
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 22, NO. 4, JULY 2018 1197

Multi-Hypergraph Learning for Incomplete
Multimodality Data

Mingxia Liu , Member, IEEE, Yue Gao , Senior Member, IEEE, Pew-Thian Yap, Senior Member, IEEE,
and Dinggang Shen , Senior Member, IEEE

Abstract—Multi-modality data convey complementary
information that can be used to improve the accuracy of
prediction models in disease diagnosis. However, effec-
tively integrating multi-modality data remains a challeng-
ing problem, especially when the data are incomplete. For
instance, more than half of the subjects in the Alzheimer’s
disease neuroimaging initiative (ADNI) database have no
fluorodeoxyglucose positron emission tomography and
cerebrospinal fluid data. Currently, there are two commonly
used strategies to handle the problem of incomplete data:
1) discard samples having missing features; and 2) im-
pute those missing values via specific techniques. In the
first case, a significant amount of useful information is
lost and, in the second case, additional noise and artifacts
might be introduced into the data. Also, previous studies
generally focus on the pairwise relationships among sub-
jects, without considering their underlying complex (e.g.,
high-order) relationships. To address these issues, in this
paper, we propose a multi-hypergraph learning method for
dealing with incomplete multimodality data. Specifically, we
first construct multiple hypergraphs to represent the high-
order relationships among subjects by dividing them into
several groups according to the availability of their data
modalities. A hypergraph regularized transductive learn-
ing method is then applied to these groups for automatic
diagnosis of brain diseases. Extensive evaluation of the
proposed method using all subjects in the baseline ADNI
database indicates that our method achieves promising re-
sults in AD/MCI classification, compared with the state-of-
the-art methods.

Index Terms—Alzheimer’s disease, classification, hyper-
graph, incomplete data, multi-modality.

I. INTRODUCTION

Alzheimer’s disease (AD) is characterized by progressive
impairment of neurons and the connections between neurons,
leading to loss of cognitive/memory function and ultimately
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death. This disease has been regarded as the major challenge to
global health care systems [1], and it is estimated that the total
prevalence of AD in the United States is about 13.8 million by
2050 [2]. Until now, much effort has been made to investigate
computer-aided brain disease diagnosis approaches, aiming to
prevent or postpone the onset of AD or its prodrome, i.e., mild
cognitive impairment (MCI) [3].

Recent research and clinical studies have investi-
gated extensive candidate biomarkers, and reported that
fluorodeoxyglucose positron emission tomography (PET) mea-
surements, structural magnetic resonance imaging (MRI), and
cerebrospinal fluid (CSF) are among the best-established
biomarkers for AD progression and pathology [3]. Specifically,
feature representations (e.g., cortical thickness, connectivity in-
formation, and regional volumetric measures) extracted from
MRI can be adopted to measure AD-related brain abnormali-
ties [4]–[11]. With PET data, one can detect the abnormality
in cerebral metabolic rate for glucose in the brain [12]–[16].
Besides, CSF total-tau (t-tau), CSF tau hyperphosphorylated at
threonine 181 (p-tau) and the decrease of CSF amyloid β (Aβ)
are shown to be related to the cognitive decline in AD/MCI
patients [17], [18]. Previous computer-aided disease diagno-
sis studies have reported that multi-modality data (e.g., MRI,
PET, and CSF) can provide complementary information [19]–
[22], which can be used for improving the diagnostic results for
AD/MCI.

One common challenge in the multi-modality analysis is
that there may be missing values in some modalities, which
is called incomplete data problem [19], [20]. For instance, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
which consists of data for AD, MCI, and normal control (NC)
subjects with multiple data modalities (e.g., MRI, PET, and
CSF), is not complete for all modalities [23]. In the baseline
ADNI database, all subjects have MRI data, and only about half
subjects have PET and CSF data. Possible reasons for this may
include poor data quality, high cost involved with PET scanning
and patient dropouts. For instance, CSF data collection requires
invasive tests (e.g., lumbar puncture), which might deter patient
commitment [19].

In the domain of neuroimaging analysis, researchers have de-
veloped various approaches to deal with incomplete data [19],
[20]. The first type of methods simply removes subjects with
incomplete data. This will unfortunately result in discarding
a large amount of the acquired data and may lead to signifi-
cant reduction of sample size [24]. The second type of methods
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aims to impute the missing values via specific data imputation
techniques [25], [26]. Some well-known imputation techniques
include expectation maximization (EM) [27], singular value de-
composition (SVD) [28] and matrix completion [29]. Although
these methods may help to process those randomly missing data,
they often cannot handle missing data that are in a block-wise
manner [19], where subjects have missing values in a whole
modality (instead of missing some features in a specific modal-
ity). Also, imputation methods may introduce additional im-
putation artifacts, and thus, degrade the data quality [29]. Dif-
ferent from these two categories, several other methods have
been recently developed to directly handle the incomplete data,
without having to discard incomplete data or to impute missing
data [19], [20]. For instance, Yuan et al. [19] proposed a multi-
source feature learning method using all subjects in ADNI with
at least one available data modality. Xiang et al. [20] devel-
oped a sparse feature learning method for handling incomplete
multi-modality data without imputation. However, the main dis-
advantage of these methods is that they model only the pairwise
relationships between subjects. Intuitively, the higher-order re-
lationships among subjects can be used to improve the learning
performance of computer-aided AD/MCI diagnosis.

In this paper, we propose a multi-hypergraph learning (MHL)
approach based on incomplete multi-modality data for the au-
tomatic diagnosis of AD/MCI, where the high-order relation-
ships among subjects can be modeled explicitly. To be specific,
we first divide the dataset into several groups depending on
whether the data for a certain modality is available. In this way,
each group contains subjects with complete data from a partic-
ular combination of different modalities. Then, we construct a
hypergraph to model the high-order relationships among sub-
jects in each group. Next, we combine the hyperedges given by
multi-hypergraphs associated with those groups and compute a
hypergraph Laplacian matrix. Finally, a hypergraph-regularized
transductive learning model is used for AD/MCI diagnosis.

The major contributions of this paper are summarized below.
First, we propose a data grouping strategy for multi-modality
data, and each group is corresponding to a particular com-
bination of multiple modalities. Second, we develop a multi-
hypergraph classification model, by explicitly modeling the in-
herent high-order relationships among subjects via hypergraphs.
Third, we conduct extensive experiments on ADNI to empiri-
cally analyze our method, including four binary classification
tasks (i.e., AD vs. NC, MCI vs. NC, AD vs. MCI, and pMCI vs.
sMCI). The experimental results demonstrate the effectiveness
of our proposed method.

The work in this paper is different from our previous study
in [30]. First, while the focus of [30] is to exploit the coherence
among different data groups (with each group containing data
from a particular combination of different modalities), we fo-
cus on modeling the high-order relationships among subjects in
this study. Second, the strategies for making use of the multi-
modality data are different. In [30], we learn optimal weights
for different groups from data via a view-aligned hypergraph
classification model. In this work, we treat each group equally
and propose to learn weights for hyperedges from data automati-
cally. Third, the hypergraph construction methods are different.

In [30], we adopt sparse representation for constructing hy-
pergraphs, where the similarity measure is based on the sparse
coefficients. In this work, we use the star expansion strategy [31]
to generate multiple hyperedges in each group, where Euclidean
distance is used as the similarity measure.

The rest of the paper is organized as follows. We first present
background information in Section II. In Section III, we describe
data pre-processing method and our proposed multi-hypergraph
learning approach. In Section IV, we describe experimental set-
tings and report experimental results. In Section V, we compare
our method with related approaches and investigate the influ-
ences of parameters. In Section VI, we conclude this work and
discuss future research directions.

II. BACKGROUND

A. Hypergraph Based Transductive Learning

As a typical semi-supervised learning method, transductive
learning incorporates not only labeled data but also unlabeled
data for improving the performance of supervised learning meth-
ods [32], [33]. Generally, transductive learning assumes that
the data lie in manifolds and clusters. Based on these two as-
sumptions, many transductive learning methods have been pro-
posed, such as transductive support vector machine [32], graph
based learning [34], [35] and hypergraph learning [34], [36]–
[38]. Among various transductive learning methods, hypergraph
learning achieves promising performance in practice. Here, we
denote scalars, vectors, and matrices using normal italic letters,
boldface lowercase letters, and boldface uppercase letters, re-
spectively. We further list important notations and definitions
used in this paper in Table I.

A hypergraph is represented by G = (V, E ,w), where V is a
set of vertices (each representing a subject), E is a set of hyper-
edges (each connecting two or more vertices) and w = (wi) ∈
RNe is the weight vector for Ne hyeredges. Each hyperedge ei

(i = 1, 2, · · · , Ne) is assigned a weight wi . In hypergraphs, a
hyperedge can connect more than two vertices, through which
high-order relationships can be modeled explicitly [34], [36]. In
comparison, each edge in a simple graph connects only two ver-
tices. The incidence matrix H = (hij ) ∈ RN ×Ne of hypergraph
G encodes the relationships among vertices. The (i, j)-entry of
the incidence matrix H indicates whether vertex vi is connected
with other vertices in the hyperedge ej , i.e.,

hij =

{
1, if vi ∈ ej

0, otherwise
(1)

The vertex degree and the hyperedge degree are defined,
respectively, as

d (vi) =
∑
ej ∈E

wjhij (2)

and

δ(ej ) =
∑
vi ∈V

hij (3)

We let Dv and De be diagonal matrices containing
the vertex degrees and the hyperedge degrees, respectively.
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TABLE I
NOTATIONS

Notation Definition

G = (V, E , w) G denotes a hypergraph, while V , E and w represent the set of vertices, the set of hyperedges and the weights of hyperedges,
respectively.

N The number of vertices in the hypergraph G, i.e., N = |V|.
Ne The total number of hyperedges, i.e., Ne = |E|.
N g

e The number of hyperedges in the g-th group.
W The diagonal matrix of the hyperedge weights, W ∈ RN e ×N e .
d(vi ) The degree of the vertex vi .
δ(ej ) The degree of the hyperedge ej .
Dv The diagonal matrix of the vertex degrees, Dv ∈ RN ×N .
De The diagonal matrix of the hyperedge degrees, De ∈ RN e ×N e .
Hg The incidence matrix for the hypergraph in the g-th group, and Hg ∈ RN ×N e .
y The N -dimensional label vector of N samples, with element yi = 1 if the i-th sample belongs to the positive class, yi = −1 if the i-th

sample belongs to the negative class, and otherwise yi = 0.
f The relevance score vector for N samples, f ∈ RN .

Denote W = (Wij ) ∈ RNe ×Ne as the diagonal matrix of hy-
peredge weights, with the diagonal element Wii = 1. Previ-
ous approaches for computing the hypergraph Laplacian can
be categorized into two classes [34]. The first class aims to
construct a simple graph from the initial hypergraph, e.g., star
expansion [31], clique expansion [31] and Rodriquez’s Lapla-
cian [39]. In the second class, we define a hypergraph Laplacian
based on analogs from simple graph Laplacian, e.g., normal-
ized Laplacian [34] and Bolla’s Laplacian [40]. Recently, Ben-
son et al. [38] proposed a hypergraph construction method
to capture the high-level information inside a graph. In this
paper, we adopt the method proposed in [34] to compute the hy-
pergraph Laplacian. Letting Θ = D−1/2

v HWD−1
e HTD−1/2

v ,
the hypergraph Laplacian is defined as Ł = I − Θ. We
define the hypergraph Laplacian regularizer Ω(f) as
in [34]

Ω(f) = fTŁf

=
1
2

∑
ei ∈E

∑
vj ,vk ∈V

wihjihki

δ(ei)

(
fj√
d(vj )

− fk√
d(vk )

)2

(4)

B. ADNI Database

This study is based on the incomplete multi-modality data
from the baseline ADNI database (ADNI-1) [23]. In ADNI,
subjects are divided into three categories (i.e., AD, MCI, and
NC) based on particular criteria such as Mini-Mental State Ex-
amination (MMSE) scores. To be specific, general inclusion
or exclusion criteria used in ADNI are listed in the following:
1) mild AD: MMSE scores between 20–26 (inclusive), CDR of
0.5 or 1.0 and meet NINCDS/ADRDA criteria for probable AD;
2) MCI: MMSE scores between 24–30 (inclusive), a memory
complaint, have objective memory loss measured by education
adjusted scores on Wechsler Memory Scale Logical Memory
II, a CDR of 0.5, absence of significant levels of impairment in
other cognitive domains, essentially preserved activities of daily
living and an absence of dementia; and 3) NC: Mini-Mental
State Examination (MMSE) scores between 24–30 (inclusive),

TABLE II
DEMOGRAPHIC AND CLINICAL INFORMATION OF SUBJECTS IN THE BASELINE

ADNI DATABASE

AD MCI NC

Male/Female 99/87 254/141 118/108
Age (Mean± SD) 75.40 ± 7.60 74.90 ± 7.30 76.00 ± 5.00
Edu. (years) (Mean± SD) 14.70 ± 3.10 15.70 ± 3.00 16.00 ± 2.90
MMSE (Mean± SD) 23.30 ± 2.00 27.00 ± 1.80 29.10 ± 1.00
CDR (Mean± SD) 0.75 ± 0.25 0.50 ± 0.03 0.00 ± 0.00

Note: Values reported as Mean± standard Deviation (SD); MMSE: mini-mental state
examination; CDR: Clinical Dementia Rating.

a Clinical Dementia Rating (CDR) of 0, non-depressed, non
MCI and non-demented.

Besides, many MCI subjects could convert to AD within sev-
eral months after the baseline time, while the others may keep
stable over time. Accordingly, we further categorized those MCI
subjects into two classes, i.e., progressive MCI (pMCI) and sta-
ble MCI (sMCI). Specifically, if the diagnosis for a particular
subject was MCI at baseline but this subject converted to AD af-
ter baseline within 24 months, this subjects is defined as pMCI.
In contrast, an sMCI subject was diagnosed as MCI at all avail-
able time points (0–96 months). The detailed description for
each category is given online (http://adni.loni.usc.edu).

III. METHOD

A. Data Pre-Processing

There are 807 subjects in the baseline ADNI database, in-
cluding 186 AD subjects, 395 MCI subjects (169 pMCI and
226 sMCI), and 226 NCs. All 807 subjects in ADNI have T1-
weighted structural MRI data, while only 396 subjects have PET
data and 406 subjects have CSF data. That is, in the baseline
ADNI database, the missing data are in a block-wise manner,
i.e., subjects have missing values in a whole modality, instead
of missing some features in a specific modality. In Table II, we
report demographic and clinical information of all subjects used
in this study.
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We process MR and PET images and extract the region
of interest (ROI) features from these two data modalities.
Specifically, using MIPAV (http://mipav.cit.nih.gov/index.php),
we first apply anterior commissure (AC)-posterior commissure
(PC) correction for MR images. We then re-sample those images
to have the resolution of 256 × 256 × 256 and correct intensity
inhomogeneity via N3 algorithm [41]. In the next step, we per-
form skull stripping, and remove the cerebellum by warping a la-
beled template to each skull-stripped image. Then, FAST [42] in
the FSL software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki)
is adopted to segment the human brain into three tissue types,
i.e., gray matter, white matter, and cerebrospinal fluid (CSF). Af-
ter registration via HAMMER [43], we obtain a subject-labeled
image, by using a template with 93 ROIs [44]. For each sub-
ject, we finally extract the volumes of GM tissue in 93 ROIs
as feature representations, normalized by the total intracranial
volume. Here, the total intracranial volume is estimated by the
summation of GM, WM and CSF volumes from 93 ROIs. On
the other hand, for those PET images, we first align each PET
image onto its corresponding MR image via affine transforma-
tion. Then, the average intensity of each ROI in the PET image is
computed as the feature representation for that subject. Also, we
use five CSF biomarkers for representing subjects, i.e., amyloid
β (Aβ42), CSF total tau (t-tau), CSF tau hyperphosphorylated
at threonine 181 (p-tau) and two tau ratios with respect to Aβ42
(i.e., t-tau/Aβ42 and p-tau/Aβ42). In this way, we now have a
191-dimensional feature vector for each subject having com-
plete multi-modality data, including 93 MRI features, 93 PET
features, and 5 CSF features.

B. Multi-Hypergraph Construction With Incomplete
Multi-Modality Data

Although several methods have been proposed to handle the
incomplete data directly without having to discard incomplete
data or to impute missing data [19], [20], these methods can
only model pairwise relationships between subjects. That is, the
high-order relationships among subjects are not captured to fur-
ther improve the performance of disease diagnosis. For address-
ing this issue, we propose a multi-hypergraph learning (MHL)
method to handle block-wise incomplete multi-modality data,
by explicitly incorporating the high-order relationships among
subjects into the learning process. As shown in Fig. 1, we first
divide the whole dataset into several groups according to the
availability of the data associated with a particular combination
of modalities. For each group, we construct a hypergraph to
model the complex relationships among subjects. We then com-
pute the hypergraph Laplacian matrix based on the hypergraphs
associated with different groups. Finally, we perform hyper-
graph based transductive classification to predict class labels
for new testing subjects.

We illustrate the multi-hypergraph construction approach in
Fig. 2 by using three modalities (i.e., MRI, PET, and CSF) as
an example. In Fig. 2, each column in the data matrix rep-
resents a subject with three data modalities, while each row
denotes a feature vector among all subjects in a specific modal-
ity (some entries may have missing values). We first partition

Fig. 1. The proposed multi-hypergraph learning method for incomplete
multi-modality data. The main steps include 1) data grouping, 2) hyper-
graph construction, 3) hypergraph Laplacian computation, and 4) hyper-
graph based transductive classification.

the whole dataset into six groups, including three inter-modality
groups (i.e., Group 1, Group 2, and Group 3) and three single-
modality groups (i.e., Group 4, Group 5, and Group 6). In this
study, we denote subjects in inter-modality groups as those hav-
ing features from two or more modalities, while subjects in
single-modality groups as those having only data from a sin-
gle modality. As shown in Fig. 2, subjects in Group 1 have
PET and MRI features, subjects in Group 2 have features from
three modalities (i.e., PET, MRI, and CSF), subjects in Group
3 have MRI and CSF features, while subjects in Groups 4–6
have only CSF, MRI, and PET features, respectively. In each
group, we have complete feature representations for each sub-
ject. We believe that such data grouping method has at least
two advantages. First, we can make full use of subjects with
data from at least one modality via such grouping, which is par-
ticularly important for dealing with the problem of incomplete
multi-modality data. In this way, more available information
can be used in the learning process. Second, such data group-
ing method can largely broaden the feature space by concate-
nating features from different modalities, through which one
can get much richer feature representation. Note that such data
grouping method is a general means for problems with com-
plete multi-modality or multi-view data to expand the feature
space.

Motivated by [31], [45], we construct the hyperedges via the
star expansion strategy, by varying the neighborhood size for
each vertex (with a vertex representing a specific subject), where
the Euclidean distance is used for computing the neighbors. In
Fig. 3, we give an illustration of our hyperedge construction
strategy. As shown in Fig. 3, with the vertex v as the center,
we vary the neighborhood size s (i.e., s = 3, 5, 7) to generate
three hyperedges (i.e., ev

1 , ev
2 and ev

3 ), with each hyperedge con-
necting the vertex v and its s-nearest neighbors. Since different
neighborhood sizes reflect different scales of data structure, the
hyperedges constructed by using different neighborhood sizes
reflect both local and semi-local structure information of the
original data. Finally, we combine the hyperedges generated
from multiple groups to compute a hypergraph Laplacian ma-
trix [34], which will be used in a hypergraph based transductive
classification model.
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Fig. 2. Illustration of the proposed group-based multi-hypergraph construction method. First, subjects are divided into G (G = 6 in this study)
groups according to the data availability of a certain combination of modalities. As MRI data are complete in ADNI, there are in total six combinations
of modalities, giving six groups, each containing subjects with complete data. Note that we use different shapes to denote different feature
representations since they may be different across groups (e.g., circles for Group 1 and squares for Group 3). A hypergraph is constructed for each
group, giving in total G hypergraphs.

Fig. 3. Hyperedge construction using different neighborhood sizes. Re-
garding vertex v as the center, we vary the neighborhood size s (i.e.,
s = 3, 5, 7), and generate three hyperedges (i.e., ev

1 , ev
2 and ev

3 ), each
connecting the vertex v and its s-nearest neighbors.

C. Multi-Hypergraph Based Classification

Since hypergraphs of the different groups share the same
vertices, representing all the subjects, we combine the hyper-
graphs via the incidence matrix H̃ = [H1 ,H2 , · · · ,HG ], where
Hg ∈ RN ×N g

e (g = 1, 2, · · · , G) is the incidence matrix corre-
sponding to the g-th group. It is worth noting that, if a vertex
represented by the g-th group of feature representation has miss-
ing values, no hyperedge in Hg covers this vertex. Using the
hypergraphs constructed for the groups, a binary classification
problem can be formulated as estimating the relevance score
vector f = (fi) ∈ RN for the N samples, which is as follows:

arg min
f

{Ω(f) + λRemp (f)} (5)

where the first term Ω(f) = fTŁf is a hypergraph regularization
term defined in (4), where Ł = I − D−1/2

v H̃WD−1
e H̃TD−1/2

v .
The second term is the empirical loss computed based on the
training data, and λ is a tuning parameter for trade-off between
empirical loss and regularization. Solving problem in (5) allows
knowledge learned from the training data to be transferred to

the testing data [32]. In this work, we adopt the square loss
function

Remp (f) = ‖f − y‖2 =
∑
vi ∈V

(fi − yi)
2 (6)

where y = (yi) ∈ RN is the label vector for the N samples.
For the i-th sample, we let yi = 1 if it belongs to the positive
class, yi = −1 if it belongs to the negative class, and yi = 0 if
its class is unknown.

Since different hyperedges may play different roles in mod-
eling the structure information of data, there may be differ-
ent weights for those hyperedges. For jointly learn the hyper-
edge weights and the estimated class labels automatically from
data, we reformulate the problem in (5) as follows:

arg min
f ,W

fTŁf + λ‖f − y‖2 + μ‖W‖2
F

s.t.
Ne∑
i=1

Wii = 1, ∀Wii ≥ 0
(7)

where the last term in (7) and those constraints are used to
penalize the complexity of weighting values for hyperedges.

The objective function in (7) is not jointly convex with respect
to f and W [46]. Fortunately, it is convex with respect to f
when W is fixed, and also convex with respect to W give
a fixed f . In this study, we adopt an alternating optimization
algorithm to solve the problem in (7). That is, we first fix W and
optimize f , and the objective function in (7) can be reformulated
as minimizing the following

Q = fTŁf + λ‖f − y‖2 (8)



1202 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 22, NO. 4, JULY 2018

By differentiating Q with respect to f , we obtain

f = (Ł + λI)−1y (9)

In the second step, we optimize W with the learned f in the
first step. Denote Λ = fTD−1/2

v H̃, and the objective function
in (7) can be rewritten as follows

arg min
W

fTŁf + μ‖W‖2
F

s.t.
Ne∑
i=1

Wii = 1, ∀Wii ≥ 0
(10)

Then, the partial derivative of (10) with respect to W is as
follows

∂

∂W

{
fTŁf + μ‖W‖2

F + η

(
Ne∑
i=1

Wii − 1

)}
= 0 (11)

⇒ W =
ΛTΛD−1

e − ηI
2μ

η =
ΛD−1

e ΛT − 2μ

Ne
(12)

The above-mentioned two steps are performed iteratively un-
til convergence. In the experiments, the iteration number is fixed
as 20 empirically.

IV. EXPERIMENTS

A. Methods for Comparison

In the experiments, we first compare our MHL method
with four baseline imputation-based approaches. These base-
line methods utilize various data imputation techniques to im-
pute missing features, which are summarized in the following:

1) Zero. In this method, those missing values are simply
filled with zeros. If we first normalize the original data to
have unit standard deviation and zero mean, this method is
equal to the mean value imputation method. More specif-
ically, those missing values are filled with the means of
values that are available in the same row.

2) k-Nearest Neighbor (KNN) [47], [48]. In KNN method,
we simply fill the missing value with weighted mean of
its k-nearest neighbor rows. Specifically, we first iden-
tify the feature rows that are most similar to the one
with the missing value via KNN algorithm, and then fill
that missing values with the weighted mean of values in
neighboring rows. Similar to the study in [49], the weight
for a specific neighboring row is inversely proportional
to the Euclidean distance between this neighboring row
and the row with missing values.

3) Expectation Maximization (EM) [27]. This method im-
putes the missing values using the expectation maximiza-
tion algorithm. To be specific, in the E step, we first
estimate the mean and the covariance matrix from the
feature matrix, and then fill those missing values with es-
timates from the previous M step (or initialized as zeros).
In the M step, based on the available values, estimated
mean and covariance, we fill those missing elements with

conditional expectation values. Then, the mean and the
covariance will be re-estimated based on the filled fea-
ture matrix. In EM method, the above mentioned two
steps will be repeated until convergence.

4) Singular Value Decomposition (SVD) [28]. The missing
values are iteratively filled-in based on matrix completion
with the low-rank approximation. Specifically, we first fill
those missing values with initial guesses (e.g., zeros), fol-
lowed by a singular value decomposition (SVD) process
to generate a low-rank approximation of a filled-in matrix.
Based on the low-rank estimation matrix, we will update
the missing elements with their corresponding values in
this matrix. Similarly, we will perform SVD again to ob-
tain a new updated matrix, and repeat such process until
convergence.

We further compare our method with state-of-the-art meth-
ods for dealing with incomplete multi-modality data in the field
of neuroimaging analysis. These methods include: 1) incom-
plete Multi-Source Feature (iMSF) learning [19], 2) Ingalha-
likar’s Algorithm [50], 3) incomplete Source-Feature Selection
(iSFS) [20] method, and 4) a matrix shrunk and completion
(MSC) method [49]. In the following, we briefly introduce these
methods.

1) Incomplete Multi-Source Feature (iMSF) Learning [19].
Using the similar data grouping technique as in our
method, iMSF regards the classification problem with in-
complete multi-modality data as a sparse multi-task learn-
ing problem, without discarding or imputing incomplete
data. As shown in [19], iMSF is effective in finding in-
formative features from incomplete multi-modality data.
Two versions of iMSF are available based on two par-
ticular loss functions (i.e., least squares loss and logistic
loss), including least-squares (iMSF-Least) and logistic
loss (iMSF-Logistic).

2) Ingalhalikar’s Algorithm [50]. In this method, an ensem-
ble classification technique is used to fuse outputs of mul-
tiple classifiers, where these classifiers are built based on
different subsets of subjects with complete feature repre-
sentations. Specifically, this method first groups the origi-
nal incomplete multi-modality data into multiple subsets,
and then adopts the signal-to-noise ratio coefficient filter
algorithm to perform feature selection. Using those se-
lected features, it constructs a linear discriminant analysis
(LDA) [51] classifier in each individual subset. Finally,
the classification results from all subjects are fused by a
particular ensemble strategy for making a final decision
for a new testing subject. Two versions of this method
are available based on different ensemble strategies. The
first one, denoted as Ingalhalikar-Weighted, adopts the
weighted averaging strategy, where each classifier is as-
signed a particular weight based on its classification er-
ror on the training data. The second one, denoted as
Ingalhalikar-Average, is based on the averaging strategy,
where all classifiers are assigned equal weights.

3) Incomplete Source-Feature Selection (iSFS) method [20].
In iSFS, subjects with incomplete multi-modality data
are first partitioned into several groups according to the
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availability of data modalities. Then, a feature learning
model is developed to find the most informative features
from different data groups. That is, all subjects can be
used in this method, without any discarding or imputation
operation.

4) Matrix Shrinkage and Completion (MSC) method [49].
In MSC, the input features and the output label vec-
tor are first combined into an incomplete matrix. Then,
this incomplete matrix is further partitioned into sev-
eral sub-matrices, with each one containing subjects with
complete feature representation (w.r.t. certain combina-
tions of multi-modalities). A multi-task learning model is
adopted to select both discriminative features and infor-
mative samples in each individual sub-matrix, leading to a
shrunk matrix. Based on an EM imputation method [27],
MSC finally completes those missing feature values and
unknown target outputs of the shrunk matrix.

In this study, the proposed MHL method, Ingalhalikar’s algo-
rithm, and MSC can directly perform classification tasks based
on incomplete multi-modality data. The other methods need to
either impute the missing data (e.g., Zero, KNN, EM, and SVD)
or select a subset of features (e.g., iMSF, and iSFS). Motivated
by [19], [20], in the experiments, we adopt support vector ma-
chine (SVM) for classification [52] after data imputation using
Zero/KNN/EM/SVD and feature selection using iMSF/iSFS. A
linear SVM is used in the experiments, since the max-margin
classification nature of the linear SVM results in good general-
izability [20].

B. Experimental Settings

We adopt a 10-fold cross-validation strategy [24] for per-
formance evaluation. The subjects are partitioned into 10 sub-
sets, and each subset has roughly equal number of subjects.
Each time one subset is used as the testing set, while the re-
maining 9 subsets are adopted as the training set. In order
to avoid any bias introduced by random partitioning of the
data, such process is repeated 10 times, and we record the
average classification results. To optimize parameters for dif-
ferent methods, we further perform an inner 10-fold cross-
validation using each training set. Specifically, we further
partition each training set into 10 subsets for cross-validation pa-
rameter selection [20]. Similar to [19], the neighborhood size k
for KNN is selected from {3, 5, 7, 9, 11, 15, 20}. For the SVD-
based imputation method, the rank parameter is chosen from
{5, 10, 15, 20, 25, 30}. The regularization parameter λ for iMSF
is chosen from {10−5 , 10−4 , · · · , 101}. The parameters λ and
μ for MHL and C for SVM are chosen from {10−3 , 10−2 ,
· · · , 104}. The neighborhood sizes of {3, 5, 7, 9, 11, 15, 20} are
used to construct multiple hyperedges in MHL. The influence
of the neighborhood size is discussed in Section V-D.

Seven metrics are used for performance evaluation: classi-
fication accuracy (ACC), sensitivity (SEN), specificity (SPE),
balanced accuracy (BAC), positive predictive value (PPV), neg-
ative predictive value (NPV) and the area under the receiver
operating characteristic curve (AUC) [53]. Let TP, TN, FP, and
FN denote True Positive, True Negative, False Positive, and

TABLE III
COMPARISON WITH BASELINE IMPUTATION-BASED METHODS: AD VS. NC

CLASSIFICATION (%)

Zero KNN EM SVD MHL (Ours)

ACC 84.48 85.20 84.23 86.37 90.29
SEN 77.96 70.98 67.76 80.78 84.40
SPE 89.84 96.91 97.78 90.87 95.13
BAC 83.90 83.94 82.77 85.82 89.77
PPV 87.01 94.91 96.14 87.78 93.45
NPV 83.36 80.31 78.82 85.64 88.11
AUC 83.90 83.94 82.77 85.82 89.77

p-value 0.0017∗ 0.0014∗ 0.0038∗ 0.0037∗ −

TABLE IV
COMPARISON WITH BASELINE IMPUTATION-BASED METHODS: MCI VS. NC

CLASSIFICATION (%)

Zero KNN EM SVD MHL(ours)

ACC 67.74 67.25 68.06 71.32 74.35
SEN 81.20 79.12 80.96 83.46 86.25
SPE 44.49 46.69 45.93 50.16 53.74
BAC 62.84 62.91 63.44 66.80 70.01
PPV 71.71 72.17 72.87 74.44 76.35
NPV 58.07 56.76 64.24 63.82 69.31
AUC 62.84 62.91 63.44 64.49 70.01

p-value 0.0013∗ 0.0013∗ 0.0043∗ 0.0054∗ −

TABLE V
COMPARISON WITH BASELINE IMPUTATION-BASED METHODS: AD VS. MCI

CLASSIFICATION (%)

Zero KNN EM SVD MHL(ours)

ACC 72.41 72.75 73.79 72.93 79.65
SEN 29.08 30.68 29.96 26.35 39.24
SPE 92.89 92.64 95.94 94.93 98.73
BAC 60.99 61.66 62.95 60.64 68.98
PPV 72.25 72.99 74.94 77.39 93.58
NPV 74.16 74.06 73.71 73.40 77.49
AUC 60.99 61.66 61.45 60.64 69.98

p-value 0.0051∗ 0.0056∗ 0.0024∗ 0.0013∗ −

False Negative, respectively. And the evaluation metrics are de-
fined as: ACC = TP+TN

TP+TN+FP+FN ; SEN = TP
TP+FN ; SPE = TN

TN+FP ;
BAC = SEN+SPE

2 ; PPV = TP
TP+FP ; NPV = TN

TN+FN . The McNemar
test [54] is used to evaluate the statistical significance of the
difference between classification accuracies of two methods.
We report the p-values in Tables III–VI and mark statistically
significant differences (p < 0.05) with the asterisk (∗).

C. Comparison With Baseline Methods

We first compare MHL with four baseline imputation-
based methods, including Zero, KNN [47], [48], EM [27] and
SVD [28]. In Tables III–VI, we report results for four clas-
sification tasks: AD vs. NC, MCI vs. NC, AD vs. MCI, and
pMCI vs. sMCI, respectively, where the best results are marked
in boldface. We also show the receiver operating characteristic
(ROC) curves achieved by different methods in Fig. 4. From
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Fig. 4. ROC curves achieved by five different methods in (a) AD vs. NC, (b) MCI vs. NC, (c) AD vs. MCI, and (d) pMCI vs. sMCI classification
tasks. Here, different colors denote the ROC curves achieved by five different methods.

TABLE VI
COMPARISON WITH BASELINE IMPUTATION-BASED METHODS: PMCI VS.

SMCI CLASSIFICATION (%)

Zero KNN EM SVD MHL(ours)

ACC 66.83 65.82 65.82 66.58 74.68
SEN 51.49 53.85 56.07 51.37 68.49
SPE 78.13 74.61 73.41 78.36 79.47
BAC 64.81 64.23 64.74 64.86 73.98
PPV 63.81 60.88 62.04 63.72 79.13
NPV 68.79 68.87 70.09 67.70 72.85
AUC 64.81 64.23 64.74 67.54 71.98

p-value 0.0032∗ 0.0035∗ 0.0033∗ 0.0037∗ −

Tables III–VI and Fig. 4, we can observe that MHL consistently
outperforms the competing methods regarding all seven eval-
uation criteria in four classification tasks. For instance, MHL
achieves an accuracy of 90.29% and an AUC of 89.77% for AD
vs. NC classification, outperforming other methods. The supe-
riority of MHL is confirmed by the fact that the differences are
all statistically significant as shown in the tables. On the other
hand, it is interesting to observe from Table V and Fig. 4(c) that,
for AD vs. MCI classification, the sensitivity achieved by MHL
and other methods are low. This implies that it is difficult to
distinguish AD from MCI, because MCI (the prodrome of AD)
might manifest abnormalities similar to AD.

D. Comparison With State-of-the-Art Methods

We further compare MHL with six state-of-the-art methods
for AD/MCI classification, including two versions of Ingalha-
likar’s algorithm (i.e., Ingalhalikar-Weighted, and Ingalhalikar-
Average) [50], two versions of iMSF (i.e., iMSF-Least, and
iMSF-Logistic) [19], iSFS [20], and MSC [49]. The results for
different classification tasks are reported in Tables VII–X. Note
that in these tables, we directly report the results of iSFS [20]
and MSC [49] in their respective reference papers. From
Tables VII–X, we can observe that the proposed MHL method
achieves the best ACC values in four classification tasks, and
outperforms six competing methods regarding AUC in both AD
vs. MCI and pMCI vs. sMCI classification tasks.

E. Computational Complexity

According to Section III-B, the computational complexity for
hypergraph construction is O(GN 2), where G is the number of

TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS: AD VS. NC

CLASSIFICATION (%)

ACC SEN SPE AUC

Ingalhalikar-Weighted 83.03 78.54 86.72 89.82
Ingalhalikar-Average 81.07 76.37 84.94 87.39
iMSF-Least 86.41 76.91 94.24 85.57
iMSF-Logistic 86.97 75.78 93.90 86.34
iSFS 88.48 88.95 88.16 88.56
MSC 88.50 83.70 92.70 94.40
MHL(ours) 90.29 84.40 95.13 89.77

TABLE VIII
COMPARISON WITH STATE-OF-THE-ART METHODS: MCI VS. NC

CLASSIFICATION (%)

ACC SEN SPE AUC

Ingalhalikar-Weighted 62.58 65.42 57.73 64.40
Ingalhalikar-Average 61.61 64.16 57.28 62.07
iMSF-Least 70.64 81.62 54.42 63.02
iMSF-Logistic 71.61 82.83 54.73 63.78
MSC 71.50 75.30 64.90 77.30
MHL(ours) 74.35 86.25 53.74 70.01

TABLE IX
COMPARISON WITH STATE-OF-THE-ART METHODS: AD VS. MCI

CLASSIFICATION (%)

ACC SEN SPE AUC

Ingalhalikar-Weighted 63.44 47.51 66.22 63.24
Ingalhalikar-Average 63.10 45.46 65.71 61.69
iMSF-Least 73.44 23.68 96.95 60.31
iMSF-Logistic 73.96 25.36 96.95 61.16
MHL(ours) 79.65 39.24 98.73 69.98

TABLE X
COMPARISON WITH STATE-OF-THE-ART METHODS: PMCI VS. SMCI

CLASSIFICATION (%)

ACC SEN SPE AUC

Ingalhalikar-Weighted 62.58 65.42 57.73 64.40
Ingalhalikar-Average 61.61 64.16 57.28 62.07
iMSF-Least 70.64 71.62 54.42 63.02
iMSF-Logistic 71.61 72.83 54.73 63.78
MHL(ours) 74.68 68.49 79.47 71.98
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TABLE XI
RUNTIME COMPARISON OF DIFFERENT METHODS IN AD VS. NC

CLASSIFICATION

Method Time (s)

Zero 0.48
KNN 1.55
EM 1.93
SVD 2.92
Ingalhalikar-Weighted 2.55
Ingalhalikar-Average 2.35
iMSF-Least 2.71
iMSF-Logistic 4.16
MHL(ours) 4.01

data grouping (e.g., G = 6 for ADNI with MRI, PET and CSF
data modalities), and N is the number of subjects in the database.
Besides, the computational complexity for the hypergraph reg-
ularized transductive classification is O(N 2T ), where T is the
iteration number for solving the optimization problem in (7).
Hence, the overall computational complexity of the proposed
MHL method is O(N 2).

We further empirically compare the computational time cost
between MHL and 8 competing methods. Table XI reports the
computational time costs of different methods in AD vs. NC
classification. From Tables VII and XI , we can see that the
computational time cost of MHL is similar to that of iMSF-
Logistic, while the classification results achieved by MHL are
much higher than those of iMSF-Logistic.

V. DISCUSSION

We compare MHL with a simple graph method and a single-
modality method in Sections V-A and V-B, respectively. In
Section V-C, MHL is further compared with the commonly
used classifier, i.e., SVM. Sections V-D and V-E investigate the
influences of neighborhood size in hyperedge construction and
regularization parameters.

A. Comparison With Simple Graph

We compare MHL with a simple graph method (Simple-
Graph), which is based on [34] and uses the normalized graph
Laplacian for transductive classification. Note that a simple
graph can only model pairwise relationships among subjects.
Similar to MHL, the regularization parameter in SimpleGraph
is selected from {10−3 , 10−2 , · · · , 104} via cross validation.
Fig. 5 shows that MHL achieves better results in most cases.
For instance, MHL is superior to SimpleGraph in AD vs. MCI
and pMCI vs. sMCI classification. These results support the fact
that explicitly modeling complex relationships among subjects
can boost the learning performance.

B. Comparison With Single-Modality

In the proposed MHL method, we use not only single-
modality data, but also inter-modality data (with features from
more than one modalities). We now investigate whether using
inter-modality data can improve diagnosis performance. We run

Fig. 5. Comparison of MHL with a simple graph (SimpleGraph)
method. (a) AD vs. NC classification. (b) MCI vs. NC classification.
(c) AD vs. MCI classification. (d) pMCI vs. sMCI classification.

Fig. 6. Comparison of MHL with MHL-1, where MHL-1 only uses
single-modality data (i.e., MRI, PET, and CSF) to construct hypergraphs.
(a) AD vs. NC classification. (b) MCI vs. NC classification. (c) AD vs. MCI
classification. (d) pMCI vs. sMCI classification.

MHL with data from only one single-modality (i.e., data in
Groups 4–6 in Fig. 2) that is called MHL-1 in this paper. Fig. 6
shows that MHL performs better than MHL-1 in all cases, indi-
cating that inter-modality data improve the diagnostic accuracy.

C. Comparison With SVM

We compare MHL with the commonly used linear SVM
classifier, using only the complete MRI data. For a fair
comparison, the parameter C for SVM is chosen from
{10−3 , 10−2 , · · · , 104}, which is similar to MHL. Fig. 7 shows
that MHL outperforms SVM in most cases. In particular, MHL
achieves better results for pMCI vs. sMCI classification in
seven evaluation criteria. In addition to the improved perfor-
mance, another advantage of MHL over SVM is that MHL can
perform classification directly using incomplete multi-modality
data, while SVM is only suitable for problems with complete
data.

D. Influence of Neighbor Size

As mentioned in Section III, in each group, we construct
multiple hyperedges by varying the neighborhood size. To in-
vestigate the effectiveness of such strategy, we compare MHL
with its variant that uses only one fixed neighborhood size
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Fig. 7. Comparison between SVM and the proposed MHL method us-
ing complete MRI data from the baseline ADNI database. (a) AD vs. NC
classification. (b) MCI vs. NC classification. (c) AD vs. MCI classification.
(d) pMCI vs. sMCI classification.

Fig. 8. Comparison between MHL and MHL-2 in AD vs. NC classifica-
tion, where MHL-2 constructs hyperedges using one fixed neighborhood
size.

Fig. 9. Results achieved by MHL using different values of λ.

(denoted as MHL-2) in AD-NC classification. Fig. 8 shows that,
in most cases, MHL achieves better performance than MHL-2.
The superiority of MHL can be attributed to its ability to capture
both local and semi-local structure information captured by our
hyperedge construction method.

E. Influence of Parameters

Here we evaluate the influence of two regularization param-
eters (i.e., λ and μ) in (7) on the performance of MHL, with
results shown in Figs. 9 and 10, respectively. The value of λ and
μ are varied within {10−3 , 10−2 , · · · , 104}. Fig. 9 indicates that

Fig. 10. Results achieved by MHL using different values of μ.

when the value of λ is larger than 50, MHL generally achieves
better results in both accuracy and AUC. This trend is stable with
the increase of λ. From Fig. 10, we can see that the performance
of the proposed MHL method is overall stable using different
μ, and the best ACC and AUC are achieved when μ ≤ 1.

F. Limitations

In this work, we validate the effectiveness of our proposed
MHL method on the baseline ADNI database with MRI, PET,
and CSF incomplete multi-modality data. Although MHL yields
promising results in four classification tasks, there are still sev-
eral limitations in our method. First, we partition data into mul-
tiple groups (corresponding to combinations of modalities), and
simply treat different groups equally. Actually, different groups
could play different roles in modeling the structure information
of data. It is reasonable to further learn the optimal weights for
multiple groups to improve the performance of the proposed
method, which is one of our future works. On the other hand,
the proposed method can only deal with problems of block-
wise incomplete data. For more general problems (e.g., with
missing values in a specific modality for some subjects), we
can first adopt a simple technique (e.g., EM or SVD) to impute
these missing values, and then partition subjects into different
groups, followed by multi-hypergraph construction and hyper-
graph based classification using our proposed model. Besides,
due to the computational cost in hypergraph construction, our
method cannot efficiently deal with large-scale samples. As a
future work, we will investigate the deep learning based meth-
ods for dealing with the problem of incomplete multi-modality
data, by using our proposed multi-modal data grouping strategy.

VI. CONCLUSION

In this paper, we propose a multi-hypergraph learning (MHL)
method to effectively utilize incomplete multi-modality data for
AD/MCI diagnosis. We first divide the whole dataset into several
groups according to data availability for different combinations
of modalities. Each of these groups contains subjects with com-
plete data. We then construct a hypergraph to explicitly model
the complex relationships among subjects in each group. With
the combination of hyperedges in multiple hypergraphs, we
compute the hypergraph Laplacian matrix that is finally utilized
for hypergraph regularized transductive classification. Experi-
mental results on the baseline ADNI database demonstrate that
MHL makes effective use of incomplete multi-modality data and
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improves AD/MCI diagnostic accuracy. MHL is general and can
be extended to other problems with incomplete multi-modality
data, such as those involved in longitudinal studies.
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