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Abstract

Introduction:Abnormal gene expression patternsmay contribute to the onset and pro-

gression of late-onset Alzheimer’s disease (LOAD).

Methods:Weperformed transcriptome-widemeta-analysis (N= 1440) of blood-based

microarray gene expression profiles as well as neuroimaging and cerebrospinal fluid

(CSF) endophenotype analysis.

Results: We identified and replicated five genes (CREB5, CD46, TMBIM6, IRAK3, and

RPAIN) as significantly dysregulated in LOAD. The most significantly altered gene,

CREB5, was also associated with brain atrophy and increased amyloid beta (A𝛽) accu-

mulation, especially in the entorhinal cortex region. cis-expression quantitative trait loci

mapping analysis of CREB5 detected five significant associations (P < 5 × 10−8), where
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andTranslational Science Institute; IUHealth-
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∗Dataused inpreparationof this article

wereobtained fromtheAlzheimer’sDisease

Neuroimaging Initiative (ADNI) database

(http://adni.loni.usc.edu). As such, the inves-

tigatorswithin theADNI contributed to the

designand implementationofADNIand/or

provideddatabutdidnotparticipate in the

analysis orwritingof this report.A complete

listingofADNI investigators canbe foundat:

http://adni.loni.usc.edu/wp-content/uploads/

how_to_apply/ADNI_Acknowledgement_List.pdf.

rs56388170 (most significant) was also significantly associated with global cortical A𝛽

depositionmeasuredby [18F]Florbetapir positron emission tomography andCSFA𝛽1-42.

Discussion: RNA from peripheral blood indicated a differential gene expression pat-

tern in LOAD. Genes identified have been implicated in biological processes relevant

to Alzheimer’s disease. CREB, in particular, plays a key role in nervous system develop-

ment, cell survival, plasticity, and learning andmemory.
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1 INTRODUCTION

Late-onset Alzheimer’s disease (LOAD) is a progressive neurodegener-

ative condition characterized by brain aggregation of amyloid beta (A𝛽)

into extracellular plaques, and hyperphosphorylated tau into neurofib-

rillary tangles.1,2 Although these two pathological markers in addi-

tion to impaired cognitive function are used to definitively diagnose

Alzheimer’s disease (AD) post-mortem, neither marker is sufficient

to cause AD.3-5 A𝛽 positron emission tomography (PET) imaging has

revealed that some individuals with normal cognitive performance dis-

play similar amyloid deposition to other individuals with mild cognitive

impairment (MCI), suggesting that the amyloid hypothesis may not be

sufficient to explain AD risk or progression.5-7 Because early interven-

tion is a goal for AD trials, there has been extensive research aimed at

identifying markers of biological processes associated with AD risk or

progression, especially efforts to develop more accurate ante-mortem

measures of A𝛽 and tau.8-11

Although there are studies linking AD neuropathology and cogni-

tive performance to dysregulated gene expression in brain tissue,12-14

there are few data regarding AD-related gene expression in peripheral

blood and none based on large-scale cohorts with neuroimaging and

cerebrospinal fluid (CSF) biomarkers. Given that systemic factors such

as inflammation, oxidative stress, and immune function are posited

to play important roles in AD risk or progression, AD diagnosis and

biomarkers for AD such as brain A𝛽 load or structural atrophy may

be associated with differential expression of some genes in peripheral

blood.

Neuroimaging genetics has been applied successfully in the past

to obtain information about which genes are involved with specific

AD-related pathological processes.15-20 Expression of genes in periph-

eral blood can be associated not just with AD diagnosis, but with AD-

related neuroimaging biomarkers such as atrophy or A𝛽 deposition

in brain. We hypothesize that a genome-wide transcriptome meta-

analysis will identify dysregulated genes in AD and that expression lev-

els of the dysregulated genes will be also associated with AD-related

neuroimaging biomarkers such as A𝛽 deposition and structural atro-

phy. Furthermore,wehypothesize that cis-expression quantitative trait

loci (cis-eQTL) analysis of the differentially expressed genes will iden-

tify associated single nucleotide polymorphisms (SNPs) and that these

SNPs will also be associated with AD-related endophenotypes includ-

ing neuroimaging and CSF biomarkers.

2 METHODS

2.1 Study participants

All individuals used in the analysis were participants of the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), AddNeuroMed, or Mayo

Clinic Study of Aging (MCSA) cohorts. Informed consent was obtained

for all subjects, and the study was approved by the relevant institu-

tional review board at each data acquisition site.

2.1.1 Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

The ADNI initial phase (ADNI-1) was launched in 2003 to test

whether serial magnetic resonance imaging (MRI), PET, other bio-

logical markers, and clinical and neuropsychological assessment

could be combined to measure the progression of MCI and early

AD. ADNI-1 has been extended in subsequent phases (ADNI-GO,

ADNI-2, and ADNI-3) for follow-up of existing participants and

additional new enrollments. Demographic information, raw scan

data, apolipoprotein E (APOE) and whole-genome genotyping data,

microarray gene expression data, neuropsychological test scores,

and clinical information are publicly available from the ADNI data

repository (http://www.loni.usc.edu/ADNI/).21 A total of 661 ADNI

participants (213 cognitively normal older adults (CN), 200 early

MCI (EMCI), 145 late MCI (LMCI), and 103 AD) were available for

analysis.

2.1.2 AddNeuroMed

The AddNeuroMed study is a prospective and longitudinal multi-

center collaboration for the discovery of novel biomarkers for AD.

Data were collected from six medical centers across Europe. A

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.loni.usc.edu/ADNI/
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complete description of participant recruitment, selection criteria,

and characterization is available in detail elsewhere.22-24 A total of

674 AddNeuroMed participants included 208 MCI, 223 AD, and 243

CN.

2.1.3 Mayo Clinic Study of Aging (MCSA)

The MCSA study was launched in 2004 to investigate the prevalence,

incidence, and risk factors for MCI and dementia.25 Study participants

from this prospective population-based cohort are enrolled from the

community of Olmsted County, MN, and followed longitudinally. Ini-

tially participants older than 70 years of age were included in the

study; more recently participants older than 50 (since 2012) and older

than 30 (since 2014) are being enrolled. Participants are evaluated and

undergo neuropsychological assessment to determine a diagnosis of

clinically normal, MCI, or dementia; a subset of the participants also

undergo neuroimaging studies including MRI and PET. Biological sam-

ples: PAXgeneblood, plasma, and/orCSF,were collected for consenting

participants. A total of 105MCSA sampleswere selected for this study,

which includes 44 participants with a clinical diagnosis of AD and 61

clinically normal controls with PiB-PET Pittsburgh Compound-B [PiB]

amyloid imaging that scored below the threshold for PiB-PETpositivity

(CN-PiB-negative).

2.2 Gene expression profiling analysis

Gene expression profiling from peripheral blood samples collected

using PAXgene tubes for RNA analysis was performed on the

Affymetrix Human Genome U219 Array (www.affymetrix.com, Santa

Clara, CA) for ADNI and on the Illumina Whole-Genome DASL assay

(www.illumina.com, San Diego, CA) for AddNeuroMed and MCSA. All

probe sets were mapped and annotated with reference to the human

genome (hg19). Rawmicroarray expression valueswere pre-processed

followed by standard quality control (QC) procedures on samples and

probe sets.26 Briefly, raw expression values were pre-processed using

the robust multi-chip average normalization method.27 We checked

discrepancies between the reported sex and the sex determined from

sex-specific gene expression data including XIST andUSP9Y.28 We also

evaluated whether SNP genotypes were matched with genotypes pre-

dicted fromgeneexpressiondata.29 AfterQC, theRNAexpressionpro-

files contained 21,150 probes in ADNI.

2.3 Imaging processing

As detailed in previous studies,30-33 a widely employed automated

MRI analysis technique (FreeSurfer V5.1) was used to process T1-

weighted structural MRI scans.30,31 [18F]Florbetapir PET scans were

pre-processed as described previously and were intensity normalized

by the whole cerebellum.33 The normalization yielded standardized

uptake value ratio images.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using PubMed and meeting abstracts and presentations.

We have cited several studies regarding Alzheimer’s dis-

ease (AD)–related gene expression analysis in periph-

eral blood. However, none has used independent large-

scale cohorts with blood-based gene expression profiles

for replication and neuroimaging and cerebrospinal fluid

(CSF) biomarkers for further analysis.

2. Interpretation: Our findings demonstrate that RNA from

peripheral blood indicated a differential gene expression

pattern in AD. Expression levels of the replicated dysreg-

ulated genes in ADwere associatedwith AD-related neu-

roimaging and CSF biomarkers such as amyloid beta (A𝛽)

deposition and structural atrophy, and the dysregulated

genes have been implicated in biological processes rele-

vant to AD.

3. Future directions: Further research is needed to deter-

mine the specific roles of the replicated dysregulated

genes in AD-related processes. Expression of these genes

in peripheral blood should be investigated for the poten-

tial to enhance current biomarker measures of AD

risk/progression.

2.4 Genotyping and imputation

Participants were genotyped using several Illumina genotyping plat-

forms. APOE genotyping was separately conducted using standard

methods as described previously to yield the APOE 𝜀4 allele defining

SNPs (rs429358, rs7412).21 As the cohorts (ADNI and AddNeuroMed)

used different genotyping platforms, we imputed un-genotyped SNPs

separately in each cohort usingMACH and the 1000 Genomes Project

data as a reference panel by following the Enhancing NeuroImaging

Genetics through Meta-Analysis (ENIGMA) imputation protocol

(http://enigma.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KG

P_cookbook_v3.pdf).34 Before the imputation, we performed stan-

dard sample and SNP QC procedures as described previously: (1)

for SNP, SNP call rate<95%, Hardy-Weinberg P-value <1 × 10−6,

and minor allele frequency <1%; (2) for sample, sex inconsistencies,

and sample call rate<95%.15-17,35 Furthermore, to prevent spuri-

ous association due to population stratification, we selected only

non-Hispanic participants of European ancestry who clustered with

HapMap CEU (Utah residents with Northern and Western European

ancestry from the CEPH collection) or TSI (Toscani in Italia) popu-

lations using multidimensional scaling analysis (www.hapmap.org)

in PLINK.35,36 Imputation and QC procedures were performed as

described previously.15,16 After the imputation, we imposed an r2

value equal to 0.30 as the threshold to accept the imputed genotypes.

http://www.affymetrix.com
http://www.illumina.com
http://enigma.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf
http://enigma.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf
http://www.hapmap.org
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2.5 Statistical analysis

Statistical analysis of microarray data was performed using a lin-

ear regression model to evaluate differences in gene expression

between AD and CN with age, sex, batch effects, and RNA integrity

number (RIN) values as covariates. From the LIMMA software, we

used the function lmFit to generate the fit, and the function eBayes

to generate statistical significance values (https://doi.org/10.10

07/0-387-29362-0_23).37 Meta-analysis was performed using a

fixed-effect, inverse-variance-weighted model in the METAL software

(https://genome.sph.umich.edu/wiki/METAL_Documentation).38 Sig-

nificant associations were determined using false discovery rate (FDR)

adjustment for multiple testing.

2.6 Imaging genetics analysis

We further investigated the association of candidate gene expression

levels identified from expression profiling analysis with structural and

functional neuroimaging phenotypes by performing whole brain imag-

ing genetics analyses. Multivariable analysis of cortical thickness and

A𝛽 accumulation was performed to examine effects of gene expres-

sion levels on vertex-by-vertex and voxel-by-voxel bases, respectively.

In MRI scans, the cortical thickness was calculated by taking the

Euclidean distance between the gray and white boundary and the

gray and CSF boundary at each vertex on the surface.39 The SurfS-

tat software package (www.math.mcgill.ca/keith/surfstat/) was used to

perform a multivariable analysis of cortical thickness on a vertex-by-

vertex basis using a general linear model (GLM) approach. GLMs were

developed using age, sex, years of education, MRI field strength, and

total intracranial volume as covariates. The processed [18F]Florbetapir

PET images were used to perform a voxel-wise statistical analysis

across the whole brain using SPM8 (www.fil.ion.ucl.ac.uk/spm/). We

performed a multivariable regression analysis using age and sex as

covariates. Adjustment for multiple comparisons was performed using

the random field theory (RFT) correction forwhole brain surface-based

analysis and FDR correction methods for whole brain voxel-based

analysis.40

3 RESULTS

Sample characteristics in each of the three data sets used in the discov-

ery and replication analyses are presented in Table S1. This included

1440 non-Hispanic older adult participants of European ancestry (517

cognitively normal controls (CN), 553 individuals with MCI, and 370

with AD). The MCSA sample was older and had higher mean RIN val-

ues. The ADNI and AddNeuroMed cohorts consisted of CN and AD as

well as MCI, although the MCSA cohort included only CN and AD. In

addition, theADNI andAddNeuroMedsamples alsohad structuralMRI

scans.

3.1 Genome-wide transcriptome analysis

In the discovery analysis using the ADNI cohort (N = 661), genome-

wide comparison of AD with CN using 21,150 probes represented on

the array after standardQCswas assessed and led to the identification

of 26 significantly differentially expressed probes after controlling for

multiple testing using FDR. Probes demonstrating significantly altered

expression levels were shown in Supplementary Figure SF1 (a). In the

Volcano plot, red open circles represented significantly differentially

expressed probes in AD compared to CN. Eighteen probes were signif-

icantly upregulated and eight probeswere significantly downregulated

in AD. The 26 probes mapped to 23 corresponding genes. The top-hit

upregulated gene was mitogen-activated protein kinase 14 (MAPK14),

followed by cAMP responsive element binding protein 5 (CREB5) and

CD63 molecule (CD63). The leading downregulated gene was trans-

membrane protein 41A (TMEM41A).

3.2 Replication analysis

In total, 23 genes in the discovery were significantly differentially

expressed in AD. However, of the 23 genes, 11 were observed in the

replication data sets and were followed-up for replication and addi-

tional meta-analysis in the independent two cohorts (AddNeuroMed

and MCSA; N = 571; 304 CN, 267 AD). Of 11 genes tested in the

replication samples, five genes (CREB5 [P-value = 1.29 × 10−6], CD46

molecule [CD46; P-value=8.19×10−6], transmembraneBAX inhibitor

motif containing 6 [TMBIM6; [P-value = 4.00 × 10−3], interleukin 1

receptor associated kinase 3 [IRAK3; P-value = 1.81 × 10−4], and RPA

interacting protein [RPAIN; P-value = 2.37 × 10−3]) were replicated

and significantly differentially expressed in AD after Bonferroni cor-

rection for multiple comparisons (Table 1). Of these significant genes,

the most significantly altered gene was CREB5 (upregulated), followed

by CD46 and IRAK3. Supplementary Figure SF1 (b) displays the gene

expression levels of CREB5 across the continuum of AD. There is a

significant increase in CREB5 levels as the severity of AD increases

and the expression of CREB5 was altered from the early stages of dis-

ease. Of significantly downregulated genes, only one gene (RPAIN) was

significantly replicated in the replication sample. In addition, in the

combined discovery and replication sample, another gene (flotillin 1

[FLOT1]) showedevidence for association at genome-wide significance.

3.3 Follow-up for association of CREB5 gene
expression levels with AD-related biomarkers

In order to investigate the effect of APOE 𝜀4 status on levels of CREB5,

the most significantly altered blood-based gene, we performed gene

expression analysis after stratifying on APOE 𝜀4 carrier status. CREB5

was significantly upregulated in LOAD only in the APOE 𝜀4 carrier

group (𝛽 (standard error [SE]) = 0.25 [0.05], P-value = 1.37 × 10−5).

https://doi.org/10.1007/0-387-29362-0_23
https://doi.org/10.1007/0-387-29362-0_23
https://genome.sph.umich.edu/wiki/METAL_Documentation
http://www.math.mcgill.ca/keith/surfstat/
http://www.fil.ion.ucl.ac.uk/spm/


NHO ET AL. 1217

TABLE 1 Meta-analysis of dysregulated genes

Discovery Replication

Gene ADNI AddNeuroMed MCSA AddNeuroMed+MCSA Meta-Analysis (ALL)

𝜷 (SE) P-value 𝜷 (SE) P-value 𝜷 (SE) P-value z-score P-value z-score P-value

CREB5 0.18 (0.04) 5.03× 10−6 0.23 (0.05) 1.96× 10−5 0.12 (0.05) 2.18× 10−2 4.84 1.29× 10−6 6.61 3.90× 10−11

FLOT1 0.17 (0.04) 2.50 × 10−5 0.07 (0.04) 5.56 × 10−2 0.07 (0.06) 1.98× 10−1 2.28 2.26× 10−2 4.35 1.39× 10−5

CD46 0.18 (0.04) 2.93× 10−5 0.20 (0.04) 7.62× 10−6 0.06 (0.06) 3.31× 10−1 4.46 8.19× 10−6 6.07 1.26× 10−9

DUSP5 −0.20 (0.05) 3.20 × 10−5 0.03 (0.04) 3.98 × 10−1 −0.03 (0.04) 5.07× 10−1 0.48 6.32× 10−1 −2.10 3.59× 10−2

CD63 0.08 (0.02) 3.68× 10−5 0.02 (0.03) 5.68× 10−1 0.003 (0.061) 9.59× 10−1 0.54 5.91× 10−1 2.89 3.80× 10−3

PELO 0.15 (0.04) 7.49 × 10−5 0.05 (0.03) 7.57 × 10−2 0.04 (0.04) 3.97× 10−1 1.97 4.91× 10−2 3.94 8.07× 10−5

TMBIM6 0.06 (0.02) 9.80× 10−5 0.07 (0.02) 1.06× 10−3 −0.004 (0.022) 8.53× 10−1 2.88 4.00× 10−3 4.63 3.58× 10−6

IRAK3 0.23 (0.06) 9.96 × 10−5 0.17 (0.05) 1.84 × 10−4 0.03 (0.04) 3.93× 10−1 3.75 1.81× 10−4 5.33 9.96× 10−8

FKBP5 0.29 (0.07) 1.16× 10−4 0.13 (0.05) 3.71× 10−3 −0.15 (0.06) 1.17× 10−2 1.54 1.24× 10−1 3.54 4.06× 10−4

IL2R2 0.23 (0.06) 1.46 × 10−4 0.08 (0.05) 1.41 × 10−1 −0.04 (0.07) 6.08× 10−1 1.11 2.68× 10−1 3.16 1.60× 10−3

RPAIN −0.10 (0.03) 3.28× 10−4 −0.10 (0.03) 1.55× 10−3 −0.01 (0.03) 6.74× 10−1 −3.04 2.37× 10−3 −4.58 4.58× 10−6

Five dysregulated genes were replicated in the replication sample.

F IGURE 1 Association of CREB5 gene expression levels with brain structure atrophy using whole brain surface-based analysis in two
independent cohorts: (A) ADNI (discovery sample) and (B) AddNeuroMed (replication sample).Whole-brain cortical thickness analysis
demonstrated the identification and replication of brain regions, especially entorhinal cortex, significantly associated with expression levels of
CREB5. Statistical maps computed using SurfStat were thresholded using random field theory (RFT) as amultiple testing correction at p-corrected
<0.05. The P-value indicates significant corrected P-values with the lightest blue color

We further investigated if levels of CREB5 are also associated with

AD-related biomarkers. Because CREB is a key component of learning

and memory, we first performed an association of CREB5 gene levels

with cognitive performance using composite scores for memory and

executive functioning and identified significant associations (𝛽 [SE]

= −0.05 [0.01], P-value = 6.73 × 10−5 and 𝛽 [SE] = −0.05 [0.01],

P-value = 7.74 × 10−5 for composite scores for memory and executive

functioning, respectively).41-43 Increased expression levels of CREB5

were associated with poor memory and cognitive performance.44,45

We then performed whole brain surface-based analysis using cortical

thickness on the brain surface on vertex-by-vertex bases measured

from structural MRI scans. We used the ADNI and AddNeuroMed

samples as the discovery and replication samples, respectively. In the

ADNI sample including MCI patients, detailed whole-brain analysis

identified clusters in a widespread pattern as significantly associated

with expression of CREB5 after adjusting for multiple comparisons

using RFT (Figure 1 (a)). Individuals with higher expression levels

showed greater atrophy in the bilateral frontal, parietal, and temporal

lobes, especially including the entorhinal cortex. In the replication

sample (AddNeuroMed) including MCI patients, highly significant

clusters associated with CREB5 gene expression levels were found

in bilateral temporal cortical regions including the entorhinal cor-

tex, where mean cortical thickness decreased as expression levels

increased, which showed consistent patterns in the same brain regions

in the independent two cohorts (Figure 1 (b)).

Next, as the A𝛽 peptide, one of the twomain pathological hallmarks

of AD,mediates synapse loss through theCREB signaling pathway,44,45

in the ADNI cohort, we performed whole brain analysis using A𝛽 accu-

mulation measured from [18F]Florbetapir PET scans for association of

expression of CREB5 with A𝛽 load. The voxel-wise association results
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F IGURE 2 Association of CREB5 gene expression levels with A𝛽 burdenmeasured by [18F]Florbetapir PET using whole brain analysis
(FDR-corrected P-value<0.05)

were similar in association direction and regional distribution to those

obtained from the cortical thickness analyses (Figure 2). Increased

expression levels of CREB5 were associated with increased A𝛽 accu-

mulation in a widespread pattern, especially in the bilateral frontal,

parietal, and temporal lobes after adjusting for multiple comparisons

using FDR.

3.4 Expression quantitative trait loci (eQTL) analysis
of CREB5

WeperformedaneQTLanalysis of themost significantly alteredCREB5

gene using SNPs imputed using the 1000 Genomes Project data as

a reference panel in two independent cohorts (ADNI and AddNeu-

roMed). The analysis was limited to cis-eQTL, the SNPs of which were

within 1 megabase (mb) distance from the transcription start or end

sites of CREB5. In the ADNI sample, the eQTL mapping analysis of

CREB5 detected five significant associations with genome-wide signifi-

cance at P= 5 × 10−8 (Figure 3 (a)).

Of these significant SNPs, rs56388170 within CREB5was most sig-

nificantly associated with expression levels of CREB5 (𝛽 [SE] = −0.15
[0.02], P = 1.23 × 10−16). Individuals carrying the minor allele of

rs56388170 have lower expression levels of CREB5. In addition, the

most significant SNP (rs56388170) was significantly replicated in the

independent AddNeuroMed sample (𝛽 [SE] = −0.22 [0.05], P = 3.90

× 10−6; Figure 3 (b)). Because we showed that CREB5 expression lev-

els are associated with A𝛽 accumulation in the brain, we determined

if rs56388170 is associated with A𝛽 load in AD. The most significant

eQTL SNP (rs56388170) of CREB5 was also significantly associated

with global cortical A𝛽 loadmeasured from [18F] Florbetapir PET scans

and CSF A𝛽1-42 with P = .021 (𝛽 [SE] = −0.008 [0.001]) and P = .035

(𝛽 [SE] = 0.013 [0.025]), respectively (Figure 4 (a) and (b)), where the

minor allele of rs56388170 conferred decreases in cortical A𝛽 levels.

4 DISCUSSION

This study identified and replicated five significantly differentially

expressedgenes aswell as onemarginally differentially expressedgene

in AD in peripheral blood, five ofwhich are upregulated (CREB5, FLOT1,

CD46, IRAK3, and TMBIM6) and one of which is downregulated in AD

(RPAIN). A literature search revealed no evidence of previous linkage of

either RPAIN or TMBIM6 with AD, suggesting that further exploration

of the functions of these genes may yield novel information about

AD processes. RPAIN is involved in transport of replication protein A

(RPA), a eukaryotic single-stranded DNA binding protein with func-

tions in DNA replication, repair, and recombination; RPAIN is an adap-

tor molecule that binds RPA and importin-𝛽 , and thus regulates RPA

transport into the nucleus. With this function, RPAIN, via RPA, plays

an important role in cell proliferation via cell cycle regulation.46RPAIN

is ubiquitously expressed in numerous tissues including the brain.47

Altered RPAIN expression could lead to reduced efficiency in DNA

repair as well as cell cycle dysregulation, which has been observed pre-

viously in AD.48 TMBIM6, also called Bax Inhibitor-1, is a transmem-

brane protein in the endoplasmic reticulum (ER). TMBIM6 is highly

conserved and ubiquitously expressed in humans, and has been shown

to play a role in numerous cellular pathways including ER stress, cal-

cium imbalance, reactive oxygen species accumulation, and metabolic

dysregulation. More specifically, this protein is involved in cellular cal-

cium and pH homeostasis by mediating Ca(2+) efflux from the ER,

and functions to protect the cell from ER stress-induced apoptotic cell

death, although theexactmolecularmechanismunderlying this protein

function is currently unclear.49-51 Altered TMBIM6 expression could

dysregulate cellular response to stress, with interesting implications

for AD susceptibility and progression. Upregulation of this protein, as

observed in this study, may be a compensatory response to neuronal

damage in AD. There is some evidence to suggest that TMBIM6 may

play a protective role in the brain, both by protecting against apoptosis

and potentially promoting neurogenesis during development. Of inter-

est, TMBIM6was reported to bind free presinilin 1; the resulting com-

plex exhibited no proteolytic activity for A𝛽 , suggesting that this pro-

tein may play an important role in AD.52 However, this work is based

largely on animal and cellular models; more work remains to elucidate

the functions of TMBIM6 in the human brain.

For three of the other genes significantly upregulated in this study

(CD46, IRAK3, and CREB5), although there is evidence in the litera-

ture linking homologues or gene pathways to AD, there is a dearth of

evidence directly linking CD46, IRAK3, and CREB5 to AD. CD46 has

not been associated with AD; however, this ubiquitously expressed

complement receptor protein has been shown to be necessary to the

proper functioning of human cytotoxic CD8+ T cells in humans.47,53

CD46 delivers co-stimulatory signals promoting cytotoxic CD8+ T cell
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F IGURE 3 Results of cis-eQTLmapping analysis of CREB5 using two independent cohorts: (A) ADNI (discovery sample) and (B) AddNeuroMed
(replication sample). cis-eQTLmapping analyses of CREB5 detected five significant associations with P< 5 × 10−8 in ADNI. Themost significant
cis-eQTL SNP (rs56388170) in ADNI was replicated in AddNeroMed. All SNPs are plotted based on their -log10P-values, NCBI build 37 genomic
position, and recombination rates calculated from the 1000Genomes Project reference data

F IGURE 4 Association of themost significant cis-eQTL SNP (rs56388170) of CREB5 gene expression levels with (A) global cortical A𝛽 levels
measured by [18F]Florbetapir PET and (B) CSF A𝛽1-42 in the ADNI. rs56388170was significantly associated with global cortical A𝛽 load and CSF
A𝛽1-42

activity; mutations, function, or regulation of this protein have been

associated with viral infections as well as autoimmune diseases.54-60

Although CD46 has not yet been associated with AD, the comple-

ment system has been significantly linked to AD. CD33 molecule

(CD33), another complement protein, is one of the top hits identi-

fied in the largest AD GWAS meta-analysis to date.61 It has been

postulated that the complement system works to increase inflamma-

tion, and that the AD-protective variant in CD33 truncates the pro-

tein, resulting in reduced functions including cell signaling.62 This sug-

gests that lower expression of complement genes may have beneficial

effects on thebrain, aligningwith our data showing lowerCD46 expres-

sion in controls compared to those with AD. IRAK3, another of the

significantly upregulated genes, encodes an interleukin-1 receptor–

associated kinase, which is ubiquitously expressed and functions in

the Toll/IL-R immune signal transduction pathway.47,63 Although there

was no evidence from our literature search associating IRAK3 with

AD, other interleukin 1 receptor–associated kinases have been asso-

ciated with pro-inflammatory processes in AD,64,65 suggesting that

these molecules play important roles in AD. Finally, CREB5 binds to

cAMP response element (CRE) to function as a CRE-dependent trans-

activator. CREB proteins induce CRE-mediated gene transcription in

response to cellular signaling.66 cAMP signaling is involved in many

cellular processes from cell growth and differentiation to gene tran-

scription and protein expression.67 Although CREB5 has not been
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linked specifically to AD, CREB family proteins are known to play

important roles in synaptic strengthening and memory formation.45

Increased CREB activity was observed in the peripheral blood of

patients with mild AD or those with AD and depressive symptoms,68

and increased CREB activity and dysregulation of CREB targets were

observed in AD brain tissue compared to controls.44 These previous

results from the literature support the potential roles of CD46, IRAK3,

and CREB5 in AD.

In addition to these five genes, our meta-analysis of all three data

sets identified FLOT1 as significantly upregulated in AD. FLOT1 is a

ubiquitously expressed protein that localizes to the caveolae, small

domainson the inner cellmembrane, and functions in vesicle trafficking

and cell morphology pathways.69-71 Flotillin proteins including FLOT1

have also been shown to play a role in endosomal sorting of beta-

site amyloid precursor protein cleaving enzyme 1 (BACE-1), a protease

involved in APP processing; depletion of flotilins results in stabilized

BACE-1 and increased amyloidogenic processing of amyloid precur-

sor protein.72 Thus, it is possible that upregulation of flotilins may be

a compensatory response by the cell to attempt to reduce amyloido-

genic processing. Future analyses should investigate the expression of

this gene in additional data sets for replication, aswell as exploration of

the impact of this protein on BACE-1 function in conjunction with AD

risk and progression.

To extend interpretation of our findings and how the identified

genes might impact the brain in LOAD, we also identified several

larger AD brain tissue gene expression studies, and downloaded the

lists of all differentially expressed genes. Although a comprehensive

review of previous results was outside the scope of this study, we

selected several of the larger, better-powered studies to discuss. We

reviewed these lists of differentially expressed genes from these stud-

ies for presence of any of the five genes we identified as differentially

expressed in AD in peripheral blood. The first study, of brain tissue col-

lected from the current Mount Sinai Medical Center Brain Bank AD

cohort, included expression data from 19 brain regions for 125 indi-

viduals across the AD spectrum, excluding any brain specimens that

showed non-AD–related neuropathology. Gene expression was gen-

erated using the Human Genome (HG) Affymetrix U133A, U133B, or

U133 Plus 2.0 microarrays. The researchers created high/normal/low

groups based on AD traits: clinical dementia rating, Braak stage (tau

pathology), Consortium to Establish a Registry for Alzheimer’s Dis-

ease (CERAD; amyloid pathology), diagnostic certainty, amyloid plaque

density mean, sum of neuritic plaque density estimates, and sum of

neurofibrillary tangle density estimates. Differences between AD trait

groups in at least one brain region were observed for CREB5, TMBIM6,

and RPAIN.13 The second study, which included brain tissue gene

expression from 1647 specimens from LOAD and non-demented con-

trols, investigated the association of gene networks with AD traits.14

Study participants were recruited through the Harvard Brain Tissue

Resource Center. Tissue specimens were from three brain regions: the

dorsolateral prefrontal cortex, visual cortex, or cerebellum. Specifi-

cally, specimens were obtained from 549 brains, 376 of which were

from LOAD patients, and 173 of which were from non-demented con-

trols. In this data set, CREB5 and IRAK3 were included in networks

of differentially expressed genes, but were not significantly associ-

ated with any of the AD traits analyzed. Another study, which included

87 individuals with AD and 74 controls, included lists of genes with

differential expression associated with AD by brain regions.12 The

researchers analyzed differential expression in six brain regions: the

entorhinal cortex, hippocampus, middle temporal gyrus, posterior cin-

gulate cortex, superior frontal gyrus, and visual cortex; data were

obtained from a study conducted by Liang et al. (2008) of gene expres-

sion from laser-capture microdissected non–tangle-bearing neurons

in different brain regions.73 The authors used a novel computational

method to integrate gene expression information across brain regions,

and identify a minimum common set of genes significantly associated

with AD across brain regions. In this study, genes with differential

expression associated with AD in at least one brain region included

CD46, TMBIM6, IRAK3, RPAIN, and FLOT1. Finally, the last study by

Ibanez et al. (2015) included two AD data sets: (1) hippocampal gene

expression from nine controls and 15 individuals with AD,74 and (2)

brain tissue gene expression for varying numbers of individuals (all

groups size range nine to 23) classified into each Braak stage (0-6) with

161 individuals total included.75,76 This meta-analysis identified dif-

ferential regulation associated with AD for CREB5, IRAK3, and FLOT1,

although these comparisons did not survive multiple correction. To

summarize, all of the six genes of interest from our study were identi-

fied in at least oneof theseprior studiesofAD-relateddifferential brain

tissue gene expression. These findings support potential roles for brain

functionof the six genes of interest fromour studyof blood-based gene

expression.

There are several plausible hypotheses regarding the mechanis-

tic implications of the differential gene expression levels identified in

blood. First, there may be genetic variants that drive expression lev-

els of genes in both brain and blood. We have shown previously that

many AD risk variants influence brain gene expression levels and are

therefore likely to exert AD risk through their regulatory effects in the

brain.77-81 Some but not all eQTL have consistent effects across mul-

tiple tissue types.82,83 It is possible that some or all of the peripheral

differential expression detected in this study are a reflection of brain

eQTL for those variants that have similar eQTL effects in blood. The

associations of eQTL with CREB5 levels, and the influence of the same

eQTLwith brain Aß levels, are consistent with this hypothesis.

The top genes identified in this study are implicated in pathways

that are known tobe important inADpathophysiology such as synaptic

processes (CREB5), endosomal sorting (FLOT1), immune system (CD46,

IRAK3), and calcium homeostasis (TMBIM6). Hence, genetic variants

that influence brain levels of these genes may also have an impact on

these pathways and ultimately AD risk. Given the genetic heterogene-

ity of complex diseases, such asAD, eQTL, and differential gene expres-

sion, effectsmay bemore readily detected thanAD risk associations.84

Therefore, expression profiling and eQTL studies provide a comple-

mentary approach to AD risk association in the identification of novel

AD candidate genes and pathways.

Another plausible explanation of our results is that expression

changes in blood may be reflective of cellular composition and other

alterations in the brain that are downstream of disease pathology.
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Although the majority of the expression levels captured by the blood

measurements are likely driven by white blood cells, it is possible that

these measurements also capture transcripts from other circulating

cells, exosomal or cell freeRNA. Single cell type, exosomal, and cell-free

RNA-based studies are necessary to fully delineate the source of these

peripheral expression levels. Given this possibility, another hypothe-

sis is that peripheral gene expression levels are biomarkers of under-

lying disease pathology and/or its consequences, similar to blood Aß or

cytokinemeasurements.85,86

These two hypotheses can be tested by various approaches, includ-

ing multi-omics studies of large cohorts to discover eQTL, differential

expression, and AD risk associations implicating the same gene; lon-

gitudinal blood expression studies in cohorts that also have concur-

rent brain pathology biomarkers, including neuroimaging and CSF; and

finally in model systemswhere levels of these genes are perturbed and

tested for AD-related outcomes.

This study has several limitations. First, this is an observational

study, where we restricted our analysis to a non-Hispanic White pop-

ulation. Therefore, our findings may not be generalizable to other pop-

ulations. It is important for future studies to investigate our findings

using large community studies that include populations with greater

diversity to determine if they translate to the broader population. Sec-

ond, we performed gene expression analysis based on three indepen-

dent studies using two different microarray platforms; despite this,

our results were replicable results across these cohorts, which indi-

cates that our findings are unlikely to be driven by technical artefacts.

In addition, we performed a meta-analysis of three data sets instead

of a mega-analysis. Third, the diagnosis was based largely on clini-

cal criteria without neuropathology confirmation, which is a common

limitation for ante-mortem studies. We addressed this by using AD-

related endophenotypes measured by multimodal neuroimaging and

CSF biomarkers. Furthermore, we explored the findings from brain

tissue studies using neuropathologically diagnosed cases. Finally, our

study is cross-sectional and it would be important in the future to use a

larger prospective cohort study to determine the potential role of the

identified genes.

Overall, six genes identified in this study may have the potential to

provide further insight into the biological mechanisms underlying AD

risk and progression. Further study is required to determine the spe-

cific roles of CREB5, CD46, TMBIM6, IRAK3, RPAIN, and FLOT1 in AD-

relatedprocesses. Expressionof these genes in peripheral blood should

also be investigated for potential to enhance current biomarker mea-

sures of AD risk/progression.
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