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Abstract
Categorizing people with late-onset Alzheimer’s disease into biologically coherent subgroups is important for personalized
medicine. We evaluated data from five studies (total n= 4050, of whom 2431 had genome-wide single-nucleotide
polymorphism (SNP) data). We assigned people to cognitively defined subgroups on the basis of relative performance in
memory, executive functioning, visuospatial functioning, and language at the time of Alzheimer’s disease diagnosis. We
compared genotype frequencies for each subgroup to those from cognitively normal elderly controls. We focused on APOE
and on SNPs with p < 10−5 and odds ratios more extreme than those previously reported for Alzheimer’s disease (<0.77 or
>1.30). There was substantial variation across studies in the proportions of people in each subgroup. In each study, higher
proportions of people with isolated substantial relative memory impairment had ≥1 APOE ε4 allele than any other subgroup
(overall p= 1.5 × 10−27). Across subgroups, there were 33 novel suggestive loci across the genome with p < 10−5 and an
extreme OR compared to controls, of which none had statistical evidence of heterogeneity and 30 had ORs in the same
direction across all datasets. These data support the biological coherence of cognitively defined subgroups and nominate
novel genetic loci.

Introduction

Clinical heterogeneity is common among people with late-
onset Alzheimer’s disease (see [1] for a review). Categor-
izing people with a condition into biologically coherent
subgroups is an important personalized medicine strategy
[2]. This strategy is particularly recommended for neuro-
degenerative conditions [3]. Once biologically coherent

subgroups are identified, further investigations may eluci-
date subgroup-specific treatments.

Genetic data may be useful for determining whether a
proposed categorization strategy results in biologically
coherent subgroups (see the Box 1).

We have developed an approach for categorizing people
with late-onset Alzheimer’s disease based on relative per-
formance across cognitive domains. We determine each
person’s average performance at diagnosis across memory,
executive functioning, language, and visuospatial ability,
and consider relative impairments in each domain from that
average. We previously evaluated one study’s data and
showed that our strategy identified a subgroup with higher
degrees of amyloid angiopathy and higher proportions
with≥1 APOE ε4 allele [4].

Here, we evaluate data from five studies with people with
late-onset Alzheimer’s disease [5] and cognitively normal

Corrected: Correction

* Paul K. Crane
pcrane@uw.edu

Extended author information available on the last page of the article.

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41380-018-0298-8) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-018-0298-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-018-0298-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-018-0298-8&domain=pdf
http://orcid.org/0000-0002-1376-8532
http://orcid.org/0000-0002-1376-8532
http://orcid.org/0000-0002-1376-8532
http://orcid.org/0000-0002-1376-8532
http://orcid.org/0000-0002-1376-8532
http://orcid.org/0000-0002-7207-4696
http://orcid.org/0000-0002-7207-4696
http://orcid.org/0000-0002-7207-4696
http://orcid.org/0000-0002-7207-4696
http://orcid.org/0000-0002-7207-4696
http://orcid.org/0000-0002-6161-5557
http://orcid.org/0000-0002-6161-5557
http://orcid.org/0000-0002-6161-5557
http://orcid.org/0000-0002-6161-5557
http://orcid.org/0000-0002-6161-5557
https://doi.org/10.1038/s41380-019-0348-x
mailto:pcrane@uw.edu
https://doi.org/10.1038/s41380-018-0298-8


elderly controls [6]. We used modern psychometric approaches
to co-calibrate cognitive scores. We used scores to identify
subgroups. We used genetic data to determine whether our
categorization identifies biologically coherent subgroups.

Materials and methods

Study design and participants

We used data from the Adult Changes in Thought (ACT)
study, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), the Rush Memory and Aging Project (MAP) and
Religious Orders Study (ROS), and the University of
Pittsburgh Alzheimer Disease Research Center (PITT).
Each study has published widely, and their genetic data are
included in large analyses of late-onset Alzheimer’s disease
[6, 7]. All five studies use the same research criteria to
define clinical Alzheimer’s disease [5]. Three studies (ACT,

MAP, and ROS) are prospective cohort studies that enroll
cognitively normal elderly individuals and follow them to
identify incident dementia cases. For these, we analyzed
cognitive data from the visit with the incident clinical
Alzheimer’s disease diagnosis. Two studies (ADNI and
PITT) are clinic-based research cohort studies. For those
studies we analyzed cognitive data from the first study visit
for people with prevalent Alzheimer’s disease; we limited
inclusion to those with Clinical Dementia Rating Scale [8]
of 0.5 or 1, indicating mild Alzheimer’s disease. For people
from ADNI or PITT who did not initially have Alzheimer’s
disease, we analyzed cognitive data from the incident Alz-
heimer’s disease visit. The University of Washington IRB
approved these secondary analyses of coded data.

In each study, we included people diagnosed with late-
onset Alzheimer’s disease as defined by research criteria
[5]. We used data from everyone for all analyses other than
genetic analyses; we limited those to self-reported whites.
For genetic analyses we also used data from self-reported

Box 1 Schematic representation of incoherent vs. coherent subgrouping

The large group at the top represents a heterogeneous group of individuals. A strategy is applied to categorize individuals into subgroups. For a
precision medicine approach to work, the categorization should reduce heterogeneity. In the lower left figure, the method did not reduce
heterogeneity and thus we refer to this as an incoherent subgrouping strategy. In contrast, the lower right figure was produced by a different
method which resulted in relatively homogenous subgroups; this method would represent a coherent subgrouping strategy.
For incoherent subgroup comparisons with controls, top genetic hits, and effect sizes would not be expected to be different than those observed
in the entire group. Further, for a given incoherent subgroup, spurious genetic associations at a locus would not be expected to replicate in that
subgroup in other datasets. In contrast, for coherent subgroup comparisons with controls, there is improved potential for identification of novel
loci and effect sizes could be stronger than those seen for the original ungrouped data. Further replication of subgroup associations in other
datasets would occur more often than expected by chance.
Genetic data may serve a useful role in determining whether a categorization strategy produces biologically coherent subgroups.
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white cognitively normal elderly controls from each study.
Details on those cohorts are included in reports from the
parent studies and in Supplementary Text 6 (derived from
Lambert et al. [6]).

Cognitive data procedures

Staff from each study administered a comprehensive neu-
ropsychological test battery that included assessment of
memory, executive functioning, language, and visuospatial
functioning. We obtained granular (“item-level”) data from
each parent study. Each stimulus administered to a participant
was deemed an “item”. As outlined in our previous paper [2],
every item administered in each study was considered by our
panel of experts (JM, ET, AJS). Our panel designated each
item as primarily a measure of memory, executive function-
ing, language, visuospatial functioning, or none of these.
They also assigned items to theory-driven subdomains.

We carefully considered items where the same stimulus
was administered to participants across different studies to
identify “anchor items” that could anchor metrics across
studies. We reviewed response categories recorded by each
study for these overlapping items to ensure that consistent
scoring was used across studies. We identified anchor items
as those overlapping items with identical scoring across
studies. We used bifactor models in Mplus [9] to co-
calibrate separate scores for memory, executive functioning,
language, and visuospatial functioning.

Details of item assignments, psychometric analyses in
each study, and co-calibration methodology across studies
are provided in Supplementary Texts 1, 2, and 5. Code is
available from the authors upon request.

We used the ACT sample of people with incident Alz-
heimer’s disease as our reference population for the purpose
of scaling domain scores; ACT was our largest sample from
a prospective cohort study of people with late-onset Alz-
heimer’s disease. We z-transformed scores from other stu-
dies to ACT-defined metrics for each domain.

Assignment to subgroups

We assigned people to subgroups as we have done pre-
viously [4]. Briefly, for each person we determined their
average score across memory, executive functioning, lan-
guage, and visuospatial functioning. We determined dif-
ferences between each domain score and this average score.
We identified domains with substantial relative impairments
as those with relative impairments at least as large as
0.80 standard deviation units as explained in Supplementary
Text 3. We categorized people by the number of domains
with substantial relative impairments (0, 1, or ≥2) and fur-
ther categorized those with substantial relative impairments
in a single domain by the domain with a substantial relative

impairment. This approach results in six potential sub-
groups: those with no domain with a substantial relative
impairment; those with an isolated substantial relative
impairment in one of four domains (e.g., isolated substantial
relative memory impairment, isolated substantial relative
language impairment, etc.), and those with multiple
domains with substantial relative impairments.

Statistical analyses

As in our previous study [4], we compared the proportion of
people with late-onset Alzheimer’s disease in each sub-
group with at least one APOE ε4 allele. For other genetic
analyses we combined data from ROS and MAP, as has
been done many times previously, and evaluated data
separately in four genetic datasets. Each dataset was
imputed using IMPUTE2 and samples of European ancestry
from the 2012 build of the 1000 Genomes project. We
excluded SNPs with R2 or information scores < 0.5, and
SNPs with a minor allele frequency <3%. Further details are
provided in Supplementary Text 6 and in Lambert et al. [6]

We used KING-Robust [10] to obtain study-specific
principal components to account for population stratifica-
tion. We used logistic regression in PLINK v 1.9 [11] to
evaluate associations at each SNP for each cognitively
defined subgroup. Cognitively normal elderly controls from
each study were the comparison group for all of these
analyses. We included covariates for age, sex, and principal
components. We used METAL [12] for meta-analysis.

IGAP’s most extreme odds ratio (OR) outside of chro-
mosome 19 was for rs11218343 associated with SORL1,
which had an OR of 0.77 reported in the Stages 1 and 2 meta-
analysis [6]. We focused attention on SNPs where meta-
analysis ORs for any cognitively defined subgroup were <
0.77 (or, equivalently, ORs > [1/0.77], which is >1.30). As
presented in the Box 1, more extreme ORs in a single sub-
group, with strong replication across genetic datasets,
would represent strong support of biologically coherent
categorization.

For genetic loci previously identified as associated with
risk of late-onset Alzheimer’s disease, we used the methods
described in ref. [13] applied to IGAP’s previously reported
ORs and confidence intervals to determine significance of
subgroup associations compared to IGAP.

We used genetic data from all cognitively normal elderly
controls and all people with Alzheimer’s disease to generate
Alzheimer’s disease and subgroup genetic risk scores. We
used (1) IGAP SNPs and effect sizes to generate Alzhei-
mer’s disease risk scores and (2) our results to generate risk
scores for each of the five subgroups.

To evaluate these risk scores, we used logistic regres-
sion with Alzheimer’s disease case vs. control status as
the outcome, and included terms for age and sex. We
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compared a model with just the addition of the IGAP
genetic risk score to a model that incorporated that score
plus the five subgroup risk scores. Finally, we compared
area under the receiver operator characteristic (ROC)
curves for the model with the IGAP risk score to a model
that did not include that term but included terms for the
five subgroup risk scores. Further details are shown in
Supplementary Text 12.

Data sharing

Co-calibrated scores for each domain are available from the
parent studies. GWAS meta-analysis summary statistics for
each subgroup will be available on the National Institute on
Aging Genetics of Alzheimer’s Disease Storage Site
(NIAGADS; https://www.niagads.org/datasets/ng00073).
Other study materials are available here: https://digital.lib.
washington.edu/researchworks/handle/1773/40364.

Role of the funding source

The funders of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of
the report. All authors had full access to all the data in the
study. The corresponding author had final responsibility for
the decision to submit the publication.

Results

In all, there were 4050 people with sufficient cognitive data
to be classified into a subgroup. Demographic character-
istics and average cognitive domain scores by study are
shown in Table 1. Participants in the prospective cohort
studies (ACT, MAP, and ROS) were older on average than
those from ADNI and PITT. Most participants in each study

self-reported white race (90% in ACT to 96% in MAP).
There was some variation in cognitive performance across
studies. The most notable differences from ACT (our
reference for scaling) were for executive functioning in
ADNI and ROS (average 0.8 units higher), and for language
in MAP (average 0.8 units lower).

Proportions of people in each subgroup are shown in
Fig. 1. There was considerable heterogeneity in proportions
across studies (χ2df=20= 468.7, p= 1.0 × 10−86).

Demographic characteristics of people in each subgroup
were similar to those for people with Alzheimer’s disease
overall (Supplementary Table 29). The proportion who
were female ranged from 51% for isolated substantial
relative executive functioning impairment to 63% of those
with isolated substantial relative visuospatial impairment.
Mean age at diagnosis ranged from 79 for those with iso-
lated substantial relative visuospatial or memory impair-
ment to 82 for those with isolated substantial relative

Table 1 Demographic and
cognitive characteristics of
people with late-onset
Alzheimer’s disease by study
and overall

Characteristic ACT
(n= 825)

ADNI
(n= 650)

MAP
(n= 404)

ROS
(n= 419)

PITT
(n= 1752)

Overall
(n= 4050)

Female sex, n (%) 522 (63%) 267 (41%) 285 (71%) 302 (72%) 1106 (63%) 2482 (61%)

Age at diagnosis, mean (SD) 86 (6) 77 (7) 87 (6) 85 (6) 76 (7) 80 (8)

Years of education, mean (SD) 14 (3) 15 (3) 14 (3) 18 (3) 14 (3) 14 (3)

Self-reported white race, n (%) 743 (90%) 613 (94%) 386 (96%) 382 (91%) 1 595 (91%) 3 719 (92%)

Composite scores for each cognitive domain, mean (SD)

Memory 0.0 (1.0) 0.0 (1.0) −0.5 (1.1) 0.0 (1.0) −0.6 (1.1) -0.3 (1.1)

Visuospatial 0.0 (1.0) 0.3 (1.0) 0.1 (1.1) 0.1 (1.0) 0.4 (1.5) 0.3 (1.3)

Executive function 0.0 (1.0) 0.8 (1.2) 0.5 (1.0) 0.8 (1.0) 0.3 (0.8) 0.4 (1.0)

Language 0.0 (1.0) 0.5 (1.0) −0.8 (1.2) -0.4 (1.1) −0.1 (1.2) -0.1 (1.2)

Fig. 1 Proportions of people in each study and overall in each cog-
nitively defined subgroup
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language impairment. Mean years of education did not vary
substantially across subgroups.

There were 3701 people with APOE genotype data
(Table 2). We published APOE results from ACT [4]; the
proportion of those with isolated substantial memory
impairment with ≥ 1 APOE ε4 allele was 12% higher than
overall in that study. This finding was consistent across all
five studies. Overall, the proportion of people with ≥ 1
APOE ε4 allele was 15% higher in those with isolated
substantial memory impairment (65%) compared with the
entire sample (50%). The differences in proportions with ≥ 1
APOE ε4 allele were highly significant (p= 1.5 × 10−27).
The APOE result was not sensitive to choosing other
thresholds to indicate a substantial relative impairment
(Supplementary Text 4 and Supplementary Fig. 2).

There were 2431 people with late-onset Alzheimer’s
disease and 3447 cognitively normal elderly controls with
genome-wide SNP data. Top results are shown in Fig. 2.
There were 33 loci outside Chromosome 19 where the p-
value for one subgroup was < 5 × 10−5. All of these had
ORs < 0.77 or > 1.30 compared to cognitively normal
elderly controls. These included nine loci for those with
isolated substantial visuospatial impairment (red dots,
including rs2289506 near NIT2 on chromosome 3,
rs9369477 near SPATS1 on chromosome 4, rs2046197 near
CSMD1 on chromosome 8, and rs8091629 near SLC14A2
on chromosome 18), nine for those with multiple domains
with substantial relative impairments (yellow dots, includ-
ing rs698842 near NRXN1 on chromosome 2, rs78872508
near HDAC9 on chromosome 7, and rs4348488 near BMP1
on chromosome 8), seven for those with no domain with a
substantial relative impairment (purple dots, including
rs11708767 near MED12L on chromosome 3, rs72839770
near DVL2 on chromosome 17, and rs7264688 near
MGME1 on chromosome 20), six for those with isolated
substantial language impairment (green dots, including
rs13374908 near FAM163A on chromosome 1, rs28715896
near ERBB4 on chromosome 2, and rs75337321 near
CACNA2D3 on chromosome 3), and two for those with
isolated substantial memory impairment (blue dots,
including rs1977412 near AGT on chromosome 1), and one
for those with no domains with substantial impairments

(purple dot, rs7264688 near MGME1 on chromosome 20).
Other loci shown in Fig. 2 not named in the preceding
sentence were > 50 kb from genes. Replication results are in
Supplementary Tables 2a and 2b. All ORs were in the same
direction for all these SNPs except rs28715896 on chro-
mosome 2 near ERBB4, rs61835453 on chromosome 10,
and rs365521 on chromosome 17. Heterogeneity p values
did not suggest heterogeneity for any of these SNPs. No
SNP outside the APOE region reached p < 5 × 10−8, the
traditional level of genome-wide significance (Fig. 2).

Results for selected IGAP loci are shown in Supple-
mentary Table 30. We selected subgroups with meta-
analytic ORs < 0.77 or > 1.30 and for which results from all
four data sets were in the same direction. Results for other
IGAP SNPs for all studies and all subgroups are in Sup-
plementary Table 31.

Across all datasets, there were 5878 people with SNP data
who were either normal controls or Alzheimer’s disease cases.
The logistic regression model for case vs. control status with
age, sex, and IGAP gene scores had a likelihood of 176.13
and a pseudo-R2 of 0.022. A model that included all of those
terms and also included five subgroup gene scores had a
likelihood of 311.94 and a pseudo-R2 of 0.039. These were
nested models; we compared them with a likelihood ratio test
with five degrees of freedom. The difference in likelihoods
was highly significant (p= 1.39 × 10−27).

The area under the ROC curve for the model with age,
sex, and the IGAP genetic risk score was 0.60 (95% CI
0.58, 0.61), while for the model with age, sex, and five
subgroup genetic risk scores, the area under the ROC curve
was 0.62 (95% CI 0.61, 0.64). This difference was statis-
tically significant (χ2df=1= 11.15, p= 0.0008). Further
analyses are described in Supplementary Text 12.

Discussion

We used modern psychometric methods to co-calibrate cog-
nitive data to generate domain scores across five different
studies of older adults with research-quality clinical Alzhei-
mer’s disease diagnoses. We obtained scores on the same
metric, so scores from different studies were directly

Table 2 Proportion of those in each cognitively defined subgroup with ≥ 1 APOE ϵ4 allele, by study and overall

Study No domain Memory Executive Language Visuospatial Multiple domains Overall p-valuea

ACT (n= 711) 134 (35%) 51 (46%) 11 (24%) 14 (24%) 27 (30%) 6 (32%) 243 (34%) 0.022

ADNI (n= 650) 185 (66%) 139 (73%) 10 (63%) 30 (58%) 48 (57%) 15 (54%) 427 (66%) 0.07

MAP (n= 386) 45 (34%) 33 (44%) 1 (33%) 23 (27%) 9 (26%) 21 (39%) 132 (34%) 0.24

ROS (n= 393) 49 (35%) 26 (48%) – 31 (28%) 26 (41%) 11 (46%) 143 (36%) 0.08

PITT (n= 1561) 283 (54%) 411 (70%) 15 (65%) 72 (44%) 97 (57%) 39 (44%) 917 (59%) 5.1 × 10−11

Overall (n= 3701) 696 (48%) 660 (65%) 37 (42%) 170 (36%) 207 (47%) 92 (43%) 1861 (50%) 1.5 × 10−27

ap values based on χ2(4) for ROS, otherwise χ2 (5)
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comparable to each other. The proportion of people with
Alzheimer’s disease in each study categorized in each sub-
group varied across studies (Fig. 1). We used genetic data to
determine whether our categorization scheme resulted in
biologically coherent subgroups. Top genetic associations
from each subgroup were consistent across studies,

suggesting our findings were not due to idiosyncrasies of any
particular study. Gene scores for subgroups performed better
in predicting case vs. control status than gene scores derived
from Alzheimer’s disease case-control analyses.

APOE genotype was significantly different across sub-
groups. We previously showed in ACT that more people
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Fig. 2 Novel SNPs associated with cognitively defined subdomains
with p < 10–5 and OR < 0.77 or > 1.33. CAF=coded allele frequency.
SNPs further than 50 kB from a gene do not have a gene
name reported here. Gray shading in the odds ratios column of the

figure delineates ORs > 0.77 and < 1.30, which is the range of ORs
outside APOE from the International Genomics of Alzheimer’s Project
(IGAP) [6]
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with isolated substantial relative memory impairment had at
least one APOE ε4 allele than people in other subgroups [4].
We robustly replicated that finding here (Table 2). Asso-
ciations between APOE ε4 alleles and memory impairment
among people with Alzheimer’s disease have been pre-
viously noted [14].

Outside of chromosome 19 which was dominated by
APOE-related signals for all subgroups, we identified 33 loci
with p < 10−5 for at least one subgroup. All of these had ORs
< 0.77 or > 1.30 (Fig. 2). There were consistent findings across
datasets for nearly all these loci (Supplementary Text 7–11).

Gene scores from IGAP SNPs explained a modest
amount of risk for case-control status. Adding gene scores
from our cognitively defined subgroups improved predic-
tion of Alzheimer’s disease. Furthermore, in a head-to-head
comparison, gene scores for cognitively defined subgroups
did a better job predicting Alzheimer’s disease status than
did gene scores from IGAP SNPs.

These data provide strong support for the biological
coherence of subgroups produced by our categorization
scheme. Each subgroup we analyzed has extreme ORs at
novel SNPs that were consistent across multiple independent
samples. Even with the relatively small sample sizes from
these studies, the large effect sizes at common SNPs produced
p values that are close to genome-wide significance.

Others have used different data sources to categorize
people with Alzheimer’s disease. Sweet and colleagues
compared people with Alzheimer’s disease who developed
psychosis to those who did not [15]. They identified a few
interesting loci, but effect sizes were much smaller than
those reported here (Supplementary Text 13).

We were part of a consortium evaluating rates of decline
among people with Alzheimer’s disease [16]. The evidence
in support of rates of decline, as an organizing characteristic
among people with Alzheimer’s disease, is not nearly as
strong as that shown here for cognitively defined subgroups.

Others have used cluster analysis approaches applied to
neuropsychological [17, 18] or imaging [19, 20] data to
categorize people with Alzheimer’s disease. There are very
important distinctions between those approaches and the
approach adopted here. In cluster analysis, the computer
maximizes some distance across groups in a way that may
not make clinical or biological sense. Disease severity is an
important consideration (see [21] for a better discussion).

Our approach began with theory and focused exclusively
on cognitive data. An early paper considered differences
between memory and executive functioning among people
with Alzheimer’s disease [22]. Differences between these
scores enables memory to serve as something of a proxy for
disease severity. This framework is useful for considering
dysexecutive Alzheimer’s disease [23–26].

We have extended that framework to incorporate addi-
tional cognitive domains. The field has increasingly

emphasized the importance of Alzheimer’s disease variants
including primary progressive aphasia (PPA) and posterior
cortical atrophy (PCA) [27]; these rare subtypes are described
as typically having early onset. Clinical descriptions of the
cognitive patterns of these variants emphasize relative deficits
between language (PPA) or visuospatial functioning (PCA)
and other domains. We thus incorporate average performance
across domains, and differences from that average, to more
fully capture the range of clinical heterogeneity described in
late onset Alzheimer’s disease [1].

Our investigation of cognitively defined late-onset Alz-
heimer’s disease was motivated by considerations of pre-
viously described Alzheimer’s disease variants, including
logopenic PPA and PCA. Overlap between logopenic PPA
and a history of dyslexia has led to the question of whether
altered patterns of language network connectivity associated
with dyslexia may predispose to selective regional vulner-
ability to Alzheimer’s pathological processes [28]. The work
described here focuses exclusively on people with typical
late-onset Alzheimer’s disease and demonstrates substantial
numbers of people with patterns of relative cognitive
impairment that are similar to those described in rare Alz-
heimer’s subtypes, such as logopenic PPA and PCA. These
findings suggest the need to further evaluate relationships
between cognitively defined late onset Alzheimer’s disease
subgroups and these rare Alzheimer’s subtypes. For example,
it is unknown whether rates of dyslexia are higher among
people with isolated substantial relative language impairment
than people with other subtypes of late-onset Alzheimer’s
disease. Furthermore, it will be fascinating to see whether
people with logopenic variant PPA may have genetic patterns
similar to those of people with isolated substantial relative
language impairment, and whether people with PCA may
have genetic patterns similar to those of people with isolated
substantial visuospatial impairment. It will be of great interest
in the coming years to elucidate relationships across these
conditions. Such investigations may reveal important insights
into shared and distinct mechanisms underlying susceptibility
to these conditions.

Our results should be considered mindful of limitations of
our study. Data evaluated here are from studies with well-
educated people of European ancestry. It will be important to
replicate this approach among people with diverse genetic
backgrounds. While we combined data from five large stu-
dies, the resulting subgroups were underpowered to reach
genome-wide significance, and one subgroup (isolated sub-
stantial relative executive functioning impairment) was too
small to analyze at all. It will be important to incorporate
additional data sets to see whether novel suggestive loci reach
genome-wide significance, and to identify additional loci. We
used a large threshold of 0.80 SD to characterize “substantial”
relative impairments, which may be too conservative. Our
categorization approach relies exclusively on cognitive data.
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We could imagine a more optimal approach that also incor-
porates imaging and/or fluid biomarkers.

In conclusion, genome-wide genetic data enabled us to
determine that a cognitively defined categorization scheme
produced biologically coherent subgroups of people with
Alzheimer’s disease. This is an important result on the road
towards personalized medicine.
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