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Objective: Studies use different instruments tomeasure cognitirating cognitive tests permit direct comparisons
of individuals across studies and pooling data for joint analyses.Method:We began our legacy item bankwith
data from the Adult Changes in Thought study (n = 5,546), the Alzheimer’s Disease Neuroimaging Initiative
(n = 3,016), the Rush Memory and Aging Project (n = 2,163), and the Religious on such as the Mini-Mental
State Examination, the Alzheimer’s Disease Assessment Scale–Cognitive Subscale, the Wechsler Memory
Scale, and the BostonNaming Test. CocalibOrders Study (n= 1,456). Our workflow begins with categorizing
items administered in each study as indicators of memory, executive functioning, language, visuospatial
functioning, or none of these domains. We use confirmatory factor analysis models with data from the most
recent visit on the pooled sample across these four studies for cocalibration and derive item parameters for all
items. Using these item parameters, we then estimate factor scores along with corresponding standard errors
for each domain for each study. We added additional studies to our pipeline as available and focused on
thorough consideration of candidate anchor items with identical content and administration methods across
studies. Results: Prestatistical harmonization steps such qualitative and quantitative assessment of granular
cognitive items and evaluating factor structure are important steps when trying to cocalibrate cognitive scores
across studies. We have cocalibrated cognitive data and derived scores for four domains for 76,723
individuals across 10 studies. Conclusions: We have implemented a large-scale effort to harmonize and
cocalibrate cognitive domain scores across multiple studies of cognitive aging. Scores on the same metric
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facilitate meta-analyses of cognitive outcomes across studies or the joint analysis of individual data across
studies. Our systematic approach allows for cocalibration of additional studies as they become available and
our growing item bank enables robust investigation of cognition in the context of aging and dementia.

Key Points
Question: What considerations were addressed in setting up and implementing a robust workflow that
harmonizes and cocalibrates cognitive data across studies of older adults? Findings: Data from
thousands of individuals at tens of thousands of study visits have been cocalibrated to the same metrics
for four different cognitive domains. Importance: These data will facilitate analyses of cognition across
studies, despite varying levels of overlap in cognitive tests used across studies. Next Steps: Cocalibrated
scores and standard errors for the studies incorporated in our item banking efforts to date are available to
investigators. Additional studies will be incorporated in the coming years using the same methods.

Keywords: cognition, psychometrics, cocalibration, aging, neuropsychological testing

Supplemental materials: https://doi.org/10.1037/neu0000835.supp

Many studies of older adults include tests of cognitive function
that are administered to study participants at study visits. Neuro-
psychological tests used to measure cognition vary across studies
(see Supplemental Tables 1–19; Bennett et al., 2018; Montine et al.,
2012; Weiner et al., 2017), which make harmonization of data
across studies a particular challenge.
Harmonization describes a process of addressing differences in

measurement or assessment that could involve procedural, rational,

or statistical approaches (Gatz et al., 2015; Gross et al., 2018).
Modern psychometric approaches (Borsboom, 2005; Embretson &
Reise, 2000; McDonald, 1999) can be used to harmonize cognitive
data from different studies. These tools have many desirable features
we will illustrate in this article. At the end of our workflow, these
tools enable us to derive cocalibrated scores for each cognitive
domain. To perform statistical harmonization of cognitive items, we
used cocalibration based on confirmatory factor analysis.
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Cocalibration means “calibrated together.”Cocalibrating items in an
item bank enables us to obtain scores that are on the same metric,
regardless of whether there was total overlapping content in all the
specific items administered. Cocalibration should be understood as a
particular type of harmonization. Cocalibration facilitates either
meta-analysis or pooled analyses of individual-level data.
These psychometric approaches have been used in high stakes

educational testing since the 1960s (Lord & Novick, 1968). This
same item banking approach enables test forms with no overlapping
content to be administered to students who sit across from each other
at a testing center. The scores those students receive from their
responses are on the same metric, even though they each responded
to a distinct set of items. Those items had previously been cocali-
brated with each other and many other items in an item bank
(Hambleton et al., 1991).
While item banking strategies are an appealing approach to the

challenges we faced, there are important differences between edu-
cational testing and cognitive testing of older adults. Multiple choice
response options are common in educational testing settings and
essentially never used in cognitive testing in older adults. Instead in
cognitive tests, a wide variety of response formats have been
developed (Gruhl et al., 2013), including counts of successful
responses in a particular time, time to completion of a task, and
scores based on the number of elements of a complex figure that are
correctly copied or recalled, to name just a few. Furthermore, in
many cases a common stimulus is used in multiple trials, which will
lead to correlated item response data beyond the correlation due to a
relationship with an underlying domain tested by the trials. This
residual correlation can be called a methods effect. For example,
trials of a word list learning task will have scores that are more
correlated with each other than the correlation of any of those
learning trials with any other test of memory. Another example of a
methods effect is multiple tasks with very similar formats, such as
testing letter fluency with the letters F, A, and S. Scores from those
three stimuli will be more closely correlated with each other than
any of them with some other measure of language because of the
commonality of the tasks.
Our group and others over the past decades have adapted more

flexible response formats into ourmodels (Gruhl et al., 2013) and have
made extensive use of bifactor models to address secondary domain
structures induced by methods effects (R. D. Gibbons et al., 2007).
Educational testing also faces an analogous challenge. Many tests of
reading comprehension use a single block of text with several items
addressing that block of text. Scores from those items are more closely
correlated with each other than they are with any other item from the
test due to what is known as a “testlet” design. The approaches we
have taken to address secondary domain structure induced bymethods
effects are directly analogous to those used in educational testing
settings to address testlets (Li et al., 2006; Wainer et al., 2007).
In this protocol article, we describe the workflows we established

for item banking of cognitive test items across studies of older
adults. In particular, we use this as an opportunity to discuss the
rationale for the choices we have made with greater depth than we
have had the opportunity to do previously (Mukherjee et al., 2020).
We also report on recent progress integrating data from even more
studies of older adults. Taken together, these steps have already
facilitated analyses that would not be possible without our efforts at
cocalibration. We hope they will be widely used by Alzheimer’s
researchers in the coming years.

Method

Overview. We have divided our workflow into distinct steps, as
summarized in Figure 1. We will discuss each of the steps in the
figure sections.

Preliminary Analyses in Each Data Set
Considered Separately

The goals of the initial steps in the workflow are to ensure that we
have a good understanding of the data, that we have made any
transformations to the data needed to integrate the data into our
workflows, and that the new data are consistent with our overarching
modeling strategy.

Step A1: Acquire Data and Documentation
From Each Study

We establish data use agreements for each study and acquire
granular level data from cognitive batteries along with detailed
documentation on each of the items in the battery. Information that
has proven to be useful includes versions of tests, specific stimuli
administered, and information on how responses are coded. We
mine information from data dictionaries and cognitive administra-
tion protocol documents from the parent studies to help us in this
process. This step in many cases takes multiple iterations as we learn
more about the data set.

Step A2: Domain Assignment

We began our item bank by combining data from four very large
studies—the Adult Changes in Thought (ACT) study (n = 5,546),
the Alzheimer’s Disease Neuroimaging Initiative (ADNI; n =
3,016), the Religious Orders Study (ROS; n = 1,456), and the
RushMemory and Aging Project (MAP; n= 2,163). We refer to this
group of studies as “legacy studies.”

In each of the legacy studies, the expert panel (ET, JM, and AS)
assigned items from the cognitive battery to one of the following
domains: memory, language, executive functioning, or visuospatial
functioning. The studies administer many other items to participants
as well, including assessments of subjective impairment or pre-
morbid abilities. We identified items assessing these other domains
as well but did not consider them further in our item banking efforts.

If applicable, the expert panel also assigned each of the cognitive
items to subdomains based on the cognitive processes involved in
each task. For example, the Rey Auditory Verbal Learning Test
(RAVLT) trial items were identified as representing the memory
domain and the subdomain of verbal episodic encoding while the
RAVLT delayed recall item is in memory domain and the verbal
episodic retrieval subdomain.

Using study operational and administration manuals, as well as
published results, we made note of differing versions and adminis-
tration methods, so as to be very clear which specific items were
administered to study participants at each time point.

Several neuropsychological tests administer items across multiple
domains to assess global cognition; examples of this include the
Mini-Mental State Examination (MMSE; Folstein et al., 1975), the
Modified MMSE (3MS; Teng & Chui, 1987), the Cognitive Abili-
ties Screening Instrument (CASI; Teng et al., 1994), the Community
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Screening Interview for Dementia (CSI-“D”; K. S. Hall et al., 1993;
K. S. Hall et al., 2000), and the Montreal Cognitive Assessment
(MoCA; Nasreddine et al., 2005). Many of these scales have
overlapping content, and we previously cocalibrated them using
similar approaches to those described here (Crane et al., 2008). We
took a different approach to these global tests in our current item
banking procedures in that we considered each cognitive domain
separately. Test items assessing memory would be considered with
other memory items and disaggregated from items assessing any
other domain.
There are several reasons our thinking on global cognition has

evolved since our earlier work (Crane et al., 2008). Conceptually,
there are important contrasts across cognitive domains in older
adults, and particularly in people with dementia and Alzheimer’s
disease. A global score necessarily glosses over any distinctions
across domains, which may limit understanding of associations with
particular brain processes. Consideration of the designs of these tests
and the stimuli they use also leads us to derive separate scores for
cognitive domains rather than attempting to summarize overall
cognition with a single number. Our previous article discussed
the interlocking pentagons item and its different treatment in
different tests (Crane et al., 2008). It is scored as correct versus
incorrect, one point versus zero points, in the MMSE and the CSI

“D”. The MMSE total score is 30, so the one point for the pentagons
(copy two interlocking pentagons) item corresponds with 3.3% of
the total score. In the CASI and the 3MS, the same pentagons item is
scored on a 0–10 scale, and the total scores go to 100 points, so the
pentagons item reflects 10% of the total. The pentagons item is the
only element tapping visuospatial functioning in the MMSE, CASI,
and 3MS. Should visuospatial functioning represent 3.3% of global
cognition? Or 10%? And why? Articles describing the development
of these tests (Folstein et al., 1975; Teng & Chui, 1987; Teng et al.,
1994) do not provide compelling rationales for the relative impor-
tance of each item.

For these reasons, in recent years we moved toward breaking down
tests of global cognition into component parts and considering each
cognitive domain separately. An investigator wishing to study global
cognition who wanted to weight it as four parts memory, two parts
language, two parts executive functioning, and one part visuospatial
could use the scores we produce to generate such global composite
scores. Thus, our approach does not preclude the possibility of
studying global cognition and, in fact it enables lines of research
that are not possible with global composite scores alone.

Our approach began with theory as directed by our panel of a
behavioral neurologist and two neuropsychologists. All three panel
members have extensive experience in the clinical and research
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Figure 1
Cocalibration Workflow

Note. Each of these steps is explained in more detail below. M = memory; E = executive functioning; L = language; V = visuospatial functioning; ACT =
Adult Changes in Thought; ADNI = Alzheimer’s Disease Neuroimaging Initiative; ROS/MAP = Religious Orders Study/Memory and Aging Project.
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evaluation of older adults and neurodegenerative conditions, and
their domain assignments reflected this disciplinary background and
clinical and research experience. Our goal was to ascertain whether
the data available to us from studies of older adults were consistent
with this theory, and then, if so, to obtain cocalibrated nonoverlap-
ping domain scores to facilitate cross-study analyses. Others with
different goals could have used the data in different ways, such as
beginning with exploratory factor analysis approaches or permitting
items to load on multiple domains.

Step A3: Data Quality Control

Following domain assignment, our data manager (RES) per-
formed initial quality control steps on the data which included
making a master file for all cognitive data with labels and descrip-
tions for each item in the data set. Follow-up quality control steps
performed by the analysts (S-EC,ML, PS, SM) included recoding of
the data where necessary. For example, items such as Trail Making
Tests A and B were reverse coded (i.e., where a higher value
indicated worse performance). We checked each item to make
sure higher values represent better cognitive performance, and
reverse coded as needed. This step facilitates interpretation of factor
loadings, as all loadings on the general factor should be positive if all
of the items are coded in the same direction, and a negative loading
would indicate a need for extra scrutiny.
Whenever possible, we used granular data from each study as it is

more informative than summary totals. For example, for a word list
learning measure, one can imagine multiple ways of recording
participant responses. Ideally, studies could report whether each
specific word was recalled on each trial. However, this granular level
data of participant response is not always available. Many studies
report only the total number of words recalled on each trial or the total
of words recalled across all of the learning trials. These scores may be
impossible to reconcile across studies unless they were obtained
precisely the same way in the two studies. Sometimes data are not
electronically available in a sufficiently granular form, in which case
we seek resources for data entry or, if that proves impossible, we may
decide to drop the item from further cocalibration steps. Collection
and data entry of granular data up front helps us derive cognitive
scores which are more precise and enable us to be confident in
confirming that an item can be used as an anchor, as we will discuss.
Given that we were working with longitudinal data, we had to

decide which visit (e.g., first visit, most recent visit) we would use in
cocalibration. We selected the most recent visit for each participant.
This choice optimizes the spread of cognitive abilities in the data set,
which is desirable for ensuring parameters are valid over the entire
range of ability levels, while preserving sample size (Embretson &
Reise, 2000; Hambleton et al., 1991) and still including only a single
observation per person. Some studies such as ACT enrolled people
known to be free of dementia, and others enrolled people with
particular diagnoses who met with specific eligibility criteria (e.g.,
ADNI and others). By choosing the most recent visit, cognition in
some participants would have declined to the maximal extent
available in these data, optimizing the spread of ability levels.
We considered the distribution of each item among participants

with nonmissing data and combined categories as needed. Our goals
for combining categories were (a) to avoid sparse categories, which
we operationally defined as <5 responses per category for each
study administering each item, (b) to have no more than 10

categories, the maximum number of categories handled by Mplus
v7.4 (Muthen&Muthen, 1998–2012), and (c) to retain the full range
of responses from each study, to avoid collapsing categories at the
highest and lowest levels of functioning. Retaining variability at the
tails at the expense of the center of the distribution minimizes
potential floor and ceiling effects.

We treated each item as an ordinal indicator of the domain. The
numerical value assigned to each category is irrelevant beyond its
rank, for example, calling the lowest category 3 versus 18 makes no
difference in how the item is treated or what the final score would be.
This flexible approach does not make the strong assumption of a
linear relationship between times and the underlying cognitive
domain. The ordered categorical approach has much in common
with spline approaches, which offer flexibility in modeling that may
be important for constructs that may not be linear.

Missing data were a particular area of focus in our quality control
effort. Some studies had little information about the reason for a
missing data element. Other studies had specific codes, such as
indicating participant refusal to complete an administered item or
that the interviewer ran out of time so the item was not administered.
After careful consideration, we decided to treat all types of missing
data—regardless of codes available from the study—as if the item
had not been administered.

Step A4: Confirmatory Factor Analyses

We modeled each domain separately using confirmatory factor
analysis (CFA) with Mplus using robust weighted least squares,
including terms for the mean and the variance (WLSMV) estimator
(Beauducel & Herzberg, 2006; Flora & Curran, 2004).

As detailed in our prior article (Mukherjee et al. 2020), we
consider several candidate bifactor structures. Our expert panel
assigns subdomains based on theoretical considerations at the
time we are considering domain assignments for each item. We
also identify methods effects based on the ways items are adminis-
tered. We perform agglomerative hierarchical cluster analyses to
identify clusters of items with additional correlation structure. We
then review proposed data-driven clusters of items with the expert
panel and confirm that there is some thematic or methods based
explanation for pairs or groups of items identified by the clustering
algorithm; we only include secondary domains the expert panel
agrees are plausible. When the more complicated model is consis-
tent with theory (i.e., our content experts agree that the secondary
domain structure makes theoretical sense), fits the data better (as
evidenced by substantially better fit statistics), and produces sub-
stantially different scores (which we operationalize as differences
greater than 0.3 logit units for at least 5% of the sample), we
conclude that we need the more complicated model.

We used several criteria to compare these bifactor models for each
domain, and found that in each case the agglomerative hierarchical
clustering approach appeared to have the best fit, as detailed in
Mukherjee et al. (2020).

Once we had selected the best candidate bifactor model, we
compared it with a single factor model, with no secondary structure
(all items load only on the domain general factor).

We provide a schematic representation of single factor and
bifactor models in Figure 2.

Our overall strategy in terms of single factor versus bifactor
modeling was that we would choose the single factor model if
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adding secondary factors did not markedly improve model fit and if
adding secondary factors did not markedly impact any indivi-
dual’s score.
Our criteria for selecting the better model included evaluating fit

statistics and concordance of model results with theory, such as
positive loadings on secondary factors. The fit statistics we consid-
ered were the confirmatory fit index (CFI) where higher values
indicate better fit; thresholds of 0.90 and 0.95 have been used in other
settings as criteria for adequate or good fit (Hu & Bentler, 1999;
Reeve et al., 2007); the Tucker–Lewis index, which has similar
criteria as the CFI; and the root mean squared error of approximation
(RMSEA), where lower values indicate better fit, and thresholds of
0.08 and 0.05 have been used in other settings as criteria for adequate
or good fit (Hu & Bentler, 1999; Reeve et al., 2007).
When comparing the single factor model with the best bifactor

model, we (a) determined whether loadings on the primary factor
were within 10% of each other across the two models and (b)
compared the scores for the single factor model versus scores for
the bifactor model. We used as our threshold a difference of 0.30
units. We chose this value based on the default stopping rule for
computerized adaptive testing; this has been used for years (S. W.
Choi et al., 2010) as a default level of tolerable measurement
imprecision. While arbitrary, this is a level of measurement impreci-
sion that has been thought to be tolerable in a variety of situations. If
there were a substantial number of people (typically 5%) for whom
the differences in scores were larger than 0.3 from each other, and if
the bifactor model conformed to our theory better and had better fit
statistics, we selected the bifactor model as our choice for modeling a
domain. Otherwise, we would select the simpler single factor model.

Step B1: Identification of Anchor Items

Cocalibration requires either the same people taking different tests
or different tests sharing common items. Here we had common items.
We identified candidate anchor items with identical content across
tests administered in different studies and ensured that their relation-
ship with the underlying ability tested was the same across studies by
performing preliminary CFA models within each study, where we
focused particularly on the pattern of loadings across the studies.
Confirmed anchor items were then used to anchor the scales in each
domain to a common metric. We show a depiction of candidate
anchor items in Figure 3. We consulted a member of the expert panel
(EHT) for anchor items selection review and confirmation.

Step B2: Quality Control for Anchor Items

Anchor items were cleaned and recoded after considering item
response data from all studies that administered the item, making sure
that the range of responses to the anchor items was similar in each
study.We carefully reviewed documentation from each study to ensure
that the anchor item stimuluswas precisely the same across studies, that
the response options were precisely the same or could be recoded to be
exactly equivalent across studies, and that we were mapping data from
each study in a way that the same response would result in the same
score regardless of the study in which the person was enrolled.

There were occasions where a potential candidate anchor item
turned out to be administered in incompatible ways or scored in a
way that could not be reconciled exactly across the two studies.
These discrepancies were further discussed among the expert panel.
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Figure 2
Single Factor (Left) and Bifactor (Right) Models of 14 Items From a Single Study

Note. The figure to the left depicts a single factor model of 14 items (1–7 and 11–17) that are depicted as loading
on a single common factor. There are no secondary domains or residual covariances; this model forces all
covariance between items to be captured by the single general factor (labeled “Domain” here). The figure to the
right depicts the same 14 items, and a relationship with a general factor that captures covariance across all of the
items. But different from the figure to the left, this bifactor model includes two subdomains (labeled “Subdomain
1” and “Subdomain 2”). These subdomains capture covariance among the subdomain items (e.g., Items 1–7 for
Subdomain 1, and Items 11–17 for Subdomain 2) that is not shared with items outside that subdomain. A
subdomain could be based on a methods effect (e.g., the same words from a word list learning task), or based on a
common subset of a higher order domain (e.g., several items tapping set shifting in a model of executive
functioning), or a data-driven subset based on agglomerative hierarchical clustering.

6 MUKHERJEE ET AL.



If a candidate anchor item did not meet the approval of the panel, we
included those items as indicators of the underlying domain in the
different studies, but did not use those items as anchor items.

Step B3: Confirmatory Factor Analyses

We cocalibrated each cognitive domain by incorporating the
components of the best model in each study (i.e., the final
single-factor or bifactor model selected as described above) into
one megacalibration model, as shown in Figure 4.
One particularly complicated aspect of cocalibrating scores using

bifactor models is how to handle secondary domains. Some anchor
items had loadings on the primary domain (e.g., memory) and on a
secondary domain. That structure by itself does not lead to concep-
tual problems. Nevertheless, item representation of the secondary
domain may vary across studies, with variable numbers of items,
and potential missing data and identifiability issues. To address this,
we used robust maximum likelihood (MLR) estimation that is robust
to missing data, and if a secondary domain contained overlapping
item(s) across studies along with study specific unique items, they
were assigned to a common secondary domain in the megacalibra-
tion model. While the CFA model with the WLSMV estimator
produces fit statistics in Mplus, the CFA model with the MLR
estimator does not output fit statistics. We performed sensitivity
analyses to confirm for ourselves that scores on the primary domain
were minimally impacted by various ways of specifying the mean
and variance on secondary domains. Since it made little difference

how we specified these parameters, in our final models, we specified
a mean of 0 and a variance of 1 for each secondary domain factor.

Once we had fit the final megacalibration model for each domain,
we extracted item parameters (loadings and thresholds) for all items.
These values then populated our item bank for each domain.

Scores From the Legacy Data Set for Each Time Point

We used each study’s item parameters from the megacalibration
model for a given domain (the item bank item parameters) to obtain
scores for each person at each time point. We considered each
study’s data separately. We fixed all of the item parameters to their
item bank values, and freely estimated means and variances for each
factor in the model. Then we ran the model one additional time with
all of the parameters fixed including the mean and the variance to
extract factor scores for the primary factor (e.g., memory; labeled
“Domain” in the figures) along with the corresponding standard
errors. We used all participants with relevant data to obtain scores
and standard errors for each domain, including people who may
have been missing data entirely for some other domain.

Step C1: Domain Assignments for Subsequent Data Sets

Similar to the legacy data sets, our expert panel considers each
element administered to study participants and categorize each
one as an indicator of memory, executive functioning, language,
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Figure 3
Data From Two Studies Illustrating Anchor Items

Note. This figure depicts data from a single domain for two studies. The blue study items are the same as those shown in Figure
2 in the bifactor model. The red study items appear to have some overlap, as depicted in the dashed blue boxes—red items 4–7
appear to be the same as blue items 4–7, and red items 15–17 appear to be the same as blue items 15–17.We pay close attention to
these candidate anchor items, ensuring that the stimuli are identical and that the response coding is identical. The subset of items
for which that turns out to be the case then are treated as anchor items, where the item parameters are forced to be the same
between the blue study and the red study. Other items are treated as study-specific items, including those already understood to be
study-unique (e.g., blue items 1–3 and 11–14, and red items 8–10 and 18–21).

COGNITIVE DOMAIN HARMONIZATION 7



visuospatial, or none of these. Secondary domains are also assigned
the same way as for the legacy data set described above.

Step C2: Data Quality Control on the
Most Recent Study Visit Data

We consider data from the most recent study visit for each partici-
pant, as we did for the legacy studies. Some studies we have
cocalibrated more recently have had cognitive batteries that have
evolved over time and we have found it convenient to separate the
data set into mutually exclusive subsets based on which cognitive
batteries were administered. In essence, we treat each of these subsets
as a distinct study that results in a less sparse covariance matrix of item
responses and enablesMplus to estimate the item parameters and factor
scores in a robust manner (see Scollard et al. article in this volume).

Step C3: Identify Candidate Anchor Items by
Comparing Content With Domain Item Banks

We review each of the items from the new study and compare
items with those already calibrated in the item bank. If content is
identical and response options are identical, we consider the item to
be a candidate anchor item. Procedures are the same as for the legacy
data set described above.

Step C4: Quality Control for Anchor Items
Added in Follow-Up Studies

We review distributions of responses in the study used to generate
the item bank parameters and check that there is overlap with the

distribution of item responses in the new study. We always recode
data from the new study exactly as we did for the item bank study to
ensure that the item is treated precisely the same way regardless of
study. For some items the distribution of observed responses in the
new study is sparse in some response categories, and this sparseness
may persist after recoding. Since we are fixing parameters for anchor
items as opposed to estimating parameters, modeling with sparse-
ness in a response category will still work. What does not work is
when there is a response category that is completely empty in the
new study. To date this has consistently happened at the top or
bottom category for an item. When this has happened we carefully
excise the item parameters from that extreme and unobserved
category so that the remaining parameters are appropriate for the
observed distribution for that item. We take special care with this
step as haste can lead to errors that could be difficult to catch; we pay
particular attention to this step in our code review (see below).

Step C5: Confirmatory Factor Analysis Fixing Parameters
for Anchor Item Banks to Item Bank Values

We usedMplus to analyze the most recent study visit data set. We
fixed anchor items at their values from the item bank while new
study specific items (nonanchors) were freely estimated. After this
step, every item from the new study’s cognitive battery has item
parameters.

Step C6: Scores

We then fixed parameters for all of the items, and generated scores
and corresponding standard errors for each person at each study visit.
As for the legacy model this took two steps: first we freely estimated
themean and variance, and thenwe fixed themean and variance to the
estimated values to obtain individual scores and standard errors.

Step C7: Populate Item Bank With Any
New Items From the New Study

The steps above can be used to generate scores as long as there is
overlapping item content. Item parameters for nonanchors can be
added to the item bank.We have had several data sets where we have
determined that the distribution of ability levels observed in the new
study was substantially different than that from our legacy studies.
For example, we came across the Antiamyloid Treatment in Asymp-
tomatic Alzheimer’s (A4) study (Sperling et al., 2014) later on in our
pipeline. Only cognitively intact people were considered for inclu-
sion in the study, and only data from that screening visit were
available for consideration. By design, there were no people with
dementia in that data set, so lower portions of the ability distribution
were not observed for any of our cognitive domains. We can obtain
scores for such a data set assuming sufficient anchor item availabil-
ity, but it would not be a good choice for calibrating item bank
parameters for items first seen in that data set. A baseline data set
from studies with constrained enrollment (i.e., studies like ACT)
would not include people with poorer cognitive functioning. If a
subsequent study included a broader range of participant ability
levels because it included data from people with dementia, the items
initially calibrated in the study of people without dementia would
have truncated distributions which would lead to floor effects.
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Figure 4
Cocalibration of the Red and Blue Studies

Note. Cocalibration model for data from Study 1 and Study 2. Study 1 data
include blue and purple items, while Study 2 data include purple and red
items. Beige items are anchors, which received extra attention and quality
control (see above). This is referred to in this document as the “megacali-
bration model.”

8 MUKHERJEE ET AL.



For studies where the full range of cognitive ability was observed,
we update the item bank to incorporate item parameters from new
study-specific items. In this way, the item banks for each domain
continue to grow.

Code Review

Our quality control steps include a formal code review process
(Vable et al., 2021) using GitHub (https://github.com). A primer on
using Git and GitHub can be found at Blischak et al. (2016). In brief,
we have created our private repository for the cocalibration effort
and have folders designated for each study in our pipeline as well as
relevant files related to our workflow. For a given study, as a team
we choose a primary coder and a primary code reviewer for each
cognitive domain a priori with a secondary code reviewer on
standby if needed. We have three separate steps (precalibration
step to look at factor structure; intermediate step to derive item
parameters for unique items; derive scores) where a GitHub pull
request is initialized by the primary coder and the review process
involves reviews and updates until everyone approves it. GitHub
makes it easier to track changes and one can go back or forward to
any version of the code. The final code is pushed out making sure it
is well annotated and reproducible with the primary coder and code
reviewer’s contact information for future use.

Studies Included in Legacy Model

The ACT Study

The ACT cohort is an urban and suburban elderly population
randomly sampled from Kaiser Permanente-Washington (KPW)
that includes 2,581 cognitively intact subjects age ≥65 who were
enrolled between 1994 and 1998. An additional 811 subjects were
enrolled in 2000–2002 using the same methods except oversam-
pling clinics with more minorities. More recently, a continuous
enrollment strategy was initiated in which new subjects are con-
tacted, screened and enrolled to maintain a sample of 2000 people
enrolled and at risk for dementia outcomes. This resulted in a total
enrollment of 5,546 participants as of September 2018. Partici-
pants underwent assessment at study entry and every 2 years to
evaluate cognitive function and collect demographic characteris-
tics, medical history, health behaviors, and health status. In addi-
tion, information on participants’ health care utilization and
medication utilization were available from KPW electronic data-
bases. Participants were assessed with the Cognitive Abilities
Screening Instrument (CASI) at study entry and subsequent bien-
nial visits (Teng et al., 1994). Participants with CASI scores ≤85
underwent a standardized diagnostic evaluation for dementia,
including a physical and neurological examination, and additional
neuropsychological tests (Kukull et al., 2002; Marcum et al.,
2019). The extended neuropsychological battery includes tests
such as WMS-R logical memory (2 stories), Mattis Dementia
Rating Scale, Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) battery, Constructional Praxis, Verbal Paired
Associates, Trails A & B, Clock Drawing, Boston Naming Test
(BNT), and verbal fluency measures. All of these data are reviewed
at consensus conference where research criteria for dementia and
Alzheimer’s disease are determined.

The ADNI Study

ADNI was launched in 2003 by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration, private pharmaceutical compa-
nies, and nonprofit organizations. Study resources and data are
available through its website (http://adni.loni.usc.edu). The initial
5-year study (ADNI1) was extended by 2 years in 2009 (ADNIGO),
and in 2011 and 2016 by further competitive renewals (ADNI2 and
ADNI3). Through April of 2020, 3,016 individuals were enrolled
across the different ADNI waves. The study was conducted after
institutional review board approval at each site. Written informed
consent was obtained from study participants or authorized repre-
sentatives. Additional details of the study design are available
elsewhere (Weiner et al., 2010, 2017). ADNI’s neuropsychological
battery included the Mini-Mental State Examination (MMSE),
Alzheimer’s Disease Assessment Schedule–Cognition (ADAS-
Cog), BNT, Rey Auditory Verbal Learning Test, Wechsler Memory
Scale–Revised (WMS-R) Digit Span, WMS-R Logical Memory,
Trails A & B, clock drawing, and animal- and (for ADNI1 only)
vegetable fluency. ADNI administered Montreal Cognitive Assess-
ment (MoCA) items beginning in ADNIGO.

The ROS Study

The ROS has been ongoing since 1993, with a rolling admission.
Through February of 2020, 1,456 older nuns, priests, and brothers
from across the United States initially free of dementia who agreed to
annual clinical evaluation and brain donation at the time of death
completed their baseline evaluation.(Bennett, Schneider, Arvanitakis,
et al., 2012)

The MAP Study

The MAP has been ongoing since 1997, also with a rolling
admission. Through February of 2020, 2,163 older persons from
across northeastern Illinois initially free of dementia who agreed to
annual clinical evaluation and organ donation at the time of death
completed their baseline evaluation.(Bennett, Schneider, Buchman,
et al., 2012; Bennett et al., 2005)

ROS/MAP administers 21 cognitive tests such as CERAD test,
MMSE, East Boston Story, logical memory story from WMS-R,
BNT, semantic fluency measures, WMS-R Digit Span, Symbol
Digit Modalities Test, Judgment of Line Orientation, Standard
Progressive Matrices, and Number Comparison (Bennett et al.,
2018; Wilson et al., 2002). This comprehensive battery overlaps
mostly across ROS and MAP (19 out of 21) and enables investiga-
tion of episodic memory, semantic memory, working memory,
perceptual speed, and visuospatial functioning.

Transparency and Openness

We report the variables used in each study, how we determined
our sample size, all data exclusions, all analyses, and all measures in
the study. All analysis scripts are available from authors on request
and all cognitive data and the harmonized cognitive domains used
can be requested from the parent studies. Data were analyzed using
Mplus v7.4 and Stata v16. The analyses conducted in this article
were not preregistered.
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Results

Findings From the Legacy Data Sets

We included n = 5,546 from ACT, n = 3,016 from ADNI, n =
1,456 from ROS, and n = 2,163 from MAP in our legacy cocali-
bration model. Demographic and clinical characteristics from the
most recent study visit are shown in Table 1. We fixed the mean at 0
and variances at 1 for the primary and secondary domains to
estimate item parameters. We freely estimated the mean and var-
iances of the primary and secondary factors when running domain-
specific models to derive scores in each study.

Legacy Study Items in the Item Bank for Each Domain

For the memory domain, MMSE orientation items and logical
memory immediate and delayed recall were administered in each of
the studies and served as anchor items. The ROS and MAP battery
added an additional 13 items to the item bank, the ACT study added
25, and ADNI added 20 more (Supplemental Tables 1–4). For
executive functioning, ACT and ADNI had Trails A and B in
common, and ADNI, ROS, and MAP had digit span forward and
backward and the WORLD backwards item from the MMSE. ROS
and MAP added four additional items, ACT added eight items, and
ADNI added seven items from all waves plus seven from the MoCA
in later waves of the ADNI study (Supplemental Tables 5–8). For
language, all four studies had the reading and command items from
the MMSE as well as animal fluency in common, ACT, ROS, and
MAP had the 15-item version of the Boston Naming Test in
common, and ADNI, ROS, and MAP had repeating a phrase and
writing a sentence from the MMSE in common. ROS and MAP
added 11 additional items, ACT added eight additional items, and
ADNI added five additional items plus six from the MoCA in later
waves of the ADNI study (Supplemental Tables 9–12). For visuo-
spatial functioning, all four studies had interlocking pentagons, ROS
and MAP added the Judgment of Line Orientation, ACT added five

additional items and ADNI added six additional items (Supplemental
Tables 13–16).

With the most recent data pulls, we derived scores for 5,546
individuals from ACT where each individual had all four scores for
98% of their visits (n = 26,498 scores). In ADNI, we have scores for
3,189 individuals where we have all four scores for 90% of their visits
(n = 11,680). In ROS, we derived scores for 1,456 individuals where
all four scores were present for 94% of the observations (n= 14,805).
InMAP,we derived scores for 2,163 individuals where all four scores
were present for 96% of the observations (n = 14,350). Distributions
of these scores in each of the four studies are shown in Figure 5.

Follow-Up Study 1: Findings From the Rush
Minority Aging Research Study Data

The Minority Aging Research Study (MARS) is a longitudinal,
epidemiologic cohort study of decline in cognitive function and risk
of Alzheimer’s disease (AD) in older African Americans, with brain
donation after death added as an optional component for those willing
to consider organ donation (Barnes et al., 2012). A comprehensive
neuropsychological battery of 23 cognitive tests is administered at
each annual visit. The tests we used for cocalibration overlapped
completely with what we had seen in ROS andMAP, which were part
of the legacy model. As a result, all items were anchors and we were
able to directly use all our derived item parameters to obtain scores for
all MARS participants across all time points.

We derived scores for 767 individuals from MARS where each
individual had all four scores for 97% of their visits (n= 5,075 scores).
Demographic and clinical characteristics at most recent visit are shown
in Table 2. Violin plots for each domain are shown in Figure 6.

Follow-Up Study 2: Findings From the National
Alzheimer’s Coordinating Center Data

The National Alzheimer’s Coordinating Center (NACC) is
responsible for developing and maintaining a database of participant
information collected from Alzheimer’s Disease Centers (ADCs)
funded by the National Institute on Aging (NIA; Beekly et al.,
2007). The neuropsychological test battery from the Uniform Data
Set (UDS) of the Alzheimer’s Disease Centers (ADC) program of
the National Institute on Aging consists of brief measures of
attention, processing speed, executive functioning, episodic mem-
ory, and language (Weintraub et al., 2018, 2009). The UDS battery
has evolved over time from Version 1.0 to 2.0 to 3.0.

We included individuals with baseline age ≥60 for cocalibration
purpose. Demographic and clinical characteristics from the most
recent study visit are shown in Table 3.

By design there was substantial overlap in the battery used for the
ADNI study and for the NACC data. We considered UDS data in
two batches, essentially as two separate studies. The only visuospa-
tial item administered in the UDS is the dichotomous interlocking
pentagons item, which was not sufficient to obtain scores for that
domain. We were able to obtain cocalibrated scores for the other
domains. Beyond the pentagons item, NACC collects other MMSE
items as composites. For example, the five orientation to time items
from the MMSE are reported to NACC as a single score. For these
situations, we reran the legacy model with everything other than
these composites treated as anchor items, obtaining item parameters
on the same metric for the MMSE composite scores from the legacy
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Table 1
Demographic and Clinical Characteristics of the Legacy Studies at
the Most Recent Study Visit

Variable ACT ADNI ROS MAP

Sample size, n 5,546 3,016 1,456 2,163
Age, mean (SD) 81.9 (7.8) 74.9 (8.7) 85.8 (7.4) 86.0 (7.9)
Female, (%) 58.2 48.1 71.6 73.5
Education, mean (SD) 14.9 (3.2) 16.1 (2.8) 18.4 (3.3) 14.9 (3.3)
Self-reported race, %
Non-Latinx White 88.8 88.1 89.6 88.5
African/American 3.6 4.6 5.7 5.2
Hispanic/Latino 1.1 3.7 4.3 5.5
Others 6.5 3.6 0.4 0.8

Cognitive diagnosis at most recent visit, %
Cognitively normal 92.2 38.3 42.2 50.4
Mild Cognitive

Impairment (MCI)
N/Aa 32.0 23.0 23.7

Diagnosed with AD 6.0 29.7 33.4 24.5
Other dementia 1.8 N/A 1.4 1.4

Note. ACT = adult changes in thought; ADNI = Alzheimer’s Disease
Neuroimaging Initiative; ROS = Religious Orders Study; MAP = Memory
and Aging Project; AD = Alzheimer’s disease; SD = standard deviation. A
few individuals were missing some of these demographic characteristics.
a In ACT, MCI as a diagnosis is generally not made.
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data. We then used these item parameters for the MMSE composite
scores in the NACC data, along with other anchors as shown in
Supplemental Tables 17–19. More details about this process can be
found in Supplemental Text 2. We derived scores for 41,459
individuals from NACC UDS 1/2/3 where each individual had
all four scores for 87% of their visits (total = 145,028). The
distribution of scores is shown in Figure 7.

Other Data Set Cocalibrated and Harmonized

With a growing item bank, we have been able to cocalibrate and
harmonize cognitive domains from various aging studies such as the

A4 Study, the Australian Imaging, Biomarkers and Lifestyle (AIBL)
study of aging (Ellis et al., 2009), the Baltimore Longitudinal Study
of Aging (BLSA; Ferrucci, 2008), and the Framingham Heart Study
(FHS; Elias et al., 1995). The cognitive scores can be obtained from
the parent studies via data user agreement (DUA). Taken together,
across all of these studies, we have cocalibrated cognitive data for
76,723 individuals from 10 studies.

Discussion

We cocalibrated cognitive data across multiple studies of older
adults using a modern psychometrics approach. This approach,
which is well-suited to our purpose, was easily adapted from its
application to educational settings, to the specific challenges from
cognitive testing of older adults.

Our expert panel categorized each item as best reflecting single
cognitive domain, but for several items also identified a second
domain that the item also tapped. We used CFA to assess whether
the items that best reflected a domain load well for that domain. We
wanted each domain to contain a mutually exclusive set of items,
and as a result, did not explore factor analysis models for domains
that included items assigned to their secondary domains. For genetic
analyses, one of the motivating use cases for our harmonization
efforts, there is tremendous interest in pleiotropy, where a particular
genetic factor may underlie multiple phenotypes. Allowing cross-
loading of a single item on multiple domains would induce correla-
tion between domain scores and would make evaluation of pleiot-
ropy findings at least difficult if not impossible (Solovieff et al.,
2013). Others with different goals could have made different
modeling choices.

One contribution we make in this article is that we used bifactor
models to cocalibrate these data. As shown, the introduction of
secondary factors requires careful thought and consideration. We
compared several methods of deriving candidate secondary struc-
tures. We compared several methods of deriving candidate second-
ary structures. While the different bifactor models produced
consistent results—suggesting some robustness to the specification
of the secondary factors—it should also be emphasized that bifactor
models had substantially better fit than single factor models, and that
the bifactor models and single factor models produced scores that
were substantially different from each other for some people. In
many cases in our workflow we are faced with the overarching
question of whether we need a more complicated bifactor model or
whether a simpler single factor model would be “good enough.” On
the other hand, even if a more complicated model is consistent with
theory, if fit statistics are either marginally better, very similar, or
worse, and if the scores from a more complicated model do not
substantially differ from those of a simpler model, we would choose
the simpler model. In this instance, application of that approach led
us to choose bifactor models rather than single factor models. But in
the case of the sensitivity analyses of different choices we could
make for subdomains, we did not find evidence that we needed a
different model. Both of these sets of results can be seen as examples
of the same overarching strategy. In each case, fit statistics led us to
choose models where the secondary structure was derived from
agglomerative hierarchical clustering. The resulting scores for each
domain account for these secondary data structures, which essen-
tially avoids overemphasizing responses that would otherwise by
somewhat too influential on the overall score.
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Table 2
Demographic and Clinical Characteristics of MARS at the Most
Recent Study Visit

Variable MARS

Sample size, n 767
Age, mean (SD) 79.9 (7.3)
Female, (%) 77.2
Education, mean (SD) 14.8 (3.5)
Self-reported race, %
Non-Latinx White 0.0
African/American 99.9
Hispanic/Latino 0.0
Others 0.1

Cognitive diagnosis at most recent visit, %
Cognitively normal 74.8
MCI 21.0
Diagnosed with AD 3.9
Other dementia 0.3

Note. MARS =Minority Aging Research Study; SD = standard deviation;
MCI = Mild Cognitive Impairment. Percentages for cognitive diagnosis
(DX) shown for nonmissing data only.

Figure 5
Violin Plot of the Distributions for Each of the Cognitive Scores
Across All Time Points by Study Used in Legacy Model

Note. The violin plot displays the median as a circle, the first-to-third
interquartile range as a narrow, shaded box, and the lower-to-upper adjacent
value range as a vertical line. The violins are mirrored density curves. ACT=
adult changes in thought; ADNI = Alzheimer’s Disease Neuroimaging
Initiative; ROS = Religious Orders Study; MAP = Memory and Aging
Project.
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We used data from the most recent study visit for each person to
calibrate items. This strategic choice ensured that each individual
would only be included once in our calibration modeling, so we did
not have to address within-person correlations. This choice also
maximized the spread of observed ability levels for each domain,
which is desirable for a calibration sample. Some data sets by design
were characterized by constrained variation in one or more domains.
For example, A4 included the baseline data point from a group of
cognitively normal older adults, which meant there were no people
with dementia and no substantially impaired scores. For these data
sets, we can obtain scores that are cocalibrated based on the
inclusion of anchor items, but we did not use study-specific item
parameters from these data sets in our item bank. All of the items in

our item bank had parameters estimated from samples with a broad
range of ability levels.

Of note, we used similar methods in previous work (Mukherjee et
al., 2020). There are important differences here. First and foremost,
that work focused exclusively on samples of people with clinical
Alzheimer’s dementia, and all recoding and model calibration was
performed on those data. In the present work we include people
across the entire range of the cognitive ability scale, from completely
unimpaired to severely impaired. Our work for this article is thus
applicable to people at all levels of cognitive ability, not limited to
people with clinical Alzheimer’s dementia.

As in any item banking effort, anchor items are essential for
successfully linking scores across different studies. We pay close
attention to anchor items as detailed here, ensuring that the stimuli
are identical, that the responses are scored in an identical fashion,
and that the distribution of observed scores has substantial overlap
across studies.

The cocalibration approaches described in this article will enable
investigations of associations with late life cognitive functioning
and decline using data from multiple studies, even though those
studies measured cognition in older adults using different neuro-
psychological tests. The payoff for the work we have done is the
ease of use of the resulting scores. They address important psycho-
metric challenges in the parent data, so the user of the scores can
focus on their scientific questions of interest.

This article has focused on considerations in cocalibrating scores
across studies that used different batteries. We did not address
validity. There are many layers that ensure the validity of our
cocalibrated scores. First, these scores are derived from cognitive
tests administered by prominent studies that have had their methods
peer reviewed many times. The modern psychometrics approach we
used does not diminish the validity of the underlying measures.
Second, our approach to domain assignments began with our expert
panel, who in turn are guided by disciplinary considerations in the
field of neuropsychology. The tests whose items we analyzed here
have been widely used, producing a vast literature in applied settings.
Furthermore, we are transparent with our choices and indeed present
our domain assignments to the scientific community in this article.
Others could assign items to different domains. We suspect that
differences in assignment across content experts likely would reflect
matters of degree. For example, we assigned the overlapping penta-
gons item to the visuospatial domain, though certainly there are
aspects of executive functioning that are required to successfully
complete this item, and it could be argued that item would be a better
representative of the executive functioning domain than the visuo-
spatial domain. Even in such an instance, however, we suspect such a
content expert would agree with our panel that the interlocking
pentagons item is also an indicator of the visuospatial domain.
Disagreements of this sort on matters of degree do not rise to the
level of challenging the overall validity of any domain score. The only
real such challenge to overall validity would be if an item simply was
not an indicator of the domain our experts assigned it to, which we
think has not happened. Third, we have in previous work compared
modern psychometric scores alongside classical test theory-derived
scores for the same domain, using a variety of validity comparisons
including known group comparisons, strength of association with a
priori selected imaging findings, ability to predict decline over time
and conversion fromMild Cognitive Impairment (MCI) to AD (S. E.
Choi et al., 2020; Crane et al., 2012; L. E. Gibbons et al., 2012).
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Figure 6
Violin Plot Showing Distribution of Scores Across All Time Points
for Four Cognitive Domains in MARS

Note. MARS = Minority Aging Research Study.

Table 3
Demographic and Clinical Characteristics for Individuals With
Study Baseline Age ≥60 in the NACC Data Set at the Most Recent
Study Visit

Variable UDS 1 & 2 UDS 3

Sample size, n 29,154 15,232
Age, mean (SD) 77.1 (8.4) 76.3 (8.3)
Female, (%) 56.8 58.4
Education, mean (SD) 14.9 (3.6) 15.8 (3.2)
Self-reported race, %
Non-Latinx White 80.5 80.1
African/American 14.3 14.1
Hispanic/Latino 1.1 0.7
Others 4.1 5.1

Cognitive diagnosisa at most recent visit, %
Cognitively Normal 33.8 48.0
MCI 19.2 15.7
Diagnosed with AD 44.0 34.3
Other dementia 3.0 2.0

Note. NACC = National Alzheimer’s Coordinating Center; MCI = Mild
Cognitive Impairment; AD = Alzheimer’s disease; UDS = uniform data set;
SD = standard deviation.
a Based on primary, contributing, or noncontributing cause Alzheimer’s disease.
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The cocalibration we do here is a minor tweak of the calibration we
have done previously and evaluated validity with, using essentially
the same modeling strategy. There is a simple practical reason we do
not provide additional novel analyses of the validity of the cocali-
brated scores, which is that given the challenges we had to address to
develop cocalibrated scores, there is no classical test theory-derived
approach for harmonizing these data that we would recommend. All
such methods we are aware of make assumptions that are not
supported by data. For example, if we took z-scores within a domain
for each study, we would not have a way to link studies together
without making a huge assumption that the means and standard
deviations of the two samples are exactly the same. As shown
elsewhere in this issue (Hampton et al., 2020), when we have
evaluated this assumption across studies we have not found it to
be plausible. Standard approaches widely used in the field such as
z-scores make strong assumptions that must be correct for resulting
scores to be valid (McNeish &Wolf, 2020). Some studies change all
or part of the neuropsychological battery over time and it becomes
impossible to cocalibrate cognitive data with naïve total score and
z-score approaches and derive scores on the same scale. There are
other approaches such as linear linking for related traits (Nichols
et al., 2021) built using item response theory machinery that can be
used for cocalibration but it uses additional assumptions and is not
amenable to domains with secondary data structure. Our approaches
make far fewer assumptions; at each step, as outlined here, we have
made careful modeling choices that are consistent with the data. A
limitation of this field is that there is no robust metric to get a sense of
cocalibration accuracy.
One limitation of our current workflow is that our choice of which

datasets to begin our procedures with was based in part on conve-
nience, specifically which data sets we had access to at the beginning
of our work. As more data sets become available, it will become
possible to consider the implications of making different choices.
Investigations of those choices may be very useful in determining
the potential impact of initial selection of studies or pooling all of the
studies together, as well as the cumulative impact of sequential item
parameter instabilities.

We do not incorporate methods to account for repeated measures
in our CFAmodels. In this initial work, we chose a single measure-
ment occasion for each individual. There could be some learning
effects that could have an impact on item difficulty or discrimina-
tion. Further work will be needed to investigate this issue. We are
somewhat comforted that, in many instances, intervals between
testing are many months (ADNI and others), a year (ROS/MAP and
others), or even 2 years (ACT and others) apart; retest or learning
effects are thought to be more salient with study visits that are close
to each other. This is an active area of research (Jutten et al., 2020).
Another limitation is that we didn’t perform any formal Differential
Item Functioning (DIF) testing across the suite of studies. DIF
occurs when groups (such as defined by sex, ethnicity, age, or
education) have different probabilities of endorsing a given item
after controlling for overall scores. We plan to examine and adjust
our scores for DIF in future studies, especially across ethnicity (e.g.,
MAP and MARS), and adjust for it if it turns out to be impactful
(Crane et al., 2007; Dmitrieva et al., 2015).

To date these efforts have enabled us to cocalibrate hundreds of
thousands of scores from tens of thousands of individual study
participants. These rich data are available for interested investigators
to use. The item parameters we have generated to date are stored and
deriving scores for additional study participants and observations
becomes a much simpler task in subsequent waves from ongoing
studies and indeed for new studies with overlapping content. There
are multiple ongoing funded initiatives that have or will use these
cocalibrated cognitive data. Cocalibrated cognitive scores were used
to derive a measure of resilience (Dumitrescu et al., 2020) facilitat-
ing meta-analysis of genetic results across cohorts enabling us to
find candidate loci associated with resilience. These analyses would
not have been possible without the cocalibrated scores; cocalibrated
scores facilitated analyses of the replicability of genotype–phenotype
association signals across multiple studies that used different instru-
ments to measure cognition. The Alzheimer’s disease genetics com-
munity has seen value in the approaches we have taken; we propose
to use these same approaches in the now funded U24 AG074855,
“Alzheimer’s Disease Sequencing Project Phenotype Harmonization
Consortium.” Our hope is that this protocol article will serve a
valuable role in all these initiatives in documenting our workflow
for cocalibrating cognitive scores across studies.
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