultaneous joint
feature selection for multiple tasks and task-specific feature selection,
and in the meantime incorporates the temporal smoothness. Mathe-
matically, the cFSGL formulation solves the following convex optimi-
zation problem:

min
W

L Wð Þ þ λ1 Wk k1 þ λ2 RWT
��� ���

1
þ λ3 Wk k2;1; ð6Þ

where ‖W‖1 is the Lasso penalty, Wk k2;1 ¼ ∑d
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑t

j¼1W
2
ij

q
is the

group Lasso penalty, ‖RWT‖1 is the fused Lasso penalty, R = HT is a
(t − 1) × t sparse matrix, and λ1, λ2 and λ3 are regularization param-
eters. The combination of Lasso and group Lasso penalties is also
known as the sparse group Lasso penalty, which allows simultaneous
joint feature selection for all tasks and selection of a specific set of fea-
tures for each task. The fused Lasso penalty is employed to incorpo-
rate the temporal smoothness. The cFSGL formulation involves three
non-smooth terms, and is thus challenging to solve. We propose to
solve the optimization problem by the accelerated gradient method
(AGM) (Nemirovski, 2005; Nesterov, 2004). One of the key steps in
using AGM is the computation of the proximal operator associated
with the composite of non-smooth penalties defined as follows:

π Vð Þ ¼ arg min
W

1
2

W−Vk k22 þ λ1 Wk k1 þ λ2 RWT
��� ���

1
þ λ3 Wk k2;1: ð7Þ

It is clear that each row of W is decoupled in Eq. (7). Thus, for
obtaining the ith row wi, we only need to solve the following optimi-
zation problem:

π við Þ ¼ arg min
wi

1
2

wi−vik k22 þ λ1 wik k1 þ λ2 Rwik k1 þ λ3 wik k2; ð8Þ

where vi is the ith row of V. The proximal operator in Eq. (8) is chal-
lenging to solve due to the presence of three non-smooth terms. We
show that the proximal operator exhibits a certain decomposition
property, based on which we can efficiently compute the proximal
operator in two stages, as summarized in Appendix C.

We illustrate the models built by different approaches in Fig. 3. In
the left figure we show the model built by Lasso regression. The spar-
sity introduced by applying Lasso has no specific patterns across
tasks, as the models for different tasks are built independently. The
middle figure shows the model built by TGL. Because of the use of
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Fig. 3. A comparison of models built by different approaches. In Lasso, the models for different tasks are built independently, thus no specific sparsity patterns are observed across
different tasks (left figure). The TGL formulation restricts all models from different time points to select a common set of features (middle figure). In cFSGL, the selected features
across different time points are smooth due to the use of the fused Lasso penalty (right figure), that is, the selected features at nearby time points are similar to each other. For
the example shown in the right figure, the models at M06 and M12 differ in one feature (the second feature); the models at M12 and M24 differ in one feature (the sixth feature);
the models at M24 and M36 differ in two features (the first and fourth features); and the models at M36 and M48 differ in one feature (the fifth feature).
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‘2,1-norm regularization to capture temporal relation, the features se-
lected for all time points are the same. The model built by cFSGL, as
shown in the right figure, has two levels of sparsity: 1) a small set
of features shared across all tasks, 2) task-specific features for each
time point. In addition, one key advantage of fused Lasso in cFSGL is
that under the fused Lasso penalty the selected features across differ-
ent time points are similar to each other, satisfying the temporal
smoothness property, while the Laplacian-based penalty focuses on
the smoothing of the prediction models across different time points.

Longitudinal stability selection for identifying temporal patterns of
biomarkers

Stability selection (Meinshausen and Bühlmann, 2010), based on
subsampling/bootstrapping, provides a general method to perform
model selection using information from a set of regularization param-
eters. The stability ranking score gives a probability which makes it
naturally interpretable. Stability selection has been successfully ap-
plied to bioinformatics applications especially in genome-related bio-
marker selection problems where sample size is much smaller than
feature dimension (n ≪ d) (Eleftherohorinou et al., 2011; Ryali et
al., 2012; Stekhoven et al., 2011; Vounou et al., 2012).

We propose to extend the idea of stability selection to longitudinal
study. The framework, called longitudinal stability selection, is to quanti-
fy the importance of the features selected by the proposed formulations
for disease progression. Specifically, we apply stability selection to
multi-task learning models for longitudinal study. The stability score
(between 0 and 1) of each feature is indicative of the importance of
the specific feature for disease progression. In this paper, we propose
to use longitudinal stability selection with TGL and cFSGL to analyze
the temporal patterns of biomarkers. The temporal pattern of stability
scores of the features selected at different time points can potentially
reveal how disease progresses temporally and spatially.

The longitudinal stability selection algorithm with TGL and cFSGL is
given as follows. Let F be the index set of features, and let f ∈ F denote
the index of a particular feature. Let Δ be the regularization parameter
space and let the stability iteration number be denoted as γ. For cFSGL
an element δ ∈ Δ is a triple 〈λ1,λ2,λ3〉. Let B(i) = {X(i), Y(i)} be a random
subsample from input data {X,Y} of size ⌊n/2⌋without replacement. For a
given δ ∈ Δ, let Ŵ

ið Þ
be the optimal solution of TGL or cFSGL on B(i). The

set of features selected by the model Ŵ
ið Þ
of the task at time point p is

denoted by

Uδ
p B ið Þ
� �

¼ f : Ŵ ið Þ
f ;p≠0

n o
:

We repeat this process for γ times and obtain the selection proba-
bility Π̂

δ
f ;p of each feature f at time point p:

Π̂δ
f ;p ¼

Xγ
i¼1

I f∈Uδ
p B ið Þ
� �� �

=γ;

where I(.) is the indicator function defined as: I(c) = 1 if c is true and
I(c) = 0 otherwise. The computation of selection probability is illus-
trated in Fig. 4. Repeat the above procedure for all δ ∈ Δ, we obtain
the stability score for each feature f at time point p:

Sp fð Þ ¼ max
δ∈Δ

Π̂δ
f ;p

� �
:

The computation of stability score at one time point is illustrated
in Fig. 5. The stability vector of a feature f at all t time points is given
by S fð Þ ¼ S1 fð Þ…St fð Þ½ �, which reveals the change of the importance
of feature f at different time points. We define the stable features at
time point p as:

Û p ¼ f : Sp fð Þ ranks among top η in F
n o

ð9Þ

and choose η = 20 in our experiments. We are interested in the sta-
ble features at all time points, i.e., f∈Û ¼ ∪t

p¼1Û p. Note that S fð Þ is de-
pendent on the progression model used.

Note that if we use TGL in longitudinal stability selection, we obtain a
common list of features for all time points. If we use cFSGL in longitudinal
stability selection, the features selected for different time pointsmay dif-
fer. However, the selected features at nearby time points are similar to
each other. Thus, the distribution of stability scores is expected to exhibit
the temporal smoothness property, that is, for each feature the stability
score is smooth across different time points.

Results

In this section we perform experimental studies to evaluate the
proposed progression models and analyze the biomarkers identified
using longitudinal stability selection. In Prediction performance using
baseline MRI features section, we compare different modeling ap-
proaches for predicting future MMSE and ADAS-Cog scores using base-
lineMRI images and baselineMMSE. Note that we independently apply
the models on MMSE and ADAS-Cog, and we do not assume that these
cognitive scores are correlated. We further study the prediction perfor-
mance with additional demographic and ApoE genotyping information
included in themodels. In Temporal patterns ofMRI biomarkers section,
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Fig. 4. Illustration of the computation of selection probabilities for all features at all time points in longitudinal stability selection. Given a fixed parameter tuple δ, the selection
probabilities are estimated based on a set of γ progression models using γ bootstrapping samples. For each feature, the selection probability at a particular time point is estimated
by computing the fraction of γmodels at this time point that includes a nonzero coefficient for this feature. The selection probability indicates how likely a feature is selected at one
particular time point by the model parameterized by δ.
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we analyze the biomarkers identified via longitudinal stability selection.
In Predicting the progression forMCI patients section,we study the spe-
cific progression model for MCI patients.

Prediction performance using baseline MRI features

In the first experiment, for each target we build a prediction model
using baseline MRI features and baseline MMSE. We compare the pro-
posed methods including Temporal Group Lasso (TGL) and Convex
Fused Sparse Group Lasso (cFSGL)with single-task learningmethods in-
cluding ridge regression (Ridge) and Lasso regression (Lasso) on the
prediction of MMSE and ADAS-Cog. Note that Lasso is a special case of
cFSGL when both λ2 and λ3 are set to 0. We randomly split the data
into training and testing sets using a ratio 9:1, i.e., we build models on
90% of the data and evaluate these models on the remaining 10% of
the data. Since there are model parameters to be selected during the
training, we use 5-fold cross validation on the training data to select
these parameters. For the overall regression performance measures,
we use normalized mean square error (nMSE) as used in the multi-
task learning literature (Argyriou et al., 2008; Zhang and Yeung, 2010)
and weighted correlation coefficient (wR) as employed in the medical
literature addressing AD progression problems (Duchesne et al., 2009;
Ito et al., 2010; Stonnington et al., 2010). For the task-specific regression
performance measures, we use root mean square error (rMSE). The
MSE, nMSE and weighted R-value are defined as follows:

rMSE y ^; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y−ŷk k22
n

s
; ð10Þ

nMSE Y ^;Y
� �

¼
∑t

i¼1

Yi−; Ŷ i

��� ���2
2=σ Yið Þ

∑t
i¼1 ni

; ð11Þ

wR Y ^; Y
� �

¼
∑t

i¼1 Corr Yi; Ŷ i

� �
ni

∑t
i¼1 ni

; ð12Þ
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Fig. 5. Illustration of the computation of the stability score in longitudinal stability selection at a particular time point. At each time point, the stability score of a feature is the maximum
selection probability it obtains at this time point over all δ ∈ Δ. For the example shown in the figure, themaximumselection probability for the first feature is 0.89. After the stability score
is computed, we can select features at each time point by either providing a threshold on the selection probabilities or the number of features with top selection probabilities.

Table 2
Comparison of our proposed approaches (TGL and cFSGL) and single-task learning ap-
proaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog prediction using MRI fea-
tures (M) in terms of normalized mean square error (nMSE), weighted correlation
coefficient (wR) and root mean square error (rMSE) at each time point. 90% of data
is used as training data.

Ridge Lasso TGL cFSGL

Target: MMSE
nMSE 0.548 ± 0.057 0.459 ± 0.042 0.449 ± 0.045 0.395 ± 0.052
wR 0.689 ± 0.030 0.746 ± 0.031 0.755 ± 0.029 0.796 ± 0.031
M06 rMSE 2.269 ± 0.207 2.071 ± 0.261 2.038 ± 0.262 2.071 ± 0.213
M12 rMSE 3.266 ± 0.556 2.973 ± 0.654 2.923 ± 0.643 2.762 ± 0.669
M24 rMSE 3.494 ± 0.599 3.371 ± 0.747 3.363 ± 0.733 3.000 ± 0.642
M36 rMSE 4.003 ± 0.853 3.786 ± 0.926 3.768 ± 0.962 3.265 ± 0.803
M48 rMSE 4.328 ± 1.310 3.653 ± 1.268 3.631 ± 1.226 2.871 ± 0.884

Target: ADAS-Cog
nMSE 0.532 ± 0.095 0.520 ± 0.084 0.464 ± 0.067 0.391 ± 0.059
wR 0.705 ± 0.043 0.716 ± 0.036 0.747 ± 0.033 0.803 ± 0.024
M06 rMSE 5.213 ± 0.522 4.976 ± 0.518 4.820 ± 0.489 4.451 ± 0.340
M12 rMSE 6.079 ± 0.775 6.193 ± 0.766 5.813 ± 0.697 5.230 ± 0.589
M24 rMSE 7.409 ± 1.154 7.275 ± 1.099 6.835 ± 1.052 6.249 ± 0.996
M36 rMSE 7.143 ± 1.351 7.139 ± 1.444 6.938 ± 1.363 5.928 ± 1.064
M48 rMSE 6.644 ± 2.750 6.879 ± 2.465 6.000 ± 2.738 5.980 ± 1.979
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where for rMSE, y is the ground truth of target at a single time point and
ŷ is the corresponding prediction by a prediction model, for nMSE and
wR, Yi is the ground truth of target at time point i, i = [1:t] and Ŷi is
the corresponding predicted value, and Corr is the correlation coefficient
between two vectors.We report themean and standard deviation based
on 20 iterations of experiments on different splits of data. The experi-
mental results using 90% training data are presented in Table 2.

Overall our proposed approaches outperform Ridge and Lasso, in
terms of both nMSE and correlation coefficient. We have the follow-
ing observations: 1) The proposed multi-task learning models (TGL
and cFSGL) outperform single task learning models, which verifies
the use of temporal smoothness assumption in our multi-task learn-
ing formulations. 2) cFSGL performs better than TGL. This may be
due to the restrictive assumption imposed in TGL. 3) The proposed
cFSGL formulation witnesses significant improvement for later time
points. This may be due to the data sparseness in later time points
(see Table 1), as the proposed sparsity-inducing models are expected
to achieve better prediction performance in this case.

We also explore the prediction models by including baseline demo-
graphic information: age, years of education and ApoE genotyping infor-
mation, and baseline ADAS-Cog scores of the patients. We follow the
same experimental procedure as above. The prediction performance re-
sults are shown in Table 3. We see that the performance of predicting
the two scores is improved significantly. For example, theweighted corre-
lation coefficient between the predicted value and the true value on test-
ing data has increased from 0.796 to 0.824 (p b 10e−5) for MMSE
prediction and 0.803 to 0.854 (p b 10e−5) for ADAS-Cog prediction.
We also witness the improvement in prediction performance at all time
points.We show the scatter plots for the predicted values versus the actu-
al values for MMSE and ADAS-Cog on the testing data in Figs. 6 and 7, re-
spectively. Since there are few samples available at the last time point
(M48), we only show the scatter plots for the first four time points. In
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Table 3
Comparison of our proposed approaches (TGL and cFSGL) and single-task learning ap-
proaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog prediction using MRI, de-
mographic, and ApoE genotyping features in terms of normalized mean square error
(nMSE), weighted correlation coefficient (wR) and root mean square error (rMSE) at
each time point. 90% of data is used as training data.

Ridge Lasso TGL cFSGL

Target: MMSE
nMSE 0.477 ± 0.055 0.368 ± 0.048 0.364 ± 0.046 0.341 ± 0.039
wR 0.743 ± 0.022 0.809 ± 0.026 0.811 ± 0.027 0.824 ± 0.021
M06 rMSE 2.211 ± 0.241 1.938 ± 0.214 1.900 ± 0.211 1.980 ± 0.219
M12 rMSE 2.968 ± 0.685 2.679 ± 0.769 2.654 ± 0.767 2.546 ± 0.748
M24 rMSE 3.454 ± 0.550 3.107 ± 0.570 3.133 ± 0.579 2.943 ± 0.582
M36 rMSE 3.736 ± 0.792 3.311 ± 0.756 3.313 ± 0.798 3.046 ± 0.701
M48 rMSE 3.469 ± 1.030 2.645 ± 0.845 2.761 ± 0.883 2.364 ± 0.792

Target: ADAS-Cog
nMSE 0.396 ± 0.075 0.335 ± 0.048 0.317 ± 0.044 0.296 ± 0.048
wR 0.791 ± 0.031 0.830 ± 0.020 0.837 ± 0.017 0.854 ± 0.021
M06 rMSE 4.384 ± 0.522 3.936 ± 0.430 3.858 ± 0.441 3.863 ± 0.516
M12 rMSE 4.906 ± 0.708 4.578 ± 0.756 4.455 ± 0.661 4.209 ± 0.564
M24 rMSE 6.587 ± 1.038 6.153 ± 1.145 5.945 ± 1.120 5.657 ± 1.017
M36 rMSE 6.312 ± 1.068 5.849 ± 1.028 5.613 ± 0.936 5.066 ± 0.854
M48 rMSE 5.679 ± 2.200 5.087 ± 2.082 5.181 ± 2.383 5.182 ± 1.606
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the scatter plots, we see that the predicted values and actual clinical
scores have a high correlation. The scatter plots show that the prediction
performance for ADAS-Cog is better than that of MMSE.
Fig. 6. Scatter plots of actual MMSE versus predicted values on testing data using cFSGL ba
dashed line in each figure is a reference of perfect correlation (predicted value exactly equal
ter plots and the green solid line is the regression line, which serves as a visual indicator of
better are the prediction results. We see that the patients with low actual MMSE scores are
In the study of ADNI, cognitive normal individuals and stable MCI pa-
tients are less likely to have significant changes on the cognitive scores
and therefore many existing studies focus on subgroups of patients only
(e.g., Duchesne et al., 2009). To this end, we apply ourmodels on the sub-
group that consists of MCI converters and AD patients only (see Table 1).
At the last time point M48, there are only very few samples available and
we therefore exclude the last time point from our study. We follow the
same experimental setting as in the previous experiment, and the re-
sults are shown in Table 4. We observe that cFSGL achieves the best
performance among all methods, with an average performance of
R = 0.671(p b 10e−5) in predicting longitudinal MMSE scores and
an average of R = 0.751(p b 10e−5) in predicting ADAS-Cog.

Temporal patterns of MRI biomarkers

One of the strengths of the cFSGL formulation is that it facilitates
the identification of temporal patterns of biomarkers. In this exper-
iment we study the temporal patterns of biomarkers using longitu-
dinal stability selection. Note that because the sample size at the
M48 time point is small, we perform longitudinal stability selection
for M06, M12, M24, and M36 only. In all cases, the baseline MMSE
score is the most important predictor and has a selection probabil-
ity of 1 at all time points and we therefore do not show it in the
figures.

The stability vectors using the cFSGL formulation are given in
Fig. 8, where we collectively list the stable features (η = 20) at the
sed on baseline MRI features, demographic, and ApoE genotyping features. The black
s to actual value). We perform least squares regression on the points shown in the scat-
overall performance. The closer between the regression line and the reference line, the
less predictable, compared to the ones with high actual MMSE scores.
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Fig. 7. Scatter plots of actual ADAS-Cog versus predicted values on testing data using cFSGL based on baselineMRI features, demographic, andApoE genotyping features. The black dashed
line in eachfigure is a reference of perfect correlation (predicted value exactly equals to actual value).We perform least squares regression on the points shown in the scatter plots and the
green solid line is the regression line, which serves as a visual indicator of overall performance. The closer between the regression line and the reference line, the better are the prediction
results. We see a high correlation between the two values. The visual prediction performance for ADAS-Cog is better than that of MMSE as shown in Fig. 6.
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4 time points. The total number of features is less than 80 because one
feature may be identified as stable features at multiple time points. In
Fig. 8(a), we observe that cortical thickness average of left middle
Table 4
Comparison of our proposed approaches (TGL and cFSGL) and single-task learning
approaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog prediction for MCI
converters and AD patients using MRI, demographic, and ApoE genotyping features
in terms of normalized mean square error (nMSE), weighted correlation coefficient
(wR) and root mean square error (rMSE) at each time point. 80% of data is used as
training data.

Ridge Lasso TGL cFSGL

Target: MMSE
nMSE 1.161 ± 0.269 0.860 ± 0.137 0.761 ± 0.143 0.725 ± 0.128
wR 0.526 ± 0.080 0.633 ± 0.068 0.660 ± 0.059 0.671 ± 0.054
M06 rMSE 3.420 ± 0.381 3.031 ± 0.280 2.881 ± 0.245 2.862 ± 0.231
M12 rMSE 4.025 ± 0.482 3.680 ± 0.531 3.391 ± 0.489 3.315 ± 0.506
M24 rMSE 5.531 ± 0.756 4.988 ± 0.924 4.636 ± 0.883 4.551 ± 0.870
M36 rMSE 5.971 ± 1.214 5.011 ± 1.231 4.686 ± 1.077 4.422 ± 1.046

Target: ADAS-Cog
nMSE 1.031 ± 0.200 0.748 ± 0.078 0.675 ± 0.079 0.533 ± 0.101
wR 0.569 ± 0.059 0.695 ± 0.045 0.704 ± 0.042 0.751 ± 0.046
M06 rMSE 6.256 ± 0.813 5.692 ± 0.591 5.381 ± 0.583 5.140 ± 0.800
M12 rMSE 7.320 ± 0.988 6.334 ± 1.022 5.934 ± 0.884 5.196 ± 0.829
M24 rMSE 10.423 ± 1.224 9.353 ± 1.301 8.964 ± 1.331 7.486 ± 1.249
M36 rMSE 10.968 ± 1.833 9.319 ± 2.082 8.782 ± 1.801 6.958 ± 1.499
temporal, cortical thickness average of left and right Entorhinal, and
white matter volume of left Hippocampus are important biomarkers for
all time points. Cortical volume of left Entorhinal provides significant in-
formation in later stages than in the first 6 months. Several biomarkers
including white matter volume of left and right Amygdala, and surface
area of right posterior banks of the superior temporal sulcus (Bankssts)
provide useful information only in later time points. On the contrary,
some biomarkers have a large stability score during the first 2 years
after baseline screening, such as cortical thickness average of left inferi-
or temporal, left inferior parietal, and cortical thickness standard devia-
tion of left isthmus cingulate, right lingual, left inferior parietal, and
cortical volume of right precentral, right isthmus cingulate, and left
middle temporal cortex.

The stability vectors of stable MRI features for MMSE are shown
in Fig. 8(b). We obtain very different patterns from ADAS-Cog. We
find that most biomarkers provide significant information for the
first 2 years and very few of them are significant in later stages.
The lack of predictable MRI biomarkers in later stages is a potential
factor that contributes to the lower prediction performance of
MMSE than that of ADAS-Cog in our study and other related studies
(Stonnington et al., 2010; Zhang and Shen, 2011). The different tem-
poral patterns of biomarkers for these two scores also suggest that
restricting the two models for predicting these two scores to share
a common set of features as done in previous work may lead to
sub-optimal performance.
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Fig. 8. The stability vector of stable MRI features using cFSGL. In (a) we see that cortical thickness average of left middle temporal, cortical thickness average of left and right En-
torhinal, and white matter volume of left Hippocampus are important biomarkers for predicting ADAS-Cog scores at all time points. Cortical volume of left Entorhinal provides sig-
nificant information in later stages than in the first 6 months. Several biomarkers including white matter volume of left and right Amygdala, and surface area of right Bankssts
provide useful information only in later time points. In (b) we obtain very different patterns for MMSE. We find that most biomarkers provide significant information for predicting
MMSE scores for the first 2 years and very few of them are significant in later stages.
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Predicting the progression for MCI patients

In the study of Alzheimer's disease, theMCI patients are of particular
interest. In this section we design experiments to study the prediction
models for MCI patients. We study the prediction performance on MCI
patients using 1) only MCI patients in the training data; and 2) MCI pa-
tients together with AD patients and normal controls in the training
data.

In the first experiment we use only MCI patients in both training
and testing data. We random split the MCI patients, with 90% as
training data and 10% as testing data. We build prediction models
using the MCI training data and test the models using MCI testing
data. We permute the samples and compute the performance
based on 20 partitions of the data (into training and testing sets).
For other experimental settings, we follow the same practice as in
our previous experiments (Prediction performance using baseline
MRI features section). We use baseline MRI, demographic, and
ApoE genotyping features. In the second experiment, for each
partition we use the same MCI patients as in the first experiment,
and further include all AD and NL samples in the training data
when building the model. We use the sameMCI testing data for eval-
uating the prediction performance. In this setting, the testing sam-
ples are the same for the two experiments and our experiments
will reveal the effect of including AD and NL samples in the model
building step. The performance of predicting MMSE and ADAS-Cog
at all time points is given in Figs. 9 and 10, respectively.

We can observe from the figures that in most cases the prediction
performance with AD and NL samples included witnesses improve-
ment. For MMSE, the overall prediction performance in terms of nMSE
improves from 0.680 ± 0.189 to 0.567 ± 0.125, and the improvement
for ADAS-Cog is from 0.552 ± 0.118 to 0.544 ± 0.092. Such improve-
ment is especially significant for sparse-learning methods (Lasso, TGL,
cFSGL) at later time points. A possible explanation is that, for later
time points (M36, M48), the sample size is significantly smaller, and
the information from AD and NL subjects at the specific time point is
useful for the prediction of MCI subjects, giving rise to performance
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Fig. 9. Comparison of MMSE prediction models in terms of root mean square error (rMSE) on patients using only MCI patients in training (MCI only), and using MCI patients to-
gether with AD patients and normal controls (All). Lower rMSE indicates better performance. We see that in most cases the prediction performance with AD and NL samples in-
cluded witnesses improvement. Such improvement is especially significant for sparse-learning methods (Lasso, TGL, cFSGL) at later time points. This may be due to the small
sample size at later time points, in which the information from AD and NL subjects may be useful during the learning.
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improvement. Note that for the first three time points, it does not pro-
vide much benefit to include AD and NL subjects.

Predicting progression using features from multiple time points

The goal of our predictive modeling is to predict the cognitive
scores at future time points based on the information currently avail-
able. In the previous experiments we build models based on the base-
line imaging information only. In the longitudinal study, the patients
will be followed up for a period of time, and thus data from multiple
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Fig. 10. Comparison of ADAS-Cog prediction models in terms of root mean square error (rM
together with AD patients and normal controls (All). The results witness similar patterns a
samples included has improved, especially significant for sparse-learning methods (Lasso, T
time points may be available for building predictive models. To this
end, we build models using baseline and M06 MRI features and pre-
dict the MMSE and ADAS-Cog scores at M12, M24, M36, and M48.
We use the same experimental settings as in the previous experi-
ments and report the results in Table 5. We observe improved predic-
tive performance at these time points, as compared to the models
obtained using baseline MRI features only (Table 2). When data
from multiple time points are available, advanced structured sparsity
techniques can be used to leverage the temporal information among
features, e.g., (Wang et al., 2012; Zhang and Shen, 2012).
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SE) on patients using only MCI patients in training (MCI only), and using MCI patients
s in MMSE prediction as shown in Fig. 9. The prediction performance with AD and NL
GL, cFSGL) at later time points.



Table 5
Comparison of our proposed approaches (TGL and cFSGL) and single-task learning ap-
proaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog prediction using baseline
and M06 MRI features in terms of normalized mean square error (nMSE), weighted
correlation coefficient (wR) and root mean square error (rMSE) at each time point.
90% of data is used as training data.

Ridge Lasso TGL cFSGL

Target: MMSE
nMSE 0.493 ± 0.083 0.368 ± 0.049 0.365 ± 0.048 0.326 ± 0.054
wR 0.744 ± 0.041 0.806 ± 0.038 0.813 ± 0.035 0.836 ± 0.030
M12 rMSE 2.458 ± 0.269 2.134 ± 0.294 2.105 ± 0.294 2.132 ± 0.280
M24 rMSE 3.249 ± 0.551 2.935 ± 0.571 2.920 ± 0.569 2.677 ± 0.558
M36 rMSE 3.682 ± 0.560 3.398 ± 0.609 3.352 ± 0.598 3.067 ± 0.526
M48 rMSE 3.962 ± 1.472 2.823 ± 1.346 3.084 ± 1.226 2.428 ± 1.154

Target: ADAS-Cog
nMSE 0.535 ± 0.081 0.417 ± 0.047 0.391 ± 0.046 0.345 ± 0.061
wR 0.720 ± 0.029 0.778 ± 0.029 0.795 ± 0.028 0.834 ± 0.024
M12 rMSE 5.384 ± 0.588 4.933 ± 0.789 4.722 ± 0.684 4.611 ± 0.546
M24 rMSE 6.927 ± 0.692 6.428 ± 0.787 6.150 ± 0.748 5.341 ± 0.672
M36 rMSE 7.562 ± 1.072 6.508 ± 1.037 6.246 ± 1.072 5.389 ± 0.887
M48 rMSE 6.091 ± 2.003 4.735 ± 1.633 5.081 ± 1.758 5.213 ± 0.939

Table 6
Comparison of our proposed approaches (TGL and cFSGL) and single-task learning ap-
proaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog prediction for all patients
using only baseline MRI features in terms of normalized mean square error (nMSE),
weighted correlation coefficient (wR) and root mean square error (rMSE) at each
time point. 90% of data is used as training data.

Ridge Lasso TGL cFSGL

Target: MMSE
nMSE 0.750 ± 0.089 0.691 ± 0.064 0.641 ± 0.055 0.536 ± 0.061
wR 0.554 ± 0.038 0.573 ± 0.049 0.616 ± 0.044 0.711 ± 0.033
M06 rMSE 2.746 ± 0.192 2.620 ± 0.229 2.538 ± 0.217 2.486 ± 0.202
M12 rMSE 3.812 ± 0.533 3.605 ± 0.640 3.478 ± 0.636 3.184 ± 0.662
M24 rMSE 4.094 ± 0.510 4.095 ± 0.644 3.978 ± 0.650 3.423 ± 0.561
M36 rMSE 4.539 ± 0.917 4.544 ± 1.051 4.355 ± 1.098 3.732 ± 0.928
M48 rMSE 4.526 ± 1.375 4.342 ± 1.378 4.068 ± 1.411 3.380 ± 1.129

Target: ADAS-Cog
nMSE 0.675 ± 0.109 0.669 ± 0.094 0.605 ± 0.076 0.468 ± 0.076
wR 0.606 ± 0.049 0.599 ± 0.040 0.646 ± 0.036 0.751 ± 0.030
M06 rMSE 6.020 ± 0.620 5.967 ± 0.741 5.698 ± 0.650 5.002 ± 0.352
M12 rMSE 6.770 ± 0.892 6.936 ± 0.931 6.609 ± 0.882 5.678 ± 0.724
M24 rMSE 8.454 ± 1.372 8.361 ± 1.302 8.010 ± 1.349 7.050 ± 1.201
M36 rMSE 8.165 ± 1.433 8.105 ± 1.576 7.772 ± 1.537 6.646 ± 1.148
M48 rMSE 6.692 ± 2.830 6.709 ± 2.774 6.203 ± 2.713 5.368 ± 2.022
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Discussion

This paper has three major contributions. First, we formulated the
disease progression prediction as a multi-task learning problem. Sec-
ond, we proposed two multi-task learning formulations that make
use of the intrinsic temporal relationship among tasks. In our experi-
ments on ADNI dataset, the cFSGL formulation significantly improved
the prediction performance, compared to other methods. Third, we
proposed longitudinal stability selection to analyze the dynamic pat-
terns of biomarkers using our proposed formulations.

Many existing works analyzed the relationship between cognitive
scores and imagingmarkers based onMRI such as graymatter volumes,
density and loss (Apostolova et al., 2006; Chetelat and Baron, 2003;
Frisoni et al., 2002, 2010; Stonnington et al., 2010), shape of ventricles
(Ferrarini et al., 2008; Thompson et al., 2004) and hippocampal
(Thompson et al., 2004) by correlating these features with baseline
MMSE scores. Notably, the above studies related the biomarkers to
only one time point. In our work we simultaneously consider the pre-
diction models at multiple time points in order to make use of the tem-
poral information in the longitudinal study. In studying the longitudinal
progression of Alzheimer's disease, researchers developed alternative
measurements for studying disease progression. An example is the
pre-progression rate (Doody et al., 2001), which estimates the rate of
change of cognitive status evaluated by the reduction of clinical scores.
However, the computation of the pre-progression requires the estimat-
ed duration of symptoms in years. This estimation may be inaccurate
due to the fact that the disease may be on set earlier than when any
symptom begins (Jack et al., 2010).

To predict the longitudinal response to Alzheimer's disease progres-
sion, Ashford and Schmitt built a model with horologic function using
“time-index” to measure the rate of dementia progression (Ashford and
Schmitt, 2001). Doody et. al. used pre-progression rate to assign the 597
AD patients in their study into three groups (slow, intermediate, and
fast) and used the data to fit themixed-effectmodels (Doody et al., 2010).

Ito et al. proposed to model the progression rate of cognitive scores
using power functions and used 817 patients from ADNI to fit the their
model (Ito et al., 2010). In using power functions, due to themodel com-
plexity, the number of features to be included in themodel is limited. In-
cluding MRI features as done in our study, for example, is prohibited.

In the longitudinal stability selection, we observe that the volume of
left hippocampus, cortical thickness average of middle temporal gyri
and cortical thickness average of left and right entorhinal are among the
most stable features for bothMMSE and ADAS-Cog scores. These findings
agreewith the known knowledge that in the pathological pathway of AD,
medial temporal lobe (hippocampus and entorhinal cortices) is firstly
affected, followed by progressive neocortical damage (Braak and Braak,
1991; Delacourte et al., 1999). Evidence of a significant atrophy of middle
temporal gyri in AD patients has also been observed in previous studies
(Apostolova et al., 2006; Convit et al., 2000; Julkunen et al., 2009). Besides
hippocampus andmiddle temporal, we also find isthmus cingulate a very
stable feature for MMSE. The atrophy of isthmus cingulate is considered
high in AD patients (McEvoy et al., 2009). In addition, cortical thickness
average of left inferior parietal and volume of right inferior parietal are
also found to be stable. This agrees with evidence from the previous
study that includes pathological confirmation of the diagnosis (Likeman
et al., 2005), which shows that parietal atrophy contributes to predictive
values for diagnosing AD. Both ADAS-Cog andMMSE are global cognitive
scores that are used to evaluate the general cognitive status, and however
based on the stable biomarkers found in this study, they have very differ-
ent temporal patterns, which may have caused the difference in longitu-
dinal predictability using the same set of features included in this study.

In the study of prediction models for MCI patients, our experimen-
tal results show that including AD and NL samples in training im-
proves the performance especially at later time points. In the
situation where MCI training samples are very limited, information
from AD and NL samples can be used to improve the performance
of MCI prediction. This result has implications for MCI targeted stud-
ies (e.g., Julkunen et al., 2009; Misra et al., 2009; Spulber et al., 2010)
in that some progression information from other populations other
than MCI patients can potentially benefit the studies. However, we
also find that for the first three time points there is a slight perfor-
mance decrease especially for the ADAS-Cog prediction (see Fig. 10)
after including AD and NL samples. This suggests that, when it
comes to transfer information from other population for modeling
progression, simply treating all time points in the same manner
may be suboptimal, which is also a common disadvantage of symmet-
ric multi-task learning formulations. Developing disease progression
models via asymmetric multi-task learning (e.g., Xue et al., 2007)
may mitigate the problem.We plan to explore this in our future work.

In Duchesne et al. (2009) and Stonnington et al. (2010), no base-
line MMSE and/or ADAS-Cog information is included in the model.
To compare with the approaches in Duchesne et al. (2009) and
Stonnington et al. (2010), we build predictive models using baseline
MRI features only. We use the same experimental settings as in
the previous experiments and report the results in Table 6. We can
observe from the table that the performance is not as good as the
one with the baseline scores included in the model (see Table 2).
We also list the predictive performance reported in several existing



Table 7
Comparison of the proposed approach with related works in the literature. AD, MCI, and NL refer to Alzheimer's disease patients, mild cognitive impairment patients, and normal
controls, respectively.

Method Target Subjects Feature Result (correlation)

Duchesne et al. (2009) M12 MMSE 75 NL, 49 MCI, 75 AD Baseline MRI, age, gender, years of education MMSE: 0.31 (p = 0.03)
Stonnington et al. (2010) Baseline MMSE and

ADAS-Cog
Set1: 73 AD, 91 NL Set2 (ADNI):
113 AD, 351 MCI, 122 NL

Baseline MRI, CSF MMSE: Set1: 0.7 (p b 10e−5)
Set2: 0.48 (p b 10e−5) ADAS-Cog:
Set2: 0.57 (p b 10e−5)

cFSGL M06–M36 MMSE and
ADAS-Cog

ADNI: 133 AD, 304 MCI, 188 NL Baseline MRI Avg MMSE: 0.711 (p b 10e−5)
Avg ADAS-Cog: 0.751 (p b 10e−5)

cFSGL M06–M36 MMSE and
ADAS-Cog

ADNI: 133 AD, 304 MCI, 188 NL Baseline MRI, age, ApoE4, baseline MMSE,
baseline ADAS-Cog, years of education

Avg MMSE: 0.824 (p b 10e−5)
Avg ADAS-Cog: 0.854 (p b 10e−5)

246 J. Zhou et al. / NeuroImage 78 (2013) 233–248
studies in Table 7. We find that the proposed cFSGL achieves better
predictive performance than existing methods.

In the prediction of targets such as cognitive scores, one important
issue is the ceiling and/or flooring effect, as the valid target lies in a
closed interval. For example, the full score of MMSE is 30 and the low-
est possible MMSE score is 0. The ADAS-Cog lies in the interval [0,70].
For the prediction of such targets, we can apply the idea of ‘censored
regression’. One of the most popular methods in censored regression
is the Tobit model (Amemiya, 1973, 2010). The consistency and inter-
pretation of the Tobit model have been well studied (Amemiya, 1973,
2010) and the Tobit model has also been used widely in many areas
including economics, statistics, and bioinformatics (Epstein et al.,
2003; Frone et al., 1994; McBee, 2010; McDonald and Moffitt, 1980;
Ravona-Springer et al., 2012). We incorporate the Tobit model in
the proposed formulation and perform experiments to compare the
models with and without Tobit censoring in predicting MMSE and
ADAS-Cog. The experimental setting is the same as in the previous ex-
periments and the results are shown in Table 8. We find that the Tobit
model improves the performance for both MMSE and ADAS-Cog pre-
dictions, however the improvement is minor in all cases.
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Appendix A. Analytical solution of temporal smoothness
regularized formulation

Denote Pr :ð Þ as the row selection operator parameterized by a se-
lection vector r. The resulting matrix of Pr Að Þ includes only Ai such
that ri ≠ 0, where Ai is the ith row of A. Let Si be the ith column of
S. We therefore denote X ið Þ ¼ PSi Xð Þ∈Rni�d as the input data matrix
of the ith task, and y ið Þ ¼ PSi Yi

� �
∈Rni�1 as the corresponding target

vector, where ni is number of samples from the ith task. First, we
take the derivative of Eq. (3) with respect to W and set it to zero:

XTXW−XTY þ θ1W þ θ2WHHT ¼ 0; ð13Þ

XTX þ θ1Id
� �

W þW θ2HH
T

� �
¼ XTY; ð14Þ

where Id is the identity matrix of size d by d. Since both matrices
(XTX + θ1Id) and θ2HHT are symmetric, we write the eigen-

decomposition of these twomatrices byQ1Λ1Q1
T andQ2Λ2Q2

T, whereΛ1 ¼
diag λ 1ð Þ

1 ;λ 2ð Þ
1 ;…;λ dð Þ

1

� �
and Λ2 ¼ diag λ 1ð Þ

2 ;λ 2ð Þ
2 ;…;λ dð Þ

2

� �
, are their ei-

genvalues, and Q1 and Q2 are orthogonal. Plugging them into Eq. (14)
we get:

Q1Λ1Q
T
1W þWQ2Λ2Q

T
2 ¼ XTY ; ð15Þ

Λ1Q
T
1WQ2 þ QT

1WQ2Λ2 ¼ QT
1X

TYQ2: ð16Þ

http://www.fnih.org


Input: V, R, λ1, λ2, λ3

Output: W
1: for i =1: t do
2: ui ¼ argminw

1
2 w−vik k22 þ λ1 wk k1 þ λ2 Rwk k1

3: wi ¼ argminw
1
2 w−uik k22 þ λ3 wk k2

4: end for
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Denote Ŵ ¼ QT
1WQ2 and D = Q1

TXTYQ2. Eq. (16) becomes
Λ1Ŵ þ ŴΛ2 ¼ D. Thus Ŵ is given by:

Ŵ i;j ¼
Di;j

λ ið Þ
1 þ λ jð Þ

2

: ð17Þ

The optimal weight matrix is then given by W� ¼ Q1ŴQT
2.

Appendix B. Analytical solution of temporal smoothness regularized
formulation with incomplete data

Similar to the case without missing target values considered in
Appendix A, we take the derivative of Eq. (4) with respect to wi

(2 ≤ i ≤ t − 1) and set it to zero:

Awi−1 þMiw
i þ Awiþ1 ¼ Ti; ð18Þ

where A, Mi, and Ti are defined as follows:

A ¼ −θ2Id;
Mi ¼ XT

ið ÞX ið Þ þ θ1Id þ 2θ2Id;
Ti ¼ XT

ið Þy ið Þ:

For the special case i = 1, the term ‖wi − 1 − wi‖2
2 does not exist,

nor is the term ‖wi − wi + 1‖2
2 for i = t. We combine the equations

for all tasks (1 ≤ i ≤ t), which can be represented as a block tridiagonal
linear system:

M1 A 0
A M2 A

⋱
A Mt−1 A

0 A Mt

0
BBBB@

1
CCCCA

w1

w2

⋮
wt−1

wt

0
BBBB@

1
CCCCA ¼

T1
T2
⋮

Tt−1
Tt

0
BBBB@

1
CCCCA: ð19Þ

For a general linear system of size td, it can be solved using Gaussian
elimination with a time complexity of O((td)3). For our block
tridiagonal system, the complexity is reduced to O(d3t) using block
Gaussian elimination. For large-scale linear systems, the LSQRalgorithm
(Paige and Saunders, 1982), a popular iterative method for the solution
of large linear systems of equations, can be employed with a time com-
plexity of O(Ntd2), where N, the number of iterations, is typically small.

Appendix C. Decomposition property of cFSGL

Theorem 1. Define

πFL vð Þ ¼ arg min
w

1
2

w−vk k22 þ λ1 wk k1 þ λ2 Rwk k1 ð20Þ

πGL vð Þ ¼ arg min
w

1
2

w−vk k22 þ λ3 wk k2: ð21Þ

Then the following holds:

π vð Þ ¼ πGL πFL vð Þð Þ: ð22Þ

Proof. The necessary and sufficient optimality conditions for Eqs. (8),
(20), and (21) can be written as:

0∈π vð Þ−v þ λ1SGN π vð Þð Þ þ λ2R
TSGN Rπ vð Þð Þ þ λ3∂g π vð Þð Þ; ð23Þ

0∈πFL vð Þ−v þ λ1SGN πFL vð Þð Þ þ λ2R
TSGN RπFL vð Þð Þ; ð24Þ

0∈πGL πFL vð Þð Þ−πFL vð Þ þ λ3∂g πGL πFL vð Þð Þð Þ; ð25Þ
where SGN(x) is a set defined in a componentwise manner as:

SGN xð Þð Þi ¼
−1;1½ � xi ¼ 0
1f g xi > 0
−1f g xib0;

8<
: ð26Þ

and

∂g xð Þ ¼
x
xk k2

x≠0

y : yk k2≤1
	 


x ¼ 0:

8<
: ð27Þ

It follows from Eqs. (25) and (27) that: 1) if ‖πFL(v)‖2 ≤ λ3, then
πGL(πFL(v)) = 0; and 2) if ‖πFL(v)‖2 > λ3, then

πGL πFL vð Þð Þ ¼ πFL vð Þk k2−λ3

πFL vð Þk k2
πFL vð Þ:

It is easy to observe that, 1) if the ith entry of πFL(v) is zero, so is
the ith entry of πGL(πFL (v)); 2) if the ith entry of πFL(v) is positive
(or negative), so is the ith entry of πGL(πFL (v)). Therefore, we have

SGN πFL vð Þð ÞpSGN πGL πFL vð Þð Þð Þ: ð28Þ

Meanwhile, 1) if the ith and the i + 1th entries of πFL(v) are identi-
cal, so are those of πGL(πFL (v)); 2) if the ith entry is larger (or smaller)
than the i + 1th entry in πFL(v), so is in πGL(πFL (v)). Therefore, we have

SGN RπFL vð Þð ÞpSGN RπGL πFL vð Þð Þð Þ: ð29Þ

It follows from Eqs. (24), (25), (28), and (29) that

0∈πGL πFL vð Þð Þ−v þ λ1SGN πGL πFL vð Þð Þð Þ
þλ2R

TSGN RπGL πFL vð Þð Þð Þ þ λ3∂g πGL πFL vð Þð Þð Þ: ð30Þ

Since Eq. (8) has a unique solution, we can get Eq. (22) from Eqs.
(23) and (30). □

Note that the fused Lasso signal approximator (Friedman et al.,
2007) in Eq. (21) can be effectively solved using (Liu et al., 2010).
The complete algorithm for solving the proximal operator associated
with cFSGL is given in Algorithm 1.

Algorithm 1. Proximal operator associated with the convex fused
sparse group Lasso (cFSGL).
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