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Abstract Tensor-based morphometry (TBM) studies en-
code the anatomical information in spatial deformations
which are locally characterized by Jacobian matrices. Cur-
rent methods perform voxel-wise statistical analysis on
some features, such as the Jacobian determinant or the
Cauchy–Green deformation tensor, which are not complete
descriptors of the local deformation. This article introduces
a right-invariant Riemannian distance on the GL+(n) group
of Jacobian matrices making use of the complete geometri-
cal information of the local deformation. A numerical recipe
for the computation of the proposed distance is given. Ad-
ditionally, experiments are performed on both a synthetic
deformation study and a cross-sectional brain MRI study.
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1 Introduction

Tensor-based morphometry (TBM) is a methodology to an-
alyze the anatomical information encoded by the spatial
transformations that map a reference template (also called
an atlas) to a set of images [27]. Two main ingredients can be
considered within TBM methodology: non-rigid registration
and statistical analysis. The spatial mappings are estimated
by means of non-rigid registration methods [43]. Non-rigid
registration, also called spatial normalization, of a pair of
images or spatial objects is defined as finding the spatial
transformation that achieves a correspondence between the
images. After the registration process it can be assumed that
the anatomical information is encoded by the spatial trans-
formation. Subsequently, voxel-wise statistical analysis is
performed on features extracted from the spatial derivatives
of the mappings at each location (the Jacobian matrix, here-
inafter denoted by J(x)). Several features such as the ones
described below, have been proposed in the literature.

The simplest and still most widely used feature in TBM
is the Jacobian determinant. This feature has two main ad-
vantages. Firstly, it has an intuitive interpretation because it
represents the local volume change. Secondly, standard uni-
variate statistical analysis can be easily performed on the
Jacobian determinant (or also on its logarithm) [18, 22, 33,
59].

The main limitation of the Jacobian determinant is that
it provides a coarse description of the deformation, because
it only quantifies the local volume change. In fact, there are
many possible deformations without local volume change
which may be relevant for a specific application. To over-
come this limitation, multivariate descriptors of the Jacobian

http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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matrix have been proposed in order to get a more complete
characterization. An example of a multivariate feature is the
Cauchy–Green deformation tensor, C(x) = J(x)T J(x) (or its
square root) used in [36, 37, 55].

Most of the available statistical tools are well defined
for Euclidean data but not for manifold-valued data, such
as Cauchy–Green deformation tensors or Jacobian matrices.
In the pioneering work [51], basic statistics, such as mean
and variance, were computed by means of projections on
a tangent space. Principal geodesic analysis was performed
on some Lie groups in [15, 24] and also on the diffeomor-
phism group [63]. The analysis of diffusion tensor images
(DTI) has fostered the development of statistical tools on
symmetric positive definite (SPD) tensors [7, 12, 19, 26,
42, 53]. More recently regression on manifold-valued data
was analyzed in [25, 31, 39], a multivariate extension of
the Hotelling’s T2 test was proposed for longitudinal data
in [47] and an in-depth study of principal geodesic analysis
using both intrinsic statistics and the tangent space approxi-
mation was done in [58]. In all these works the definition of
an appropriate distance on the manifold plays a key role.

In order to identify the anatomical regions with statisti-
cally significant differences between two groups of images,
voxel-wise statistical inference is performed. The inference
is performed at each template coordinate using the local de-
scription of the deformations. The result is illustrated on
a statistical map that reflects the spatial distribution of the
voxel-wise inference. It is desired and expected to mainly
obtain the same result for any template choice allowing to
make general statements about the anatomical location of
the findings. The template invariance requirement can be
achieved by using a symmetric and transitive procedure in
registration stage [20, 57, 62]. These properties ensure that
an anatomical label can be assigned to each location of the
images and the label assignment is the same for any tem-
plate choice. To our knowledge very few registration pro-
cedures guarantee these requirements, see for example [57]
where a reference image must be selected. This paper is fo-
cused on the statistical techniques for TBM studies and it is
assumed that the deformation maps are obtained with a sym-
metric and transitive registration algorithm. Statistical tools
for TBM studies use Jacobian matrices as input data which
belong to the group GL+(n) of n × n matrices with positive
determinant. It will be shown that the template invariance
requirement can be achieved by using a right-invariant dis-
tance for the statistical analysis, i.e. the distance between
any pair of Jacobian matrices is preserved under translations
from the right of both matrices.

The aim of this paper is twofold. Firstly, to introduce an
appropriate right-invariant distance between Jacobian ma-
trices, in particular using a right-invariant Riemannian dis-
tance on GL+(n). The second aim is to illustrate some re-
sults on a synthetic study and a cross-sectional brain MRI

study using three different right-invariant distances: dDET

which is a distance based on Jacobian determinants; dAFF

which is based on Cauchy–Green deformation tensors; and
dRI which is a Riemannian metric on GL+(n). In all experi-
ments, voxel-wise hypothesis testing is performed by means
of the Cramér test [11, 60] because its statistic can be com-
puted using only the distances between observations for both
univariate and multivariate data.

The paper is organized as follows. A background on uni-
variate and multivariate TBM is given in Sect. 2, where
the template invariance property is reviewed as well as two
right-invariant distances previously used in the literature.
Section 3.1 presents a short summary on Riemannian met-
rics on manifolds and Lie groups. Using these concepts,
Sect. 3.2 explains how to compute a right-invariant Rieman-
nian distance between elements on GL+(n). In Sect. 4 a hy-
pothesis test to assess inference about group comparison in
TBM is presented. Results are shown on both synthetic data
as well as on brain MRI from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) in Sect. 5. Finally, a discussion
is presented in Sect. 6.

2 Univariate/Multivariate TBM

2.1 Background

Let � = (φ1, φ2, . . . , φn)T : Ω → Υ be an invertible, ori-
entation preserving and differentiable spatial mapping (the
superscript ·j refers to the j -th component), where Ω and
Υ are simply connected subsets of Rn. Up to first order the
mapping is �(x + dx) = �(x) + J(x)dx + O(dx2), where
x = (x1, x2, . . . , xn)T ∈ Ω and J(x), the Jacobian matrix of
� at the point x, is a linear transformation. As � is invert-
ible and orientation preserving then J(x) belongs to GL+(n)

which is the set of n × n matrices with positive determinant.
The set GL+(n) together with the matrix multiplication op-
eration is a Lie group [61].

The n2 elements of the matrix J(x) are obtained from the
spatial derivatives of the mapping �

J(x) = (D�)|x =

⎛
⎜⎜⎜⎜⎝

∂1φ
1
∣∣
x ∂2φ

1
∣∣
x · · · ∂nφ

1
∣∣
x

∂1φ
2
∣∣
x ∂2φ

2
∣∣
x · · · ∂nφ

2
∣∣
x

...
...

∂1φ
n|x ∂2φ

n|x · · · ∂nφ
n|x

⎞
⎟⎟⎟⎟⎠

,

where (D·) is the Jacobian operator and ∂iφ
j is the deriva-

tive of the j -th component of � along the i-th coordinate.
Let A and B be two instances of any kind of spatial in-

formation, such as landmark coordinates, contours, intensity
images, probability densities, representing similar contents.
Registration or spatial normalization of A and B is formu-
lated as finding the spatial transformation � : dom(A) →
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dom(B) such that � � A ∼ B, where (� � A) is the ac-
tion of � on A and (· ∼ ·) refers to an equivalence rela-
tion typically defined as a matching energy. For example:
in the case of intensity images (� � A)(x) = A(�−1(x)) and
the integral of the squared differences is typically used as
matching energy for images from the same modality [43];
for images from different modalities, mutual information is
typically employed as matching energy [54]; for landmark
coordinates [� � A]k = �([A]k) where [A]k is the k-th land-
mark coordinate and a commonly used matching energy is∑

k ‖[� � A]k − [B]k‖2; for the case of spatially distributed
probability densities, (��A)(x) = det((D�−1)|x)A(�−1(x))

[66]. From now on the term “image” will be used in a broad
sense and will refer to any of the previous spatial informa-
tion sources.

It is practical to define a function R (·, ·) that for two
given images A and B returns a spatial transformation such
that

R (A,B) � A ∼ B .

In order to be able to compute Jacobian matrices, the out-
put of the function R (·, ·) must be invertible and differen-
tiable in its whole domain. Examples of registration algo-
rithms with these properties are in [9, 10, 13, 30, 34, 35, 56,
64]. Furthermore, in this work it is assumed that the registra-
tion process is symmetric and transitive to fulfill the invari-
ance with respect to the template. These requirements mean
R (A,B) = R (B,A)−1 and R (B,C) ◦ R (A,B) = R (A,C)

for any image instance. In real practice these assumptions
are rarely achieved by most registration methods. More de-
tails will be given in the discussion section.

Once the deformation � = R (A,B) is computed, both,
the target B and the deformed instance � � A look spatially
similar and a correspondence is obtained between all points
of their domains dom(A) and dom(B).

In tensor-based morphometry (TBM) the information of
the local morphology is encoded by the Jacobian of the map-
ping registering the template T to the images. In particu-
lar, in order to assess statistical differences between two
groups A = {Aa} and B = {Ab} at each location of the
template domain a hypothesis test between the correspond-
ing Jacobian matrices is performed. Just to fix notation, let
�μ = R (T,Aμ) be the mapping registering the template T
to the image Aμ such that �μ � T ∼ Aμ, and let Jμ(x) be
the corresponding Jacobian matrix at the point x ∈ dom(T),
i.e. Jμ(x) = (DR (T,Aμ))|x. For each location x a group
comparison test will be performed over the sets {Ja(x)} and
{Jb(x)}. From here onwards, the subindexes a and a′ run
over the set A, the subindexes b and b′ run over the set B,
and, in general, indexes μ and ν run over both sets.

In many statistical tools a concept of ‘distance’ between
instances is required. Therefore in order to perform statistics
on Jacobian matrices a distance function d(·, ·) : GL+(n) ×
GL+(n) → R

+ must be defined.

Fig. 1 Illustration of template invariance in a TBM study. Using the
transitivity property assumption of the mappings, each image location
and its corresponding location for all templates can be given with an
anatomical label

2.2 Invariance with Respect to the Template

Let T and W be two possible templates and let � = R (W,T)

be the differentiable and invertible mapping relating W and
T, i.e. � �W ∼ T. Let �̃μ = R (W,Aμ) be the deformation to
register W to Aμ, i.e. �̃μ �W ∼ Aμ. The transitivity property
of R (·, ·) implies that �̃μ = �μ ◦� , which is schematically
illustrated in Fig. 1. The mapping �μ relates x ∈ dom(T) to
its corresponding point in the domain of the image Aμ. If
another template W is used, the mapping �̃μ relates each
point y ∈ dom(W) to its corresponding point in image do-
main. Due to the transitivity property the mapping relating
both templates will be � = �−1

μ ◦ �̃μ, and each point y is in
correspondence with the point x = �(y). Within this frame-
work each point x of the template T can be given an anatom-
ical label which coincides with the one in y = �−1(x) of
the template W. The anatomical label in template coordi-
nates, either T or W, can be propagated to the corresponding
instance location through the mappings either �μ or �̃μ.

Under the previous framework, the Jacobian matrix of
�̃μ, evaluated at a point y ∈ dom(W), is given by J̃μ(y) =
Jμ(�(y))P(y), where P(y) = (D�)|y. Therefore, under a
change of template, Jacobian matrices transform as J �→ JP
with P being the Jacobian matrix of the deformation be-
tween the templates. In terms of the function R (·, ·) the ef-
fect of changing the template is written as

(DR (W,Aμ))
∣∣
y = (DR (T,Aμ))

∣∣
R (W,T)◦y (DR (W,T))|y .

Statistical analysis is voxel-wise performed at each tem-
plate coordinate, either in x coordinates for the template T
or in y coordinates for W (see Fig. 1). As the template is of-
ten arbitrarily chosen, the statistical analysis should be inde-
pendent of that choice to avoid biased results. For a statistic
based on distances, a sufficient condition to achieve template
invariance is to use a distance which fulfills

d(J̃μ(y), J̃ν(y)) = d(Jμ(x)P(y),Jν(x)P(y))

= d(Jμ(x),Jν(x)),
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where x = �(y). Therefore template invariance will hold
when the statistic is based on a right-invariant distance, i.e.
a distance fulfilling

d(Jμ(x)P,Jν(x)P) = d(Jμ(x),Jν(x)) (2.1)

for any Jμ(x),Jν(x),P ∈ GL+(n).
Henceforth, for brevity of the notation, the dependence

of the spatial variable will be omitted, and J will refer to the
Jacobian matrix at the location under study.

2.3 Jacobian Determinant

Most TBM studies perform voxel-wise statistics on the de-
terminant of Jacobian matrices. The determinant of a com-
position of deformations is the product of their determi-
nants. Therefore, determinants belong to the group of posi-
tive numbers under multiplication. It is a Lie group and an
invariant distance on it is obtained by

dDET (Jμ,Jν) = | log(det(Jμ)) − log(det(Jν))|. (2.2)

It is easy to show that dDET (·, ·) fulfills Eq. (2.1) and there-
fore the template invariance requirement.

The determinant of a Jacobian matrix quantifies the lo-
cal volume change induced by the deformation. Note that
dDET (Jμ,Jν) = 0 does not imply that Jμ = Jν . In fact,
dDET (J,LJ) = dDET (J,JL) = 0 for any matrix L with
det(L) = 1.

2.4 Deformation Tensor

In the area of continuum mechanics a commonly used fea-
ture to measure the local deformation in the Lagrangian
framework is the Cauchy–Green deformation tensor [52]
C = JT J. The tensor C is a symmetric positive definite
(SPD) matrix which measures local length changes [52].
Under a change of template, Jacobian matrices transform as
J �→ JP and therefore Cauchy–Green deformation tensors
transform as C �→ PT CP.

In [12, 42] a distance between SPD matrices was pro-
posed1 dSPD(Cμ,Cν) = ‖logm((Cμ)−1/2(Cν)(Cμ)−1/2)‖F

satisfying the following invariance: dSPD(Cμ,Cν) =
dSPD(PT CμP,PT CνP) for any non-singular linear trans-
formation P. The distance dSPD induces a distance between
Jacobian matrices

dAFF (Jμ,Jν) =
∥∥∥logm

(
(JT

μJμ)−1/2(JT
ν Jν)(JT

μJμ)−1/2
)∥∥∥

F

(2.3)

1logm(·) denotes the matrix logarithm (the inverse of the matrix expo-
nential) and ‖ ·‖F the Frobenius norm.

satisfying the right-invariance property dAFF (Jμ,Jν) =
dAFF (JμP,JνP) for any matrix P with positive determi-
nant, and therefore fulfills the template invariance require-
ment (2.1).

As in the case of dDET , there may exists a pair of differ-
ent elements with zero distance. Specifically dAFF (J,RJ) =
0 for any rotation matrix R. Note that, for any Jacobian
matrix J, the set of RJ is a proper subset of LJ, where
det(L) = 1 and therefore dAFF is sensitive to a larger set
of deformations than dDET .

Another distance between SPD matrices is commonly
used in TBM studies [19, 37]. Using the Log-Euclidean
framework [6, 7], a distance on SPD matrices, dLE(Cμ,Cν) =
‖logm(Cμ) − logm(Cν)‖F , was proposed. However, this
distance is not invariant under general linear transformations
although it is invariant under similarity transformations (if
G = sR is a rotation followed by an isotropic positive scal-
ing, then dLE(Cμ,Cν) = dLE(GT CμG,GT CνG)).

3 A Metric on GL+(n)

The two previous distances dDET and dAFF fulfill the tem-
plate invariance requirement. However they do not satisfy
the property that d(Jμ,Jν) = 0 if and only if Jμ = Jν and
accordingly some differences may not be measured. To over-
come this drawback a right-invariant Riemannian metric on
the space of Jacobian matrices is presented in the following.

3.1 Invariant Riemannian Distances on Lie Groups

Let M be a differentiable manifold and TqM its tan-
gent space at the element q ∈ M. A Riemannian metric
(M, 〈u, v〉q ) on M is a smooth assignment of inner products
to every tangent space where q ∈ M and u, v ∈ TqM [23].
Using this assignment, the length of a curve segment γ :
[t0, t1] ⊂ R →M is defined as

Length(γ ; t0, t1) =
∫ t1

t0

√
〈γ̇(s), γ̇(s)〉γ(s)

ds.

A geodesic segment between two elements q and w be-
longing to M is an arc-length parameterized curve segment
in M which locally minimizes the length. The Rieman-
nian distance between q and w is the length of the shortest
geodesic segment connecting both elements.

Geodesics can be uniquely described by an initial point
q ∈ M and an initial velocity v ∈ TqM. This description is
related to the Riemannian exponential function [2] Expq (v).
The curve γ (t) = Expq (tv) is a geodesic and the length of

the segment from t = 0 to t = 1 is equal to
√〈 v, v〉q .

Besides, the manifold of Jacobian matrices, GL+(n), has
a Lie group structure (defined by the matrix-matrix prod-
uct) [61] and therefore their elements, curves, tangent spaces
and velocities can be translated using the group action [29].
Let G ≡ M be a manifold which, together with a product
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(· • ·) : G × G → G, has a Lie group structure. Let e be
the group identity and given q,w ∈ G the following oper-
ations are defined: Rw q = q • w is called right-translation;
Lw q = w •q , left-translation; and q−1 such that q−1 •q = e
is called inversion.

A right-invariant metric is a Riemannian metric which
naturally arises in Lie groups. Under this metric geodesics
and distances remain invariant under right-translations. The
metric can be defined as an inner product at a single tangent
space and propagated by translations from the right to the
whole group

〈u, v〉q = 〈Tq Rw u, Tq Rw v〉Rw q , (3.1)

where Tq Rw is the tangent-lift of the Rw operation [32]
which translates a velocity from TqG to TRw qG. Usually the
inner product is defined at the group algebra g ≡ TeG. Ad-
ditionally, under a right-invariant metric

Rw Expq (v) = Expq (v) • w = ExpRw q (Tq Rw v)

and in particular, setting w = q−1

Expq (v) = Rq Expe

(
Tq Rq−1v

)
= Expe

(
Tq Rq−1 v

)
• q .

(3.2)

A left-invariant metric can also be defined by replacing
in Eq. (3.1) the right-translation operation Rw by the left-
translation Lw . Otherwise, the left-invariant Riemannian ex-
ponential function can be computed from the right-invariant
one by

Explef t
q (v) =

(
Expright

q−1

(
−(Tq−1 Rq )

−1Tq Lq−1 v
))−1

. (3.3)

In the case that G is a matrix group like GL+(n), the
right- (left-) translation takes the form RWQ = QW (cor-
respondingly LWQ = WQ) for any W,Q ∈ G. Moreover,
TQRWV = VW (correspondingly TQLWV = WV) for V ∈
TQG.

3.2 A Riemannian Right-Invariant Distance on GL+(n)

Recently, a closed-form expression was given in [5] for the
left-invariant Riemannian exponential on GL+(n) for the
case where 〈U1,U2〉I = trace(UT

1 U2), with U1 and U2 be-
ing elements of TIGL+(n),

Explef t

Q (V) = Qexpm
(

VT Q−T
)

expm
(

Q−1V − VT Q−T
)

,

(3.4)

where Q ∈ GL+(n), V ∈ TQGL+(n) and expm(M) =∑
k Mk/k! is the matrix exponential.2

2There is no global consensus about what a ‘closed-form’ expression
means [16]. However, the matrix exponential function, expm(·), can be

The right-invariant Riemannian exponential function can
be obtained in closed-form applying the identity (3.3) to
Eq. (3.4)

Expright

Q (V)

=
(

Explef t

Q−1

(
−Q−1VQ−1

))−1

= expm
(

VQ−1 − Q−T VT
)

expm
(

Q−T VT
)

Q

and, in particular for Q = I,

Expright

I (U) = expm
(

U − UT
)

expm
(

UT
)

, (3.5)

where, again, the inner product defined at the identity is
〈U1,U2〉I = trace(UT

1 U2).
From the right-invariant Riemannian metric on GL+(n)

the following distance is induced on elements of the same
connected component of the group: dRI (Jμ,Jν)

= √〈V∗,V∗〉Jμ
, where V∗ is the smallest initial veloc-

ity satisfying ExpJμ
(V) = Jν . The distance inherits the

right-invariance from the Riemannian metric, and therefore
dRI (Jμ,Jν) = dRI (JμP,JνP) for any P in GL+(n), and
therefore the invariance under the template holds. In addi-
tion, dRI fulfills that dRI (Jμ,Jν) = 0 if and only if Jμ = Jν .

In this work the Riemannian distance is computed by
solving the following problem:

minimize
V∈TJμ GL+(n)

∥∥∥ExpJμ
(V) − Jν

∥∥∥2

F
, (L1)

where the Frobenius norm of the Euclidean difference is
chosen as the objective function for simplicity.

In general, the Riemannian exponential function under
a right-invariant metric is a surjective mapping to the con-
nected component of the group [28]. As the group GL+(n)

consists of only one connected component, then the exis-
tence of an initial velocity to generate a geodesic connecting
Jμ and Jν is guaranteed for any pair.

Using the right-invariance property in Eq. (3.2), it is pos-
sible to reformulate the problem (L1) as

minimize
U∈gl(n)

∥∥∥ExpI(U) − JνJ−1
μ

∥∥∥2

F
, (L2)

where gl(n) ≡ R
n×n is the Lie algebra of GL+(n). Due to

the right-invariance of the metric, 〈U∗,U∗〉I = 〈V∗,V∗〉Jμ

and therefore, dRI (Jμ,Jν) = √〈U∗,U∗〉I, where U∗ is the
smallest solution of (L2).

accurately and efficiently computed by most scientific software pack-
ages like Mathematica and Matlab [45].
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In order to compute U∗, a descent procedure can be used
to solve (L2). The derivative with respect to U of the objec-
tive function E(U;JνJ−1

μ ) = ‖ExpI(U) − JνJ−1
μ ‖2

F is

DUE(U;JνJ−1
μ ) = 2

(
ExpI(U) − JνJ−1

μ

)T

DUExpI(U),

where M denote the n2 dimensional vector resulting by the
stacking of the columns of M. D is the Fréchet deriva-
tive operator: for a matrix function of matrix argument
F : Rm × n → R

p × q , DMF(M) is a (pq) × (mn) linear op-

erator fulfilling [DMF(M)]i,j = ∂
M

j F(M)
i
. Some rules to

compute derivatives of matrix functions are in [1, Chap. 13],
[40].

Taking derivatives of Eq. (3.5) it is obtained3

DUExpI(U)

=
(

In ⊗ expm(U − UT )
)

dexpm(UT )Knn

+ (expm(U) ⊗ In)dexpm(U − UT )
(
In2 − Knn

)
,

(3.6)

where Im is the m × m identity matrix, Knn is the commuta-
tion matrix [1] defined by KnnM = MT for an n × n matrix
M, and dexpm(·) is the Fréchet derivative of the matrix ex-
ponential function (see Appendix A).

The optimization problem to compute dRI can be solved
by means of a descent procedure along the negated gradient
or a modified direction [50] with a line-search strategy.

Once the optimal initial velocity U∗ solving (L2) is ob-
tained, the length of the geodesic segment is

√〈U∗,U∗〉I =√
trace(U∗T U∗) = ‖U∗‖F . If its Riemannian exponentiation

generates the shortest curve segment between I and JνJ−1
μ ,

then dRI (Jμ,Jν) = dRI (I,JνJ−1
μ ) = ‖U∗‖F .

While the existence of a zero minimizer is guaranteed, a
serious drawback of this formulation is the non-uniqueness
of the velocities satisfying ExpI(U) = JνJ−1

μ . There may ex-
ists different initial velocities which generate geodesic seg-
ments between Jμ and Jν (like in the rotations case where
adding a rotation of 2π the same rotation is obtained). Find-
ing the shortest one in the general case is an open problem.

An initial estimate for U is needed to start the optimiza-
tion. It can be obtained by solving the initial velocity prob-
lem in a simpler subgroup of GL+(n) where the solution is
given by the matrix logarithm.

Let (SO(n) × S+(1)) be the direct product of the rota-
tion group in R

n and the group of isotropic positive scal-
ings. Its algebra, (so(n) ⊕ s(1)), is the set of matrices of the
form S + αIn where S is an n × n skew-symmetric matrix

3Let A and B be two n × n matrices, then AB = (BT ⊗ In)A and there-
fore DA(AB) = BT ⊗ In. Similarly, AB = (In ⊗ A)B and therefore
DB(AB) = In ⊗ A.

and α ∈R. Under the metric 〈U,V〉I = trace(UT V), the Rie-
mannian exponential over (SO(n)×S+(1)) generates curves
which are also geodesics in GL+(n), i.e (SO(n) × S+(1)) is
a totally geodesic subgroup of GL+(n) under the given met-
ric [44]. For a matrix H = S + αIn the Riemannian expo-
nential function (3.5) results in expm(H−HT )expm(HT ) =
expm(H) because in this case, (H − HT ) and HT commute.
Therefore, the matrix logarithm of a matrix G ∈ (SO(n) ×
S+(1)) gives the solution of the problem (L2) when it is re-
stricted to the group (SO(n) × S+(1)). The proposed initial
estimate is the logarithm of the closest matrix, in the Frobe-
nius norm sense, belonging to (SO(n)× S+(1)) to the target
matrix JνJ−1

μ

Uinitial = logm

(
arg min

G∈(SO(n)×S+(1))

∥∥∥G − JνJ−1
μ

∥∥∥2

F

)
. (3.7)

To compute this, let JνJ−1
μ = ZDXT be the singular value

decomposition of the target matrix, then the matrix G∗ =
trace(D)/nZdiag(1,1, . . . ,1,det(ZXT ))XT is the solution
of the minimization problem in Eq. (3.7).

Theoretical details about convergence and illustrative ex-
amples of performance when using gradient descent and
Gauss–Newton algorithms are given in Appendix B.

4 Cramér Test

Three different distance functions over Jacobian matrices
have been considered in previous sections: dDET , dAFF and
dRI . Most statistical analysis techniques are defined in terms
of a distance function between observations, and the Cramér
two-sample test is used in this work [11, 60, 65]. This test
was selected because its statistic can be computed using only
the distances between the instances. In addition, it can be
directly used on both univariate and multivariate data. The
statistic for the Cramér two-sample test is computed at each
template location x as

σ(x) = nanb

na + nb

(
1

nanb

na∑
a=1

nb∑
b=1

Dab − 1

2n2
a

na∑
a=1

na∑
a′=1

Daa′

− 1

2n2
b

nb∑
b=1

nb∑
b′=1

Db′b

)
,

where Dμν = d(Jμ(x),Jν(x)) is the inter-element distance
matrix and na and nb are the cardinalities of the sets A and
B, respectively.

Statistical significance of σ(x) can be assessed by means
of a random permutation test of the group labels [49]. The
null hypothesis is that instances from both groups follow the
same distribution. The distribution of the statistic under the
null hypothesis is empirically estimated and it is rejected for
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large enough values of σ(x). The p-value is the proportion
of the permutations having a σ(x) value larger or equal than
the value without relabeling. Note that the statistic for a ran-
dom permutation can be obtained without recomputing the
distances between the Jacobian matrices which is the most
intensive computational task.

In a TBM study the hypothesis test is performed at each
template location. It is well-known that a multiple compar-
ison problem appears when performing a large number of
tests. Two criteria can be used for correcting the increase of
type I error: family wise error rate (FWE) and false discov-
ery rate (FDR) [14]. In this work the FDR criterion was used
for the correction of the proportion of false-positives among
the rejected null hypotheses.

5 Results

5.1 Synthetic Study

A synthetic study was designed to illustrate the results of
the three right-invariant distances in a TBM application en-
vironment.

In order to facilitate the visualization of the results the
experiment was performed generating deformations on a 2D
image. Two sets of 50 random deformations were gener-
ated starting from a synthetic template. The first set was de-
signed to represent the anatomical variability within a ‘con-
trol’ group, while the second set is aimed at representing
a ‘pathological’ group with group-driven anatomical differ-
ences and intra-group variability. Representative examples
of the deformation maps are illustrated in Fig. 2. The con-
tours are drawn as a visualization aid, but the actual input
data for the analysis are the set of spatial deformations �μ.
The bottom row in Fig. 2 shows 5 instances from ‘control’
and ‘pathological’ groups depicting the intra-group variabil-
ities.

Deformation instances from ‘control’ group A were
modeled as smooth and invertible random deformations. In-
stances from ‘pathological’ group B were modeled as the
composition of a common group-driven deformation and
random deformations similar to the ones used for ‘control’
group. The group-driven deformation was designed to pro-
duce the following changes on the ‘subcortical structures’:
a clockwise rotation of the structure in the ‘left hemisphere’
of 15 degrees; a counter-clockwise rotation of the structure
in the ‘right hemisphere’ of 15 degrees and a subsequent
anisotropic scaling with factors 0.7 and 1/0.7 along the hor-
izontal and vertical directions respectively. Note that the
group-driven deformation preserves the volume of the ‘sub-
cortical structures’ but the surrounding regions suffer a more
complex deformation due to the continuity of the mapping.
This effect can be seen in the zoomed panel of Fig. 2.

Fig. 2 Synthetic data for ‘control’ group (left column) and ‘patholog-
ical’ group (right column). Top row: example of the deformation maps
�a and �b mapping the template to given instances. Bottom row: five
contours illustrating the intra-group anatomical variability

All deformations were obtained by integration of sta-
tionary velocity fields. Velocity fields were parameterized
with cubic splines on a 220 × 280 regular grid and circular
boundary conditions were imposed. The deformed location
�(x) was obtained by the integration along the velocity field
up to time 1 of a particle with initial position x [17]. Accord-
ingly, the corresponding Jacobian matrix J(x) is computed
by integrating up to time 1 the local deformation guided by
the Jacobian of the velocity field [8]. With this parametriza-
tion it is guaranteed that deformation maps result in invert-
ible and differentiable mappings and therefore their Jaco-
bian matrices belong to GL+(2). In this way, the typical nu-
merical issues by using a finite difference scheme on grid
locations are avoided. Whenever compositions of deforma-
tions are required, the corresponding velocity fields are suc-
cessively integrated and interpolations of the deformation
mappings are avoided.

Statistical analyses were performed using the previous
defined distances: dDET , dAFF and dRI . At each grid lo-
cation of the template Cramér tests were computed and a
set of 100,000 random permutations were performed in or-
der to assess the p-value. In order to correct for multiple
comparisons, the FDR criterion was used [14]. In addition,
a Student’s t-test was performed on the log of the Jacobian
matrix determinant because this is one of the most widely
used approaches in TBM studies.
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Fig. 3 Statistical maps of FDR corrected p-values for Cramér test based on the three distances. Template contours are illustrated in green colour
for localization purposes. Cyan contours show the boundary of the regions with significant differences with the criterion of pFDR ≤ 0.05

Figure 3 shows the FDR corrected p-value maps corre-
sponding to the Cramér tests. The statistical map of the Stu-
dent’s t-test on the logarithm of the Jacobian determinant
(not shown in the figure) was very similar to the one ob-
tained by the Cramér test on dDET . The distance dDET was
not able to detect statistically significant differences in local
volume change in the interior of the ‘subcortical structures’.
However, significant differences were found at outer regions
surrounding these structures. This behavior shows that the
deformations driven by a rotation of a structure surrounded
by a static region mainly generates local volume changes
outside the structure.

As was expected, the statistical map using dAFF shows
significant differences in the interior of the ‘right subcortical
structure’, where there is an anisotropic scaling of the struc-
ture. However, no significant differences were found in the
interior of the ‘left subcortical structure’ because the defor-
mations were mainly a rotation. Significant differences were
also found in the surrounding regions.

Regarding the statistical map using dRI , it can be seen
that significant differences were found in the interior of both
‘subcortical structures’. Looking at dAFF and dRI statistical
maps it is clearly seen that the main differences are located
in the interior of the left ‘subcortical structure’ which is the
only region with a pure rotation. An increasing sensitivity of
the statistical test is obtained with a more complete geomet-
rical descriptions of the local deformation.

5.2 ADNI Dataset

A subset of T1-MRI brain images was selected from
the ADNI database (adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging, the Na-
tional Institute of Biomedical Imaging and Bioengineering,

Table 1 Descriptive statistics of demographic and clinical informa-
tion (mean±std). ∗ denotes statistically significant differences under
Student’s t -test (p-value ≤ 0.05)

AGE GENDER MMSE∗ memory CDR∗

NOR group 72.2±0.3 10/10 29.3±1.0 0.0±0.0

AD group 72.2±0.5 10/10 23.3±1.8 0.9±0.3

the Food and Drug Administration, private pharmaceutical
companies and non-profit organizations, as a 60 million,
5-year public-private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cog-
nitive impairment and early Alzheimer’s disease (AD). De-
termination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials.

Twenty elderly control subjects (denoted here as NOR
group) and twenty AD patients (denoted as AD group)
were selected from the database. As the brain atrophy is
affected by factors such as age and gender, subjects were
selected such that they were gender-matched, using a very
narrow age interval. The demographic and clinical variables
of the selected subjects are summarized in Table 1 where it
can be seen that there were not significant differences be-
tween subject groups on age and gender variables. As ex-
pected, clinical scores, such as MiniMental State Exami-
nation (MMSE) [21] or the memory score in the Clinical
Dementia Ratio (CDR) [46], were significantly different be-
tween both groups under the Student’s t-test.
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Fig. 4 Illustrative coronal (left)
and sagittal (right) views of
FDR-corrected p-value maps of
the Cramér test performed using
three right-invariant distances:
dDET (top row), dAFF (middle
row) and dRI (bottom row).
L and R denote left and right
hemisphere respectively. The
dashed vertical lines show the
location of the sagittal and
coronal slices

The MRI brain images were calibrated with phantom-
based geometric corrections to ensure consistency among
scans acquired at different sites. Additional image correc-
tions included geometric distortion correction, bias field cor-
rection and geometrical scaling. The pre-processed images
are available to the scientific community and were down-
loaded from the ADNI website.4

The template T was built from 40 MRI of elderly control
subjects as it is described in [18], being a 1 mm × 1 mm ×
1 mm voxel-size image where the brain parenchyma occu-
pies about 2 million voxels. The deformation fields �μ were
estimated using a SVF diffeomorphic registration [18, 30]

4http://www.adni-info.org

between the template T and each MRI instance. The output
of the SVF registration method is a velocity field that char-
acterizes via time-integration the deformation mapping �μ.
Jacobian matrices were computed by integration (as was ex-
plained in the Synthetic study Sect. 5.1) ensuring that every
J(x) belong to GL+(3).

Voxel-wise Cramér tests were performed using the three
right-invariant distances dDET , dAFF and dRI . Critical val-
ues were estimated by means of a permutation test using
100,000 permutations. After, the p-values maps were cor-
rected with the FDR criterion. Figure 4 shows a coronal and
sagittal illustrative slice of the corrected p-value map for
each distance.

It must be noted that the hypothesis tests were performed
on very small samples (20 subjects per group) and the sta-

http://www.adni-info.org
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tistical power is limited by this condition. Larger samples
would require to covariate with fixed effects such as age and
this statistical problem is harder than the group comparison
considered here.

The three tests provide statistical maps which are mean-
ingful according to the pathophysiological knowledge of the
disease. As was expected, the number of voxels with signif-
icant group differences in the dDET map was much smaller
than in dAFF and dRI maps. The differences between dDET

and dAFF –dRI maps might be due to the higher statistical
power achieved when considering the whole multivariate Ja-
cobian matrix information rather than the simple scalar de-
terminant. Regarding the visual comparison between dAFF

and dRI maps, they look very similar. This suggests that
pure rotations were not relevant on this experiment which
is limited by the small sample sizes.

Regarding computational issues, dRI is more expensive
than dDET and dAFF . In our implementation, that uses the
Gauss–Newton strategy and a relative error of 10−10 as stop-
ping criterion, the average computation time for dRI was
50 msec. On the other hand, average computation times for
dDET and dAFF were 0.02 msec and 1 msec, respectively.

6 Discussion

Many of the methodological contributions on TBM studies
usually belong to the non-rigid registration stage while a few
works are devoted to investigate the statistical analysis of
the deformations. Most statistical analyses make use of Ja-
cobian determinant. A more complete descriptor of the local
deformation is considered in this work formulated as a Rie-
mannian distance between Jacobian matrices. Results were
illustrated on both synthetic and brain MRI data.

As was argued in the introduction, TBM is built on the
anatomical correspondence between images and a template
which is achieved when the template invariance require-
ment holds. A transitive registration method must be used
to obtain the anatomical correspondence from any template
choice. This work focused on the statistical analysis of de-
formations assuming that a transitive registration procedure
is used. We show that under this assumption the template
invariance of the statistical map can be achieved by using a
statistic based on a right-invariant distance.

Three different right-invariant distances on GL+(n) were
considered in this work. The first two distances have been
previously used in the literature: a distance between Jaco-
bian determinants dDET and a distance between deforma-
tion tensors dAFF . The third one is a Riemannian distance
between Jacobian matrices dRI .

The three distances quantify different aspects of the lo-
cal deformations. The determinant of the Jacobian matrix
measures the local atrophy or expansion. The Cauchy–Green

deformation tensor measures the amount of symmetric de-
formation up to rotations. Also, the proposed distance dRI ,
can be geometrically interpreted as a measure of the local
deformation that quantifies the Riemannian energy between
two Jacobian matrices. If a pure rotational transformation
acts on a region, there is no local strain and therefore dAFF

is not sensitive to such deformations. In contrast, dRI also
quantifies local rotations. This qualitative difference was
nicely observed in the synthetic example, in particular at
the left ‘subcortical structure’.

As the geometrical interpretation of the local volume
change is intuitive it may be interesting to decompose the
multivariate descriptors in terms of volume change and the
remaining deformation. The group GL+(n) can be decom-
posed by the direct product (SL(n) × S+(1)) of the Spe-
cial linear group of n × n matrices with determinant equal
to 1, and the isotropic positive scale group. With this de-
composition, it is possible to describe volume changes.
In the present work, the selected Riemannian metric was
〈U1,U2〉I = trace(UT

1 U2). This metric corresponds to an
identity metric tensor in the canonical basis of the algebra
gl(n) and it was selected because a closed-form solution
of the Riemannian exponential is known. However, a large
family of possible metric tensors could have been selected.
For a particular application, it is possible to adjust the met-
ric tensor to quantify different aspects of the geometric de-
formation. Unluckily the known closed-form solution will
be not valid anymore and numerical procedures with high
computational load would be required.

As was mentioned in the introduction, the transitivity
property is not fully accomplished by most of the regis-
tration algorithms currently available. In a general case the
mappings �μ and �̃μ from the templates T and W respec-
tively to each instance μ shown in Fig. 1 can be written using
an instance-dependent right-translation

�̃μ = �μ ◦ �μ. (6.1)

The transitivity of the registration is obtained when the
equivalence relation (· ∼ ·) between any pair of images is
satisfied by a unique deformation map. Therefore, the non-
transitivity implies that there exists more than one mapping
registering any two images which can be understood as an
uncertainty in the mapping R (A,B). From Eq. (6.1) it is
straightforward that

�μ ◦ �μ ◦ �̃
−1
μ = identity map.

In the case of a transitive registration algorithm is used, all
right-translations �μ in Eq. (6.1) will be the same, �μ =
R (W,T) = � for all instances μ. The difference between

the mappings �μ ◦ � ◦ �̃
−1
μ and the identity map gives a

measurement of the impact of the non-transitivity in a TBM
study. When these differences are small enough relative to
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the intergroup difference of the deformations, then the non-
transitivity is not a relevant issue.

The Cramér test was selected in this work because its
statistic can be computed in terms of the inter-element dis-
tances solely. It may be of interest to extend the use of the
presented Riemannian distance to another statistical tools
such as Hotelling’s T2 test or regression. Unluckily in both
cases, an optimization will be required to estimate the intrin-
sic or Karcher mean [53] on the GL+(n) manifold and the
computational cost will be even larger. Moreover, up to our
knowledge, there is no parametric method to assess signifi-
cance of hypothesis tests on Jacobian matrices and the use of
random permutations would require to compute the intrinsic
mean for each permutation.
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Appendix A: Fréchet Derivative of the Matrix
Exponential

To compute the Fréchet derivative DUExpI(U) given in
Eq. (3.6) an expression for dexpm(M) ≡ DMexpm(M) is re-
quired. This is the linear operator containing the derivatives
of each element of expm(M) with respect to perturbation a
on each element of M and results in an n2 × n2 matrix.

There are different attempts to compute DMexpm(M) [3,
4, 38, 48]. In our computations we have used the approach
given in [41], where for an analytic matrix function F(M):

F
((

M P
0 M

))
=

(
F(M) drF(M + rP)

0 F(M)

)

and if Pj is the j -th canonical perturbation, then the vec-
torization of the upper-right submatrix drF(M + rPj ) is the
j -th column of the matrix DMF(M).

Appendix B: Convergence and Performance of Descent
Procedures

Below, arguments are given for using a descent method to
compute the initial velocity of a geodesic starting at the iden-
tity I to a target matrix T ∈ GL+(n). The existence of such
geodesic is guaranteed because the set GL+(n) is connected.
Moreover, ExpI(·) in Eq. (3.5) is surjective on GL+(n) and
therefore there always exists at least one zero-minimizer
of the objective function E(U;T). In fact, it may happen
that there exists many (even an infinite number of) different
geodesics from the identity to T and all their corresponding
initial velocities are zero-minimizers of E(U;Q). Therefore,
the objective function E(U;Q) is in general not convex in
gl(n) and its minimization procedure has many basins of at-
traction. Nevertheless, it can be shown that all local minima
have zero energy and therefore they are also global minima.
This can be proved by noticing that the function ExpI(·)
maps open subsets of Rn × n ≡ gl(n) around U to open sub-
sets of Rn × n ⊃ GL+(n) around ExpI(U). The same applies
for the function Exp−1

I (·). Moreover, the Frobenius norm is
a convex function in R

n × n. Then, for any U ∈ gl(n) either,
E(U;Q) is zero or there is an U′ in a neighborhood of U
with a lower value of the objective function.

It is remarkable that for some target matrices there may
exists descending valleys in the objective function which ex-
tends up to infinity. For example, in the extreme case of
T = ( −1 0

0 −1

)
, there exists a descent valley in gl(n) along

the direction
( −1 0

0 −1

)
whose Riemannian exponential ends

up at the null matrix. Although we could not find a sim-
ple proof, we conjecture that those attraction basins to-
wards infinity have a zero measure in gl(n). For the previous
matrix T, descent procedures starting from any symmetric
matrix tend to the null matrix, but by slightly perturbing
with a skew-symmetric matrix the procedure converges to
a global minimum. For a continuous descending path U(t)

such that ‖U(t)‖F → +∞ for t → +∞, it can be proved
that limt→+∞ ExpI(U(t)), either it is a singular matrix or it
does not exists. Then, to circumvent those valleys towards
infinite it is convenient to provide to the descent algorithm
with a control in the determinant of ExpI(Uk) (with Uk the
current iteration of the algorithm) and perform a perturba-
tion if the algorithm is converging to a singular matrix.

To show the performance of descent strategies the fol-
lowing experiment was performed: one thousand 3 × 3 ran-
dom matrices were generated with positive determinant and
with predefined condition numbers; for each target matrix
a solution U∗ of the problem (L2) was found by using two

http://www.fnih.org
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Fig. 5 Performance of gradient descent and Gauss–Newton strategies
using an exact line-search. Left panel: box-plot showing 5, 25, 50,
75 and 95 percentiles of the number of iterations needed to reach the

stopping criterion for target matrices with different condition numbers.
Right panel: evolution of the relative error for 100 random target ma-
trices with a condition number of 10

descent strategies, along the negated gradient direction and
along the Gauss–Newton direction, both performed with an
exact line-search; the stopping criterion was set to a relative
error in the Frobenius norm smaller than 10−10. Figure 5
shows in the left panel the number of iterations needed to
reach the stopping criterion for different condition numbers
of the target matrix. Right panel in Fig. 5 shows the relative
error for 100 random target matrices with a condition num-
ber of 10 for both descent strategies. It is very clear that the
Gauss–Newton strategy requires a much smaller number of
iterations than gradient descent.
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