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ABSTRACT

Graph-based transductive learning (GTL) is a powerful machine learning technique that is used when
sufficient training data is not available. In particular, conventional GTL approaches first construct a fixed
inter-subject relation graph that is based on similarities in voxel intensity values in the feature domain,
which can then be used to propagate the known phenotype data (i.e., clinical scores and labels) from the
training data to the testing data in the label domain. However, this type of graph is exclusively learned
in the feature domain, and primarily due to outliers in the observed features, may not be optimal for
label propagation in the label domain. To address this limitation, a progressive GTL (pGTL) method is
proposed that gradually finds an intrinsic data representation that more accurately aligns imaging fea-
tures with the phenotype data. In general, optimal feature-to-phenotype alignment is achieved using an
iterative approach that: (1) refines inter-subject relationships observed in the feature domain by using
the learned intrinsic data representation in the label domain, (2) updates the intrinsic data representa-
tion from the refined inter-subject relationships, and (3) verifies the intrinsic data representation on the
training data to guarantee an optimal classification when applied to testing data. Additionally, the itera-
tive approach is extended to multi-modal imaging data to further improve pGTL classification accuracy.
Using Alzheimer’s disease and Parkinson’s disease study data, the classification accuracy of the proposed
pGTL method is compared to several state-of-the-art classification methods, and the results show pGTL
can more accurately identify subjects, even at different progression stages, in these two study data sets.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

its prodromal stage, i.e., mild cognitive impairment (MCI) for AD,
is highly desired in practice. MCI stage can be further categorized

In the elderly population, neurodegenerative diseases, such as
Alzheimer’s diseases (AD) and Parkinson’s disease (PD), are the
most common types of neurological disorders. Because of the pro-
gressive nature of these disorders, memory and other mental func-
tions gradually worsen over time, which eventually affects the pa-
tients’ quality of life (Group, 2004; Reisberg et al., 2008; Thomp-
son et al., 2007). Unfortunately, there is no cure for these neurode-
generative diseases, although treatments include medications and
management strategies may improve the quality of life. Therefore,
timely and accurate diagnosis of neurodegenerative diseases and
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into progressive MCI (pMCI) and stable MCI (sMCI). Since an over-
whelming amount of literature exits (Mueller et al., 2005; Ohtsuka
et al., 2013) that relate neurodegenerative impairments to mor-
phological abnormalities in the brain, MRI studies that reveal the
structural abnormalities of the brain, or PET and SPECT studies that
reveal the functional abnormalities of the brain have been widely
used. Furthermore, methods that combine structural and functional
neuroimaging data have been used to guide computer aided diag-
nosis techniques (Long et al., 2012; Ohtsuka et al., 2013; Prashanth
et al.,, 2014; Rana et al., 2014; Salvatore et al., 2014; Weiner et al.,
2013). More specifically, a technique called OPLS (orthogonal par-
tial least squares to latent structures) is used to distinguish sub-
jects with AD and MCI from healthy controls by combing MRI and
CSF data (Westman et al., 2012). Joint feature and sample selection
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methods based on SVM classification model for classification of AD
and PD related diseases are also proposed in (Adeli et al., 2016;
An et al., 2016). Other machine learning methods, such as ker-
nel learning methods (Liu et al., 2014; Peng et al., 2016), subspace
learning methods (Hu et al., 2016; Zhu et al., 2016), random for-
est (Gray et al., 2013b), deep learning (Liu et al., 2015a) and graph
fusion (Tong et al., 2015; Wang et al., 2014a), have also been used
to guide the classification of neurodegenerative diseases. However,
morphological abnormalities are often subtle when compared to
the high inter-subject variations (Zhu et al., 2013). Hence, sophis-
ticated pattern recognition methods are of high demand to accu-
rately identify individuals at different stages of neurodegenerative
disease.

On the other hand, medical imaging applications also have vari-
ous challenges that are related to high feature dimensionality, large
data heterogeneity, and the small number of samples with ground-
truth labels (e.g., diagnosis scores). Furthermore, even if a large
number of labeled samples exist, it is very difficult to identify
a computational model that will work well with the entire set
of data due to large inter-subject variations across individuals.
Transductive learning is a semi-supervised learning (SSL) method,
which is recently emerged in the machine learning domain, intro-
ducing a strategy halfway between supervised and unsupervised
learning schemes to improve classification performance by explor-
ing the relationship between both labeled and unlabeled sam-
ples (Adeli-Mosabbeb and Fathy, 2015; Joachims, 2003; Zhou and
Burges, 2007; Zhu et al., 2005). Here, the labeled samples are used
to guide the transductive learning, while the unlabeled samples
are used to maintain the intrinsic geometric structure of the ob-
served samples. In particular, the graph-based SSL takes advantage
of computational efficiency and representational ease for the med-
ical imaging data. Because of the graph structures, it is more effi-
cient to integrate different types of data for better explanations of
the clinical outcomes (Kim et al., 2013). Since graph is usually used
to describe the data manifold, most of the proposed transductive
learning methods fall to the category of graph-based transductive
learning (Blum and Chawla, 2001; Zhou et al.,, 2004; Zhu et al.,
2005).

Graph-based transductive learning is widely used in image
retrieval, image segmentation, data clustering and classification
(Huang et al, 2014; Liu and Chang, 2009; Wang et al., 2014a;
Zhang et al,, 2015). For example, a fast and robust graph-based
transductive learning method was proposed in (Zhang et al., 2015)
by using a minimum tree cut, which was designed for large-
scale web-spam detection and interactive image segmentation.
Also, graph-based transductive learning methods have been inves-
tigated with great success in medical imaging area (Gao et al,
2015; Kim et al., 2013; Tong et al.,, 2015), since it can overcome
the above difficulties by taking advantage of the data representa-
tion on unlabeled testing subjects. In the current state-of-the-art
methods, each subject, regardless of being labeled or unlabeled, is
often treated as a graph node. Then two subjects are connected
by an edge in the graph if they both show similar morpholog-
ical patterns. Using these connections, the labels can be propa-
gated throughout the graph until all latent labels are determined.
Typically, there are two separate steps in graph-based transduc-
tive learning methods: (1) construct the graph, where the vertices
represent the labeled and unlabeled samples and the edges reflect
the similarity degree between two connected samples (Zhu et al.,
2005); and (2) propagate labels from labeled samples to unlabeled
samples. Many current label propagation strategies have been pro-
posed to determine the latent labels of testing subjects based on
the inter-subject relationships encoded in the graph (Wang and
Tsotsos, 2016; Zhang et al., 2015).

The basic assumption of current methods is that the graph con-
structed in the observed feature domain represents the real data

distribution and can be transferred to guide label propagation.
However, this assumption usually does not hold, since the distribu-
tion of examples in the feature space does not necessarily cluster
into groups as defined by the clinical scores and labels (Braak and
Braak, 1995). Although the clinical scores and labels are different,
they are highly correlated since the diagnosis is drawn upon the
clinical score. Meanwhile, we believe the intrinsic data represen-
tation should be close or reflect the characteristic of the clinical
score. Due to lack of ground truth, the underlying clinical score
distribution used to validate the learned intrinsic data representa-
tion. As an example, Fig. 1(a) shows the affinity matrix of 51 AD
and 52 NC subjects using the ROI-based features extracted from
each MR image, where red dots and blue dots denote the high and
low inter-subject similarities, respectively. Since the clinical data
(e.g., MMSE and CDR scores (Thompson et al., 2007)) are more
relevant with clinical labels, we use these clinical scores to con-
struct another affinity matrix, as shown in Fig. 1(c). It is apparent
that the data representations using imaging features and clinical
scores are completely different. Thus, it is not guaranteed that the
learned graph from the affinity matrix in Fig. 1(a) can effectively
guide the classification of AD and NC subjects. More critically, the
affinity matrix using observed image features is not even necessar-
ily optimal in the feature domain, due to possible imaging noises
and outlier subjects. In the literature, many studies have taken
advantage of multi-modal information to improve discrimination
power of transductive learning. However, the graphs from different
modalities might also be different, as shown in the affinity matri-
ces using structural image features from MR images (Fig. 1(a)) and
functional image features from PET images (Fig. 1(b)). Although re-
cent graph diffusion technique (Wang et al.,, 2014a) is effective in
finding a common graph from multiple graphs, as shown in Fig. 1,
it is hard to find a combination for the graphs in Figs. 1(a) and (b)
that can be similar to the graph in Fig. 1(c), which is more related
with the final classification task.

To solve these issues, we propose a progressive graph-based
transductive learning method to learn the intrinsic data represen-
tation for optimal label propagation. Specifically, the intrinsic data
representation should be (a) in consensus with inter-subject rela-
tionships constructed by imaging features extracted from different
modalities, (b) aligned with the clinical labels or scores, and (c)
verified on the training data for label propagation. To that end,
we simultaneously (1) refine the data representation (inter-subject
graph) in the feature domain, (2) find the intrinsic data representa-
tion based on the constructed graphs on both multi-modal imaging
data and the clinical labels of entire subject set (including known
labels on training subjects and the tentatively-determined labels
on testing subjects), and (3) propagate the clinical labels from
training subjects to testing subjects, following the latest learned
intrinsic data representation. Promising results have been achieved
in identify subjects with neurodegenerative disease on two neu-
rodegenerative databases (i.e., Alzheimer’s disease (AD) and Parkin-
son’s disease (PD)), each with two modality images (such as MR
and PET/SPECT).

The rest of this paper is organized as follows. Section 2 presents
our proposed progressive graph-based transductive learning
method. After that, we apply the method to the two real brain
neurodegenerative imaging databases (ADNI and PPMI datasets!),
and present the comparison results to validate the advantages
of our method in Section 3. Finally, we conclude our method in
Section 4.

1 Alzheimer’s disease Neuroimaging Initiative (ADNI), and Parkinson’s Progressive
Markers initiative (PPMI)
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Fig. 1. Affinity matrices using structural image features (a), functional image features (b), and clinical scores (c). Bright dots and dark dots indicate the high and low

inter-subject similarities, respectively.

2. Method

Suppose we have N subjects {I, ..., Ip,Ipy1, -, Iy}, which se-
quentially consist of P training subjects and Q (Q = N — P) testing
subjects. For P training subjects, the clinical labels Fp = [fy],_1 _p
are known, where each f, e [0, 1] is a binary coding vector in-
dicating the clinical label from C classes. Our goal is to jointly de-
termine the latent labels for Q testing subjects based on a set of
their continuous likelihood vectors Fo = [fg]g—p+1,.. N, Where each
element in the vector f; indicates the likelihood of the g-th subject
belonging to one of C classes. For convenience, we concatenate Fp
and F, into a single label matrix F = [FpFg].

2.1. Graph-based transductive learning on single-modal imaging data

Graph-based transductive learning learns over both labeled and
unlabeled samples, aiming to harness the structure of entire data
representation to improve the prediction of the latent labels. For
clarity, we first extract single-modality image features from each
subject I; (i=1,...,N), denoted as x;. Using measurement from
each modality, a graph G = (V, E) can be constructed to model the
relations among the N subjects, where the nodes V correspond to
N subjects and the edges E are weighted by the similarities be-
tween linked subjects. In the conventional graph-based transduc-
tive learning methods, the inter-subject relationships are computed
based on feature similarity, which is encoded in an N x N feature
affinity matrix A. Each element a; (a; > 0,1, j=1,...,N) in A rep-
resents the feature affinity degree between x; and x;. Therefore, the
graph construction can be divided into two steps: graph topology
definition and edge weight computation.

For the graph topology definition, current methods can be clas-
sified into two categories (de Sousa et al., 2013; Zhu et al., 2005):
1) Using the fully-connected graph. A fully-connected graph is cre-
ated with edges between all pairs of nodes. Similar nodes have
larger edge weights between them. In these methods, usually the
weights of a fully-connected graph can be simply learned, but the
computational cost is relatively high. 2) Using sparse graph. The
k-nearest neighbor (kNN) graph and e-neighborhood (¢NN) graph
are both the sparse graphs, in which each node connects to only
a few nodes. Sparse graphs are computationally fast and can often
provide good empirical performance. However, the neighborhood
relationship changes with the change of hyperparameters. Hence,
for the sake of generalizability, the kNN graphs are constructed for
each modality in this paper.

The most direct way to compute the weight matrix A (by
defining the edge weight between each pair of nodes) is based
on a given similarity measure; in practice, it generally redefines
the weight matrix A by using different measures for better inter-
pretability. Binary weighting is the simplest method for assign-

ing edge weights, which is to set A =E directly (where E is a bi-
nary matrix, indicating if there is an edge between each pair of
the nodes). Obviously, such a scheme cannot provide any extra in-
formation beyond the graph topology. RBF (Gaussian) kernel is
one of the most common methods to assign edge weights for a
graph. RBF kernel computes the similarity between x; and x; by
ajj = exp(—d(xi,xj)z/Zaz), where d(x;, ¥;) is a pair-wise similarity
measure. For instance, pair-wise Euclidean distance can be used
here. In addition, o is a scale parameter (de Sousa et al., 2013;
Zhu et al., 2005). In practice, one can employ any meaningful mea-
sure for defining edge weights, such as mutual information that
has been successfully applied to brain and gene network modeling
or detecting non-linear relationships (Plis et al., 2014). Addition-
ally, some post-processing and optimization processes can also be
used to efficiently weight the edges. These processes are often re-
ferred to as graph learning methods (Nie et al., 2014; Wang et al.,
2014a). Without loss of generality, we select RBF kernel as the sim-
ilarity measure to define the pair-wise affinity degree aj as:

-

Qijj = exp 202

(1)

where o is the scale controlling the exponential penalty strength
of Euclidian distance between X; and X;. Based on the affinity
matrix A, conventional methods determine the latent label for
each testing subject I; by solving a classic graph learning problem
(Golub and Van Loan, 2012; Nocedal and Wright, 2006):

N
F, = argn}in > ”fi —f; ”;a,-j. (2)
7 =1

As shown in Fig. 1, the affinity matrix A might not be closely
related with the intrinsic data representation in the label domain.
Therefore, it is necessary to find a hidden data representation
which aligns with the clinical labels, rather than solely using the
affinity matrix constructed based on imaging features. However,
initially, labels on the testing subjects are not determined yet. In
order to solve this chicken-and-egg dilemma, we propose to itera-
tively optimize the data representation of each observed imaging data
and align the refined imaging data representations to a common space
for reflecting the intrinsic data representation of phenotype data.

2.2. Progressive graph-based transductive learning

Instead of relying on the affinity matrix A, we propose to find
an intrinsic data representation T = [t;;]; j_q,ny Which is more rel-
evant than using affinity matrix A to guide the label propagation
in Eq. (2). Therefore, the problem of determining the latent label
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for each testing subject I; becomes:

N
. 2
arg [}:‘lq?_{_] Z (”fl - fj ||2tij) s.t. tij >0, t/il =1. (3)
i,j=1
where t;;(t;; > 0,i,j=1,...,N) denotes the latent intrinsic inter-

subject relationship between subject I; and I;. Since the clinical la-
bels on the testing subjects are unknown, joint optimization of la-
tent clinical label F; and hidden intrinsic data representation T in
Eq. 3 is an ill-posed problem. In order to turn the energy function
to a well-posed problem, we require that the latent intrinsic data
representation T should respect the affinity matrix A as follows:

N
argmin Y (6656 + 2o —ty]) st ;= 0,601 = 1.
=1

(4)

where @;; is computed by Eq. 1. A is the parameter controlling the
influence of affinity matrix A on the estimation of T (intrinsic data
representation). Since the affinity degree a;; is computed based on
the observed imaging data x; and x;, possible noisy/outlier fea-
tures could bring a series of unrealistic feature similarities. In or-
der to suppress the influence of noisy/outlier imaging features,
we propose to estimate the optimal imaging data representation
S =[sijInxy based on the observed imaging features, where the
regularization term is enforced on s;:

N
argmin > {”x,- —X; His,-j + nsizj} st.s;j>0,81=1. (5)
i,j=1

where 7 is the scalar controlling the strength of regularization
term. Although the optimization of inter-subject relationship s; (in
Eq. 5) and the calculation of affinity value g; (in Eq. 1) are both
driven by the imaging features, the optimized inter-subject rela-
tionship s;; is more robust than g;; to the deteriorated imaging fea-
tures. Hence, the edge weights are learned in the optimization pro-
cess.

By replacing the affinity degree a; with the optimal inter-
subject relationship s;, we jointly optimize the intrinsic data rep-
resentation T, imaging data representation S, and the latent clinical
label Fy in the following energy function:

N
e ,-1-2 {“”fi 05t + = s+ s+ A sy 6 ||§}

s.t. Sij = 0, S/il =1, l',‘j >0, t/il =1,F= [FPFQ] (6)

where o is the scalar balancing the data fitting terms from two
different domains (i.e., the first and second terms in Eq. (6)). Note,
s;; and t;; are required to be 0. The sum of inter-subject similarity
degree of subject I; to all other subjects equals to 1, ie., s/1=1
and t{1 =1, where s; and t; denote for the i-th column vectors of
matrices S and T, respectively.

2.3. Progressive graph-based transductive learning on multi-modal
imaging data

Recently, multi-modal neuroimaging data become more and
more popular. For example, ADNI dataset provides a wide spec-
trum of neuroimaging data, which includes MR images and PET
images. In order to improve the classification accuracy, we go one
step further to extend our progressive graph-based transductive
learning by fully using the complementary information in multi-

modal data.
Suppose we have M modalities. For each subject [;, we can ex-
tract multi-modal image features X", m=1,..., M. For the m-th

modality, we can optimize the imaging data representation S™ of

imaging data {x["};_; _n. As shown in Figs. 1(a) and (b), the data
representations across different modalities could be different. Thus,
we require the intrinsic data representation T to be close to all S™.
To that end, we extend our above pGTL method from the single-
modal to the multi-modal scenario:

N M
arg goin, 3 {M e 3 [ sy () s ru-ni]}
U ig=1 m=1

stsp>0,(s7)'1=1, t;; >0, t{1=1,F=[FpFq]. (7)

The intuition behind Eq. 7 is that the label propagation is
steered by the hidden intrinsic data representation T. The criteria
for obtaining reasonable estimation of T are: (1) T should be close
to all imaging data representations S™ estimated from the ob-
served imaging features {X["} (as shown in the last term in Eq. (7)),
which eventually makes T act as a common space for S',...,SM;
and (2) the label propagation results should be in consensus with
the labels on the known subjects (the first term in Eq. (7)) such
that the intrinsic data representation is essentially aligned with the
phenotype data. It is apparent that our energy function describes
a highly dynamic system since the variables are all correlated to
each other. In the following, we give the optimization solution to
Eq. 7, which falls into a divide-and-conquer scenario.

2.4. Optimization

Fortunately, our proposed energy function in Eq. (7) is convex
with respect to each of the variables S, T, and F. Thus, we can
alternatively optimize one set of variables at a time by fixing other
sets of variables. The optimization for each sub-problem is detailed
below.

2.4.1. Estimation of imaging data representation S™ for each modality
Removing the unrelated terms w.r.t. S™ in Eq. (7), the optimiza-
tion of S™ falls to the following objective function:

N N
i m m 2 m m 2 m 2
argmin 3 [|x7" = x| 55+ n(sf)"+ 2 D it
i,j=1 i,j=1
sts;>0, (sM)1=1,t;>0,t;1=1. (8)
Since Eq. (8) is independent of variables i and j, we further re-
formulate Eq. (8) in the vector form as below:
2
S.t. Sij = 0, 5/11 =1. (9)
2
where d;=[d;j]j_;, n IS a column vector with each d;;=
X" —x}"||2 —2At;;, and r{ =n+A. As shown in the Appendix,
Eq. (9) has a closed-form solution. After we solve each si", we can
obtain the imaging data representation matrix S™.

s’ +

. i
min —
s’ 214

2.4.2. Estimation of intrinsic data representation T
Fixing S™ and F, the objective function w.r.t. T reduces to:

N M N
arngin Z /L||fi _fj||§tij+)‘ Z Z (”S?; _tU’”i)’

i,j=1 m=1i,j=1
S.t.Si]‘ >0, (S:ﬂ)/ 1=1, tij >0, t,il =1. (]0)

Similarly, we can reformulate Eq. (10) by solving each t; at a
time:
12
! s.t. tij >0, t/il =1. (11)
2

2r,

where h; = [h;];; n is a vector with each element h;;=
,u||f,»—fj||% —2A Z"n’{:] s, and r;=MA is a scalar. Similar to the
solution for Eq. (9), the problem in Eq. (11) can also be solved us-
ing a closed-form solution. After solving each t;, we can obtain the
affinity matrix T.

arg mtin t+
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Fig. 2. The dynamic procedure of the proposed pGTL method. See text for details.

2.4.3. Updating of latent labels Fq on testing subjects
Given both S¥ and T, the objective function for the latent label
Fq can be derived from Eq. (3) as below:

N
mFin Z ||f, — J”itU’ (12)
i,j=1

Eq. (12) is equal to the following problem:

. - . g/
min trace(FL'F') = min trace(FL'F') (13)
where trace(.) denotes the matrix trace operator. L = diag(T) —
(T +T)/2 is the Laplacian matrix of T(diag(T) denotes for the di-
agnial matrix of T). Fp is with known clinical labels. By differenti-
ating Eq. (13) w.r.t. F and letting the gradient equal to zero such as
LF = 0, we can obtain the following equation:

Lep  Lpg || Fp
=0, 14
|:LQP LQQ:| |:FQ] (14)

where Lpp, Lpg, Lgp, and Ly denote the top-left, top-right, bottom-
left, and bottom-right blocks of L. The solution for Fy can be ob-
tained by f:Q = _(LQQ)_]LQPFP'

The solution to the optimization problem in Eq. (7) is briefly
summarized as follows.

Algorithm 1: Progressive transductive learning on multi-modal imaging data.

Input: Imaging data {x"/m=1...., M, i=1,...,N}, labels of labeled data Fp €
RP % €, parameters 7, A and u.
Output: Predicted labels of unlabeled data Fy € R2* €.
Compute the Euclidean distance between samples in each modality;
Initialize Sm using the affinity matrix A™, and initialize T by letting
T= % sm;
m=1
Initialize Fy = {0}¢C .
while not converged do

1. Update Fq, which is obtained by Fq = —(Lgq) 'LopFp and L is the
Laplacian matrix of T.

2. Update each imaging data representation Sm in a column by column
manner, where the optimization of each column vector sf" in the matrix S™
is shown in Eq. (9) and Appendix.

3. Update affinity matrix T in a column by column manner, where the
optimization of each column vector t" in the matrix T" is shown in Eq. (11)
and Appendix.
end while

Discussion. Taking MRI and PET modalities as example, Fig. 2 il-
lustrates the optimization of Eq. (7) by alternating the follow-
ing three steps. (1) Estimate each imaging data representation S™,
which depends on the observed imaging features {x["} and the cur-
rently estimated intrinsic data representation T (red arrows); (2)
Estimate the intrinsic data representation T, which requires the es-
timations of both S! and $% and also the known clinical labels in
the label domain (purple arrows); (3) Update the latent labels Fg
on the testing subjects which needs guidance from the learned in-
trinsic data representation T (blue arrows). It is apparent that the
intrinsic data representation T links the feature domain and label do-
main, which eventually leads to the dynamic graph learning model.

3. Experiments

In this study, we use two popular brain neurodegenera-
tive databases i.e., the Alzheimer’s disease neuroimaging ini-
tiative(ADNI) database (http://adni.loni.ucla.edu) (Mueller et al.,
2005) and the Parkinson’s progression marker initiative (PPMI)
database (http://www.ppmi-info.org/data) (Marek et al., 2011), to
compare our proposed method with some state-of-the-art meth-
ods, ie., Support Vector Machine (SVM) (Suykens and Vande-
walle, 1999), Safe Semi-Supervised Support Vector Machine(S4VM)
(Li and Zhou, 2015), wellSVM (Li et al., 2013), supervised Joint
Classification and Regression (JCR) (Wang et al., 2011), Canonical
Correlation Analysis (CCA) based SVM (Thompson, 2005), Multi-
Kernel SVM (MK-SVM) (Gonen and Alpaydin, 2011), and Graph-
based Transductive learning (GTL) (Zhu et al., 2003). Specifically,
the brief introduction of each of these comparison methods is
given as follows:

e SVM: Support Vector Machine is a parametrically kernel-based
supervised learning method, which maps the data into a higher
dimensional input space and constructs an optimal separating
hyperplane in this space. In our experiment, we use linear ker-
nel.

* S4VM: Safe Semi-Supervised Support Vector Machine is a semi-
supervised learning approach that does not significantly re-
duce learning performance when unlabeled data are used. This
method uses multiple low-density separators to approximate
the ground-truth decision boundary and maximizes the im-
provement in performance of inductive SVMs for any candidate
separator. S4VM is semi-supervised learning method that guar-
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Table 1

Parameters and their explanations and respective ranges in competing methods.
Method Parameters Range
SVM Regularization parameter controlling the margin [10-3,10-3]
S4VM Weight for the hinge loss of labeled and unlabeled instance [1072,10%]
wellSVM  Regularization parameter for labeled and unlabeled data [1072,10?]
JCR Regularization parameter [107°,10%]
MK-SVM  Weight to blend two kernels [0.1,0.9]
GTL Exponential decay factor o in computing affinity degree (Eq. 1)  [27°,2°]
PGTL I, 1, A, regularizing and balancing parameters in Eq. 7 [103,10-3]

antees the performance improvement using unlabeled data will
be maximized (Li and Zhou, 2015).

o wellSVM: wellSVM is a semi-supervised method via a novel la-
bel generation strategy (Li et al., 2013). It is focused on the
problem of learning from weakly labeled data, where labels of
the training examples are incomplete. This method assumes dif-
ferent weakly labeled scenarios; including (i) semi-supervised
learning, where labels are partially known; (ii) multi-instance
learning, where labels are implicitly known; and (iii) clustering,
in which labels are completely unknown. In this paper we use
the first case, i.e. semi-supervised learning, to compare with our
proposed method.

o JCR: This sparse joint classification and regression method uti-
lizes the sparse regularization to perform imaging biomarker
selection and learn a sparse matrix under a unified frame-
work that integrates both heterogeneous and homogenous tasks
(Wang et al., 2011). In this paper we obtain the classification re-
sults using this unified framework that integrate both label and
clinical score information.

e CCA-SVM: Canonical correlation analysis is used to find the
mappings for aligning two distributions of sets of multi-
variate variables (vectors), which makes the correlation be-
tween the projected variables to be mutually maximized
(Thompson, 2005) after mapping. Then, we train the SVM clas-
sifier based on the projected features.

e MK-SVM: Multi-Kernel SVM method adequately utilizes the
particular characteristic of each source and provides more pos-
sibility to choose suitable kernels or their weighted combi-
nation especially for the data from multiple heterogeneous
sources (Gonen and Alpaydin, 2011). Each input has a kernel,
and in this work a combination kernel (i.e., weighted sum of all
kernels) is used to classify.

GTL: Graph-based transductive learning method is a semi-

supervised learning method. The affinity matrix is constructed

only in the feature domain but fixed in label propagation. In
this experiment, we use the code of classic graph-based learn-

ing method in (Zhu et al., 2003).

For single-modality case, we only compare our proposed pGTL
method with SVM method and GTL methods. For multiple-
modality case, SVM, S4VM, wellSVM, JCR, CCA-SVM, MK-SVM, and
GTL methods are used to compare with our pGTL method. Specif-
ically, we apply SVM, S4VM, wellSVM, JCR, GTL methods to multi-
modal imaging data by concatenating the feature vectors from all
modalities into a single feature vector.

3.1. Experiments setting

Evaluation measurements. We evaluate the classification per-
formance on four binary classification tasks:1) AD vs NC, 2) MCI
(Mild Cognitive Impairment) vs NC, 3) pMCI (progressive MCI) vs
sMCI (stable MCI), and 4) PD vs NC. A set of quantitative measure-
ments, such as Accuracy (ACC), Sensitivity (SEN), Specificity (SPE),
Positive Predictive Value (PPV), Negative Predictive Value (NPV)
and Mean Predictive Value (MPV) are used to compare the clas-
sification performance of the competing methods in the experi-

ments. Validation strategy. Specifically, we follow a 10-fold cross-
validation strategy, in which for each testing fold, the nine other
folds are used to train the models. This is repeated for all ten ex-
isting folds and the performance score are averaged over these ten
runs to illustrate reliable non-over-fitted results. In order to nar-
row down the factors affecting the classification performance, no
feature selection step is included. Parameter settings. For all com-
peting methods, the best parameters are selected through an in-
ner 5-fold cross-validation on the training data using a grid-search
strategy. The important parameters (along with their explanations
and the respective ranges) used in each classification method are
summarized in Table 1.

3.2. Experimental results on Alzheimer’s disease

3.2.1. Subjects and image preprocessing

In this study, we consider subjects with both MRI and PET
modalities available in the ANDI database. As a result, we have 93
AD subjects, 202 MCI subjects, and 101 NC subjects. Specially, 55
pMCI subjects (who converted from MCI to AD in last 36 months)
and63 sMCI subjects (who didn’t not convert to AD in both 24
months and 36 months) are included in pMCI vs sMCI classifica-
tion. Each subject has both MR and 18-Fluoro-DeoxyGlucose PET
(FDG-PET) images. The demographics of the subjects are detailed
in Table 2.

For each subject, we first align the PET image to the MR image
space. Then we remove both the skull and cerebellum from MR
image, and segment MR image into white matter, gray matter and
cerebrospinal fluid (Wang et al., 2014b; Zhang et al., 2011). Next,
we parcellate each subject image into 93 ROIs (Regions of Interest)
by registering the template (with manual annotation of 93 ROIs) to
the subject image domain. Of note, these 93 ROIs cover important
cortical and sub-cortical regions in human brain. Finally, the gray
matter volume and the mean PET intensity in each ROI are used
and form a 186-dimensional feature vector.

3.2.2. Experimental results of classification performance

The classification performance by SVM, S4VM, wellSVM, ]CR,
CCA-SVM, MK-SVM, GTL and our proposed method are evaluated in
three classification tasks (AD vs NC, MCI vs NC, and pMCI vs sMCI),
respectively. Each task is conducted in both single-modal (MRI
or PET) and multi-modal (MRI and PET) scenarios separately. Our
proposed pGTL method achieves better classification performance
compared to the other counterpart methods. Specifically, Table 3
shows the classification performance of the competing methods in
the classification AD and NC. Our proposed pGTL method shows
the best classification accuracies of 88.6%, 87.3% and 92.6% by us-
ing MRI, PET and (MRI+PET), respectively. Moreover, the perfor-
mance improvements of classification accuracy over the second
best counterpart method are 1.8% when using MRI only, 0.3% when
using PET only, and 2.1% when using MRI+PET, respectively. Sim-
ilarly, our proposed method achieves the best classification accu-
racy in MCI vs NC and pMCI vs sMCI tasks, as shown in Table 4
and Table 5, respectively.

The comparisons with recently published state-of-the-art meth-
ods are reported in Table 6. It summarizes the subject informa-
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Demographic information of the subjects from the ADNI dataset. (SD: standard deviation).

Female/male

Age (mean + SD)[min-max]

Education (mean + SD)[min-max]

AD (93) 36/57 75.38 +7.4 [55-88] 14.66 +£3.2 [4-20]
MCI (202)  66/136 75.06 + 7.1 [55-88] 15.71+2.9 [7-20]
NC (101)  39/62 75.82 +4.8 [62-86] 15.82+3.2 [7-20]
pMCI (55)  20/35 75.04+£6.7 [57-88] 16.00 +2.6 [12-20]
sMCI (63)  18/45 76.48 + 6.7 [61-86] 15.46 +£3.0 [7-20]
Table 3
Comparison of AD/NC classification performance of the competing methods.
Modal Method  ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) MPV (%)
MRI S4VM 86.1+0.91 81.3+1.55 90.4+0.96 89.3+0.88 84.9+1.01 85.9+0.92
JCR 80.5+1.57 784+ 157 82.4+3.02 81.6+2.82 81.5+1.25 80.4 +1.44
wellSVM 86.5+6.25 80.0+12.6 91.8+5.16 88.9+6.12 85.6+8.20 85.9+6.73
SVM 86.5+1.38 82.2+1.52 90.4+1.55 89.6 +1.49 85.7+1.32 85.7+1.37
GTL 86.8+0.22 83.6+1.25 89.8+0.93 89.2+0.90 86.6 +0.99 86.6+0.26
pGTL 88.6 +1.69 86.6 +2.14 90.5+1.50 90.3 +1.66 88.8+1.74 88.5+1.68
PET S4VM 86.1 £1.26 85.3+1.61 86.9+1.89 86.8 +2.01 87.7+1.39 86.1+1.28
JCR 83.5+2.12 80.3+3.15 86.4+2.49 85.6+2.81 83.9+223 83.4+2.13
wellSVM 870+4.83 844+777 891+575 86.7+636 878+576  86.8+4.95
SVM 86.0+1.70 84.3+2.69 87.6+1.57 874+1.53 86.9+2.05 85.9+1.73
GTL 85.0+1.20 83.6+2.21 86.3+0.65 86.3+0.67 86.2+1.77 85.0+1.23
pGTL 87.3+147 86.9+2.20 87.6+1.93 87.5+1.82 88.9+1.72 87.3+145
MRI+PET  S4VM 88.8+1.30 87.2+2.16 90.3+1.08 90.0 +1.41 89.3+2.00 88.7+1.27
JCR 87.7+1.73 86.7+3.18 88.7+1.67 88.9+1.63 88.9+2.08 87.7+1.79
wellSVM 90.5+5.50 87.8+8.19 92.7+717 91.4+8.13 90.6 +£5.97 90.3+5.55
SVM 86.7 +1.42 85.5+2.05 879+ 1.54 87.7+1.61 879+1.78 86.7+1.44
CCA-SVM  89.1+1.57 87.6+2.02 90.5+1.25 90.4+1.38 89.5+1.81 89.1+1.57
MK-SVM 90.0+1.03 89.1+1.53 90.7+1.28 90.7 +1.13 90.8+1.24 89.9+1.01
GTL 882+1.08 867+184 89.6+123 893+129 89.1+137 88.2+1.07
pGTL 92.6 +0.65 92.2+134 929 +1.37 929+1.36 933+120 92.5+0.71
Table 4
Comparison of MCI/NC classification performance of the competing methods.
Modal Method ~ ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) MPV (%)
MRI S4VM 66.3+1.28 80.1+2.13 38.7+5.85 72.5+1.59 499+2.10 59.4+223
JCR 65.4+2.17 81.4+3.86 33.4+8.00 71.5+2.10 46.9+6.39 57.4+3.07
wellSVM 68.8+4.53 73.2+4.52 60.0 +£7.66 78.6 £3.65 52.9+6.13 66.6 +5.03
SVM 68.7+1.39 85.2+1.16 35.9+4.91 729+135 59.6 +3.18 59.6 +£2.19
GTL 69.4+1.14 79.8+3.89 48.7 +9.10 77.0 +2.66 56.2 +4.47 56.3+2.82
pGTL 70.7 +£0.81 86.3 +2.40 39.6 +6.08 75.0+1.42 58.7+4.08 62.9+199
PET S4VM 68.2+1.27 83.9+1.65 36.9+2.17 73.0+0.88 51.9+4.70 60.4+1.33
JCR 66.6 +1.39 78.7+1.46 423 +3.16 73.3+116 50.8 +3.19 60.5 +1.69
wellSVM 68.2+5.76 80.5+14.2 43.6+23.3 751+6.25 56.5+18.3 62.0+7.43
SVM 66.5+1.14 831+2.84 3354627 719+1.29 50.2+3.69 583+3.69
GTL 69.9+0.83 80.1+1.63 49.8 +4.07 770+ 144 57.0+£2.73 64.9+1.48
pGTL 72.5+0.76 85.7+1.52 46.1+£3.93 76.7 +£0.96 63.3+3.59 65.9+144
MRI+PET S4VM 69.5+2.17 83.9+2.46 40.6 +4.37 74.2+1.63 57.8 +3.57 62.3+2.53
JCR 67.8+1.62 78.5+3.02 46.5+3.96 74.8 +1.30 52.7+249 62.5+1.64
wellSVM 70.6 £4.05 86.8 +3.98 38.2+103 739+3.21 58.9+10.3 62.5+5.27
SVM 69.2 +1.40 84.2+1.19 39.1+5.04 73.6 £1.37 57.6 £3.12 61.6 £2.22
CCA-SVM 70.0+2.15 81.7+2.08 46.8 +4.97 75.4+1.76 56.1 +4.21 64.2 +2.69
MK-SVM 72.6 +£1.98 72.2+2.26 72.9+2.07 74.0+1.76 72.7+2.40 72.6 £1.98
GTL 71.9£0.94 92.8+0.93 29.9+2.31 72.8£0.68 67.9+3.00 61.3+1.19
pGTL 789+180 8554219 663+339 83.8+134 71.6+4.16 75.9+2.02

tion, imaging modality, and average classification accuracy by us-
ing state-of-the-art methods. These comparison methods represent
various machine learning techniques. Since the classification are
not reported between pMCI and sMCI groups in (Gray et al., 2013b;
Liu et al., 2015c; Peng et al.,, 2016; Tong et al., 2015), between
MCI and NC groups in (Trzepacz et al., 2014), we do not include
the classification results and use ‘—-’ instead. Our method achieves
higher classification accuracy than both random forest and graph
fusion methods, even though those two methods use additional
CSF and genetic information.

Deep learning approach in (Liu et al., 2015b) learns feature rep-
resentation in a layer-by-layer manner. Thus, it is time consuming
to re-train the deep neural-network from scratch. Instead, our pro-
posed method only uses handcrafted features for classification. It
is noteworthy that we can complete the classification on a new

dataset (including grid-search for parameter tuning) within three
hours on a regular PC (8 CPU cores and 16GB memory), which
is much more economic than massive training cost in (Liu et al.,
2015b). Complementary information in multi-modal data can help
improve the classification performance; therefore, in order to find
the intrinsic data representation, we combine our proposed pGTL
with multi-modal information.

Besides, we also evaluate the classification performance w.r.t.
the number of training samples using AD vs. NC classification as
example, as shown in Fig. 3. It is clear that (1) our proposed
method always has higher classification accuracy than MK-SVM
methods; and (2) all methods can improve the classification accu-
racy as the number of training samples increases. It is worth not-
ing that our proposed method achieves large improvement against
MK-SVM, when only 33% of data is used as training samples. The
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Table 5
Comparison of pMCI/sMCI classification performance of the competing methods.
Modal Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) MPV (%)
MRI S4VM 5444228 4724643  609+4.87 51.8+4.41 575+291  54.4+253
JCR 568+175 5194420 6104280 545+371 5994189 565+195
wellSVM  609+748  46.0+135 73.3+861 587+104 6234629 59.7+7.77
SVM 5714262 4794634 651+470 5544340 59.6+3.20 56.5+2.66
GTL 6324331 5314548 721+269 621+511  647+317  63.2+3.52
pGTL 65.8+2.06 61.6+5.88 69.8 +£5.42 67.4+3.36 70.4+3.78 65.7 +2.03
PET S4VM 6014266 493+580 69.5+3.00 595+559 621+£262 59.4+295
JCR 66.3+3.04 61.9+458 7004552 651+4.77 695+2.79 659+294
wellsVM 6824123 680+13.9 683+183 668+168 721+132  682+120
SVYM 64.8+243 5274426 756+410 682+461 653+163 6414237
GTL 67.7+127  57.8+285 765+233 687+286 678+137  67.7+131
pGTL 69.7+2.06 52.6+441 844+361 793+3.89 684+200 6854221
MRI+PET  S4VM 631+235 4994110 744+343 634+239 633+181 6214212
JCR 66.6+415 6184506 70.8+438 67.0+530 684+428 663+4.19
wellsVM  691+9.77 72.0+139 667+13.6 652+129 7494111  69.3+9.76
SVM 68.6+214 59.8+137 768+11.7 7414113 6934515 683+2.64
CCA-SVM 6744120  42.6+397 8874342 775+508 643+079 657+136
MK-SVM  68.0+163 43.0+318 89.8+136 8124248 6514146 664+195
GTL 69.7+170 60.6+328 77.9+328 7194330 69.4+154  69.7+180
pGTL 767+176  668+3.09 850+326 808+337 769+177 759+188
Table 6
Comparison with the classification accuracies reported in the literatures (%), ‘—-' represents the results are not reported in these
papers.
Method Subject information Modality AD/NC  MCI/NC  p/sMCI
Modal-fusion1 (Westman et al., 2012)  96AD+162MCI+111NC MRI+CSF 91.8 77.6 68.5
Modal-fusion2 (Trzepacz et al., 2014) 20pMCI+30sMCI MRI+PET — — 76
HMFSS (An et al., 2016) 165AD+342MCI+195NC  MRI4-SNP 90.8 77.6 78.3
Kernel learning (Peng et al., 2016) 49AD+93MCI+47NC MRI+PET 923 76.4 —
Feature-trans (Zhu et al., 2015) 198AD+403MCI+229NC  MRI-HOG+MRI-ROI 89.9 75.2 721
Random forest (Gray et al., 2013a) 37AD+75MCI+35NC MRI+PET+CSF+Genetic ~ 89.0 74.6 —
Graph fusion (Tong et al., 2015) 35AD+75MCI+77NC MRI+PET+CSF+Genetic ~ 91.8 79.5 —
Deep learning (Liu et al., 2015b) 85AD+169MCI+77NC MRI+PET 914 821 —-
Our method 99AD+202MCI+101NC MRI+PET 92.6 78.6 76.7
3.3. Experimental results on Parkinson’s disease
94 ‘
—02.6 Lo . . .
[')1_ G 92 3.3.1. Subject information and image preprocessing
20 /90. /90 Recently, a major initiative, the Parkinson Progression Marker
3 ‘ 8- J —88 —88. Initiative (PPMI) (PPMI, 2011), was developed to identify and vali-
g 86 q /E ' date PD progression markers. Abundant imaging data from the en-
3 ’ 34-:/ ' rolled PD subjects at the earliest detectable stage of disease signifi-
< 8232-/ 82. cantly enhances the potential to both identify PD imaging markers
/ = =pGTL = =MK-SVM and develop computer-assisted diagnosis system for neuroprotec-
79[- tive interventions (Beitz, 2014; Jankovic, 2008; Stern and Siderowf,
78 2010). PD subjects in the PPMI study are just diagnosed and un-
10 20 33 50 67 80 90

Percentile of the training data (%)
Fig. 3. Classification accuracy as a function of the number of training samples used.

reason is that the supervised methods require a sufficiently large
number of samples (with labels) for training a robust classifier.
Otherwise, the classification performance decreases rapidly. On the
contrary, our proposed pGTL method can alleviate this issue by
leveraging the data distribution of both labeled and unlabeled data.
Since the training samples with known labels are expensive to col-
lect in medical imaging area, this experiment indicates the poten-
tial of our method in current neuroimaging studies.

To illustrate the representation of our method, confusion matrix
is also introduced. Confusion matrix, also known as error matrix, is
a specific table layout that allows visualization of the performance
of an algorithm (Hay, 1988). In confusion matrix, each column of
the matrix represents the instances in a predicted class while each
row represents the instances in an actual class. The use of confu-
sion matrix makes it easy to see if the system is confusing two
classes.

mediated. The healthy/normal control subjects are both age- and
gender-matched with the PD patients. In this research, we use 369
PD and 165 NC subjects, each with both MRI and SPECT modalities.
For MR images, a T1-weighted, 3D sequence (e.g., MPRAGE or
SPGR) is acquired for each subject using 3T SIEMENS MAGNETON
Trio Tim syngo scanners. The T1-weighted images were acquired
for 176 sagittal slices with the following parameters: repetition
time =2300ms, echo time =2.98 ms, flip angle =9°, and voxel
size =1x1x1 mm?3. All the MR images were preprocessed by
skull stripping (Wang et al., 2014b), cerebellum removal, and then
segmented into white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF) tissues (Lim and Pfefferbaum, 1989). The AAL
atlas (Tzourio-Mazoyer et al., 2002), parcellated with 90 predefined
regions of interest (ROI), was registered using HAMMER (Shen and
Davatzikos, 2002) to each subject’s native space. We further added
8 more ROIs to the atlas in the basal ganglia and brainstem re-
gions, which are clinically important ROIs for PD. These 8 ROIs are
‘superior cerebellar peduncle’, ‘midbrain’, ‘pons’ and ‘medulla ob-
longata’ in the brainstem, along with ‘substantia nigra’ (left and
right) and ‘red nucleus’ (left and right). We then computed WM,
GM and CSF tissue volumes in each of these 98 ROIs as features.
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Fig 4. Confusion matrix of classification results for proposed pGTL method.

To acquire SPECT images, the qysl-ilflupane neuroimaging ra-
diopharmaceutical biomarker was injected, which binds to the
dopamine transporters in the striatum. Brain images were then ac-
quired. To process these images, the PPMI study has performed
attenuation correction on the SPECT images, along with a stan-
dard 3D 6.0 mm Gaussian filter. Then, the images were normalized
to standard Montreal Neurological Institute (MNI) space. Next, the
transaxial slice with the highest striatal uptake was identified and
the 8 hottest striatal slices around this slice were averaged, to gen-
erate a single slice image. On the averaged slice, the four caudate
and putamen (left and right) ROIs, which are in the striatum brain
region, were labeled and considered as target ROIs. The occipital
cortex region was also segmented and used as a reference ROIL
Count densities for the regions were used to calculate the striatal
blinding ratios (SBRs), which were used as morphological signa-
tures for SPECT images.

3.3.2. Experimental results of classification performance

We randomly select 165 subjects out of 369 PD subjects to eval-
uate the classification performance with another 165 NC subjects.
This is used to make the data balanced. Moreover, to prevent any
unintended bias in the results, the process of random selection is
repeated 5 times, and the average value of the 5 times of reputa-
tion is used as the final result as shown in Fig. 5.

In the single-modal MR image based classification of PD and
NC subjects, the proposed method achieves the accuracy of 68.0%.
Compared to other competing methods (S4VM, JCR, wellSVM, SVM
and GTL) that achieve the accuracies of 58.0%, 58.8%, 58.4%, 58.5%
and 62.2%, respectively, our proposed method improved by 10%
over S4VM. For the case of using only SPECT images, the improve-
ments of classification accuracy achieved by our pGTL method
are less significant over other two methods (such as 95.4% by
S4VM,94.2% by JCR, 95.3% by wellSVM, 94.9% by SVM, 95.9% by
GTL, and 96.6% by our pGTL), due to the high sensitivity of fea-
tures from SPECT images. In multi-modal (MRI+SPECT) classifi-
cation scenario, the overall classification accuracies are 92.9% by
S4VM, 82.2% by JCR, 87.2% by wellSVM, 88.5% by SVM, 90.3% by
CCA-SVM, 94.2% by MK-SVM, 85.1% by GTL, and 97.4% by our pro-
posed pGTL method. It is apparent that our proposed pGTL method
has achieved the highest classification performance in both single-
and multi-modal classification scenarios. Confusion matrix about
classification performance for PD vs NC is showed in Fig. 4(d).

Since the SPECT image provides only four features, high-sensitivity
morphological patterns are nominated by the overwhelming less-
discriminative imaging features from MRI. Thus, the overall clas-
sification accuracy of the competing methods (except pGTL) using
both MRI and SPECT data are lower than only using SPECT data, in-
dicating high importance of using the state-of-the-art multi-modal
classification method to combine the powers of different modal-
ities. It is noteworthy that, although our proposed method does
not learn the weights for different modalities, the learning pro-
cess of finding the intrinsic data representation can adaptively ad-
just the effect of different modalities. On the other hand, CCA-
SVM and MK-SVM methods can find either maximum correlation
or suitable weighted kernel between different imaging modalities,
thus improving the classification accuracies up to 90.3% by CCA-
SVM and 94.2% by MK-SVM, respectively. Compared to CCA-SVM
and MK-SVM, our proposed pGTL method uses data representa-
tion of unlabeled samples to guide the classification in a semi-
supervised manner, which is very effective in alleviating the issue
of small sample size. Thus, our proposed pGTL method can achieve
the highest classification accuracy in classifying PD and NC by us-
ing both MRI and SPECT data.

3.4. Discussion

Feature extraction and data representation are always the very
important steps in many classification tasks. Specifically, in medi-
cal imaging applications, deficiency in the imaging devices will be
reflected as noisy or redundant features for the latter processes,
which will reduce the overall learning performance of the classifi-
cation system. Feature selection aims to choose a small subset of
the relevant features from the original ones according to certain
relevance evaluation criteria. This usually leads to better perfor-
mance, lower computational cost and better model interpretabil-
ity (Tang et al., 2014). One possible strategy is to integrate the
classic feature selection and our graph-based transductive classifi-
cation, where the input to our method will be the optimized fea-
tures, instead of features extracted from the whole brain. To verify
the effectiveness of our proposed method, we use the selected fea-
tures from MRI reported in (Adeli et al., 2016), and then combine
them with the features from SPECT for obtaining even better per-
formance (ACC: 97.5%). Furthermore, we can simultaneously select
the best features and also learn the data representation by intro-
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Fig. 5. Comparison of PD/NC classification performance of the competing methods.

ducing an additional variable for measuring the importance of each
observed feature. However, in this paper, we focused mainly on
the graph-learning strategy, since feature selection schemes have
been widely explored in the literature. It is important to note that
our proposed method can learn the importance of each feature,
through looking into the graph weights and regularizing the op-
timization objective to enforce the selection of a compact set of
features. This is a direction for our future work.

Lastly, biomarkers from different modalities provide comple-
mentary information, which is very useful for neurodegenerative
disease diagnosis. However, it is clear that different modalities
should be weighted differently. For example, the imaging fea-
tures from SPECT in Section 3.3 have high-sensitivity morphologi-

cal patterns; when SPECT features are weighted equally with less-
discriminative imaging features from MRI, the classification perfor-
mance of multi-modalities will be reduced, which can be seen in
Fig. 4. In our method, we can adaptively learn a weight for each
graph during the optimization. However, this will lead to some ad-
ditional parameters to optimize in our proposed method. Hence,
in the current implementation, we treat each imaging modality
equally. In the future, we will try to adopt a strategy similar to
Auto-weighted Multiple Graph Learning (AMGL) framework in our
method to learn a set of weights automatically for all the graphs.
This process will not need any additional parameters (Nie et al.,
2016).
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4. Conclusion

Here we presented a novel pGTL method that can accurately
identify the different neurodegenerative stages for wide range of
subjects, when applied to multi-modal imaging data. Compared to
the conventional methods, the proposed method seeks to iden-
tify an intrinsic data representation that is simultaneously learned
from the observed imaging features while also being validated on
the training data with known phenotype labels. Since the learned
intrinsic data presentation is more relevant to phenotype label
propagation, the pGTL approach has shown promising results when
performing AD vs NC, MCI vs NC, pMCI vs sMCI, and PD vs NC clas-
sification tasks when compared to several the state-of-the-art su-
pervised and semi-supervised machine learning methods.
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Appendix A

Lemma 1. Eq. (9) has a closed form solution.

For each i, the objective function in problem (8) is equal to the
one in problem (9). The Lagrangian function of problem (9) is as

Table 7
IDs of the ADNI subjects.

follows (Duchi et al., 2008):

2

1

5 —n(si1—=1)—Bs; (15)
2

S+ —-
it 2T1

where 1 and 8; > 0 are the Lagrange multipliersto be determined.
Differentiating with respect to s; and comparing to zero gives the
optimality condition. And, according to KKT conditions (Boyd and
Vandenberghe, 2004), we have the following equations:

. dii
Vi, sij+ g —n—=pij=0

Vj, si;>0
Vj, Sij',Bij =0 (16)
Vj. Bij=0
The complementary slackness KKT condition implies that, when-
ever s; > 0, we must have 8;; =0, so s;; = ‘% +n. Ifs; >0, it
can be verified that the optimal solution s; should be
Sij = (-;:1 + 77) (17)
+

where (a), = max(0, a) is the positive part of the variable a.

Therefore, the remaining problem is the estimation of 71 in
Eq. 18. From Lemma 1 in (Duchi et al, 2008), suppose that
di1,dp, ..., djy are ordered from small to large. If the optimal s;
has only k nonzero elements, then according to Eq. (17), we know
Si > 0 and s; ¢ = 0. Therefore, we have

_ di 0
{ AN (18)
~5n tn=0
According to Eq. (18) and the constraint s/1 =1, we have
k k
dix 1 1
= ( 2r * 77) =% + 2kry = i (19)

After we solve each s[", we can obtain the affinity matrix S™.
The convergence of our algorithm is O(nlogn) (Duchi et al., 2008).

Appendix B
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Table 8.
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IDs of the PPMI subjects.

Categories

ID of subjects
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