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Abstract
Objective  To develop a practical method to rapidly utilize a deep learning model to automatically extract image features based 
on a small number of SPECT brain perfusion images in general clinics to objectively evaluate Alzheimer’s disease (AD).
Methods  For the properties of low cost and convenient access in general clinics, Tc-99-ECD SPECT imaging data in brain 
perfusion detection was used in this study for AD detection. Two-stage transfer learning based on the Inception v3 network 
model was performed using the ImageNet dataset and ADNI database. To improve training accuracy, the three-dimensional 
image was reorganized into three sets of two-dimensional images for data augmentation and ensemble learning. The effect 
of pre-training parameters for Tc-99m-ECD SPECT image to distinguish AD from normal cognition (NC) was investigated, 
as well as the effect of the sample size of F-18-FDG PET images used in pre-training. The same model was also fine-tuned 
for the prediction of the MMSE score from the Tc-99m-ECD SPECT image.
Results  The AUC values of w/wo pre-training parameters for Tc-99m-ECD SPECT image to distinguish AD from NC were 
0.86 and 0.90. The sensitivity, specificity, precision, accuracy, and F1 score were 100%, 75%, 76%, 86%, and 86%, respec-
tively for the training model with 1000 cases of F-18-FDG PET image for pre-training. The AUC values for various sample 
sizes of the training dataset (100, 200, 400, 800, 1000 cases) for pre-training were 0.86, 0.91, 0.95, 0.97, and 0.97. Regardless 
of the pre-training condition ECD dataset used, the AUC value was greater than 0.85. Finally, predicting cognitive scores 
and MMSE scores correlated (R2 = 0.7072).
Conclusions  With the ADNI pre-trained model, the sensitivity and accuracy of the proposed deep learning model using 
SPECT ECD perfusion images to differentiate AD from NC were increased by approximately 30% and 10%, respectively. 
Our study indicated that the model trained on PET FDG metabolic imaging for the same disease could be transferred to a 
small sample of SPECT cerebral perfusion images. This model will contribute to the practicality of SPECT cerebral perfu-
sion images using deep learning technology to objectively recognize AD.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative dis-
ease of the brain and the most common type of dementia, 
accounting for more than 60% of all dementia cases [1]. 
SPECT and PET have been used to study brain regional 
cerebral blood flow (rCBF) and regional cerebral glucose 
metabolism (rCGM) in AD patients and other brain neu-
rodegenerative diseases, showing that the characteristic 
patterns of perfusion and metabolic abnormalities can 
distinguish AD from other types of dementia. Hence, as 
a marker of AD, SPECT and PET imaging can be used to 
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detect basic changes of brain blood perfusion and metabo-
lism, as well as for the differential diagnosis, monitoring 
of disease progression, and response to treatment. The 
studies of SPECT brain perfusion and PET metabolism 
are usually consistent in abnormal areas [2]. F-18-FDG 
(Fluorodeoxyglucose, FDG) PET, which is typically used 
in the West for brain glucose metabolism examination, 
is currently not covered by National Health Insurance in 
Taiwan [3]. Therefore, most nuclear medicine depart-
ments in Taiwan use SPECT cerebral perfusion imaging 
and the Tc-99m-ECD (ethyl cysteinate dimer, ECD) tracer. 
Although SPECT has a longer imaging time and poorer 
image resolution than PET, it is low cost and the tracer is 
easily accessible, hence, is widely used in domestic clini-
cal practice.

In recent years, artificial intelligence (AI) and radiom-
ics technology, such as image mining, have been applied 
to medical imaging to identify non-invasive features of 
diseases. Image mining is considered to have great poten-
tial clinical significance, as it can be used for non-invasive 
diagnosis, feature extraction, and outcome prediction under 
almost all medical conditions [4]. The multidisciplinary 
aspect of clinical neuroscience has begun to be influenced 
by deep learning and is moving toward the development of 
new diagnostic and prognostic tools. Deep learning tech-
nology is particularly promising in neuroscience because 
clinical diagnosis relies on subtle symptoms and complex 
neuroimaging methods [5].

Although deep learning technology can automatically 
extract features from the original data, a large amount of 
data needs to be prepared for deep learning model train-
ing, which is a major barrier for nuclear medicine imaging 
applications. At present, the world’s largest open dataset of 
dementia images is ADNI (Alzheimer’s Disease Neuroim-
aging Initiative), which has been used to support numerous 
deep learning training studies. Researchers have used brain 
glucose metabolism images to develop many algorithms 
for the early detection of AD, differentiation of dementia 
types, as well as the prediction of disease progression [6, 7], 
however, the research is restricted due to the lack of open 
datasets of cerebral blood flow images. Recent studies have 
found that the image features extracted after training with a 
large amount of data can be transferred to a small amount of 
data in other fields [8, 9], thus, providing an opportunity to 
overcome the barrier to deep learning using a small dataset 
of cerebral blood flow images.

This study aimed to develop a practical deep learning 
approach to differentiate images between AD and normal 
cognition (NC) and predict MMSE (Mini-mental State 
Examination) scores using cerebral blood flow images. 
The lack of a large dataset of Tc-99  m-ECD SPECT 
images was overcome via two-stage transfer learning 
technology, extracting the features from a larger dataset 

(F-18-FDG PET images from ADNI) for transfer to other 
domains with a smaller dataset (such as Tc-99m-ECD 
SPECT images).

Materials and methods

Subjects

The Tc-99m-ECD SPECT images (total 247 subject; 113 
AD; 134 NC) were part of the Taiwanese Nuclear Medicine 
Brain Image Database collected and built by the Institute 
of Nuclear Energy Research. All participants were evalu-
ated by neurologists and clinical psychologists, and their 
education level was elementary school or above. People 
with normal cognitive function were assessed to rule out 
physical conditions that cannot be corrected and may cause 
dementia or delirium, such as poor vision, abnormal hear-
ing, hypothyroidism, anemia, pneumonia, fever, dehydration, 
signs of abnormal liver function, abnormal renal function, 
signs of heart failure (NY class < 3), etc. Those with obvious 
head trauma, neurological diseases related to dysfunction of 
the extrapyramidal system or autonomic nervous systems, 
such as hydrocephalus, Parkinson’s disease, cortical basal 
ganglia degeneration, and progressive supranuclear palsy, 
Vitamin B12 or folic acid deficiency caused by subacute 
combined degeneration, multiple system degeneration, and 
cerebrovascular diseases that may cause various local neu-
rological symptoms were excluded. The systolic pressure 
of those with hypertension needed to be controlled below 
160 mmHg, and the HbA1c of those with diabetes mellitus 
below 9.0. Those on medications that may cause cognitive 
dysfunction, such as anticholinergic drugs, hypnotics, or 
antipsychotics, were excluded. The Critical Mental Illness 
Scale (CHQ-12) score should be < 3, and all participants 
completed the clinical dementia rating (CDR) scale to deter-
mine the severity. Participants with clinically suspected AD 
received complete medical history inquiry (including impor-
tant system and brain disease history and CDR), cognitive 
function (such as MMSE scores), and related examinations. 
Those who met the criteria further underwent Tc-99m-ECD 
SPECT imaging, and the images were interpreted by nuclear 
medicine experts. The demographic characteristics and clini-
cal characteristics of the data are shown in Table 1. The 
Institutional Review Board (IRB) of National Cheng Kung 
University Hospital approved this study (serial number: 
NCKUH IRB B-BR-107–030).

The F-18-FDG PET images of AD and NC (total 1,267 
subject; 638 AD; 629 NC) used for pre-training in this study 
were obtained from ADNI, a public database, and the demo-
graphic and clinical characteristics of the data are shown in 
Table 2.
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Image acquisition and processing

F-18-FDG PET images were downloaded from the ADNI 
database (http://​adni.​loni.​usc.​edu The ADNI was launched 
in 2003 as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance 
imaging (MRI), PET, other biological markers, and clini-
cal and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment 
(MCI) and AD.). The images provided various levels of pre-
processing and were averaged by a dynamic PET 3D scan (6 
frames taken 30 to 60 mins after injection 185 MBq FDG), 
aligned and resampled so that the images had the same pixel 
size, with the intensity of the image values normalized to 
global brain FDG uptake. Each image was normalized to 
the MNI (Montreal Neurological Institute) space by SPM 
(Statistical Parametric Mapping). The image dimension was 
91 × 109 × 91 changing to 95 × 95 × 48 after cropping, pad-
ding, and removal of the image slices above the skull and 
below the cerebellum to retain most of the brain parenchy-
mal area.

Tc-99m-ECD SPECT images were acquired from four 
medical institutions and obtained by E-CAM, Symbia 
T16, and Symbia T2 SPECT equipment (Siemens Medi-
cal Solutions, Malvern, PA, USA) with LEHR (low energy 
high resolution) and fan beam collimators. Fifteen min-
utes after intravenous injection of 925 MBq Tc-99m-ECD, 

SPECT images were acquired for 30 to 40 mins, and the 
image matrix size was 128 × 128. The images were recon-
structed by filtered back projection (FBP) with Metz filter 
and ordered subsets expectation and maximization (OSEM) 
method using Chang’s attenuation correction (attenuation 
coefficient is 0.1 cm−1). The original image was processed 
by SPM (SPM8, University College of London, London, 
UK) software for spatial normalization and the Z-score 
method used for intensity standardization. The image values 
were scaled to a distribution with an average value of zero 
and a standard deviation of one. The image was resampled 
to 95 × 95 × 68 with the voxel size 2 × 2 × 2 mm3, and the 
image slices above the cranium and below the cerebellum 
were removed to retain most of the parenchymal area, giving 
a final image dimension of 95 × 95 × 48.

Deep learning model training

The design concept of this study first used the convolutional 
neural network (CNN) model, the architecture of which 
adopted the design of Inception v3, pre-trained by ImageNet 
data, a daily life image dataset containing approximately 
14 million images labeled into 1000 categories to establish 
automatic extraction of low-level image features. Then, the 
model was transferred and re-trained using the F-18-FDG 
PET image from the ADNI database to learn the characteris-
tics of nuclear medicine images from the F-18-FDG image. 
Finally, a suitable deep learning model for the Tc-99m-ECD 
SPECT images was transferred and the training weights of 
the aforementioned learning were applied to compensate for 
the limitation of the small amount of data.

Training a two-dimensional (2D) CNN model requires 
lower training computing resources and using 2D images 
occupies less memory compared to a 3D CNN model 
and images. To retain the information of the whole brain 
slices, the brain parenchymal area with image dimension 
95 × 95 × 48 was equally divided into 16 sections, with 
one image selected for each section, then 4 × 4 slices were 
reassembled to a 2D image. Sixteen slices were sorted in 
order from the caudal of the brain to the cranial as shown 
in Fig. 1a. The 48 slices were divided into three sets of 2D 
images with similar structures and positions in the order of 
[#1, 4, 7…], [#2, 5, 8…], [#3, 6, 9…]. Finally, a 3D F-18-
FDG PET image was divided into three 2D images with 
a 380 × 380 matrix size. The Tc-99m-ECD SPECT images 
were also reassembled in the same way, as shown in Fig. 1b. 
The computing resources only required four cores of Intel 
Xeon 6230 2.1 GHz processor, 48 GB of DDR4 memory, 
and an NVIDIA 2080Ti computing card. In addition to using 
Tc-99m-ECD SPECT images to predict AD, the cognitive 
function score, MMSE, was also predicted.

The development environments were all executed under 
Python 3 using Keras 2.2.5 to build neural networks and 

Table 1   Demographic and clinical characteristics of the Tc-
99m-ECD SPECT data

Characteristic NC AD

Number of subjects 134 113
Age at the time of SPECT 

(years)
67.0 ± 8.5 74.4 ± 7.0

Sex (F:M) 88:46 58:55
MMSE 27.5 ± 2.4 19.2 ± 5.3
CDR 0.22 ± 0.25 0.79 ± 0.39

Table 2   Demographic and clinical characteristics of F-18-FDG PET 
data

Characteristic NC AD MCI

Number of subjects for image 
classification

(MMSE ≧15 for MMSE score 
prediction)

629
(613)

638
(599)

(654)

Age at the time of PET (years) 76.3 ± 5.8 76.2 ± 7.5 75.9 ± 7.8
Sex (F:M) 263:366 253:385 236:418
MMSE 28.5 ± 4.0 21.7 ± 5.4 27.1 ± 2.1
CDR 0.03 ± 0.16 0.86 ± 0.43 0.49 ± 0.10

http://adni.loni.usc.edu
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import pre-trained models, and the backend runs as Tensor-
Flow 1.15.2 (Google, Mountain View, Calif).

Pre‑trained model using FDG PET images

To investigate the effect of pre-training with different num-
bers of images on the performance of subsequent trans-
fer learning, 1000 F-18-FDG PET images (AD = 511; 
NC = 489) were divided into several training datasets, 
100, 200, 400, 800, and 1000 cases respectively, with 80% 
of the data in each training dataset used for training and 
20% for validation. The range of random width and height 
shift of data augmentation was 0–0.03% and the range of 
zooming was 1–1.03%. The CNN architecture is shown in 

Fig. 1c. A fully connected layer (FC) with a length of 256 
was connected to the top layer of the Inception v3 model, 
and the batch normalization (BN) and dropout layer were 
added after the FC. The dropout layer was set to 0.5, as a 
form of regulation, to avoid neural network coadaptation 
by randomly removing nodes for a more robust model.

The loss function used categorical cross-entropy, and 
the optimization algorithm used Adaptive Moment Estima-
tion (Adam) [10], the learning rate was set to 0.0000005, 
and the batch size was set to 8 for model training. The 
early stopping mechanism was used to judge the stop and 
choose a suitable epoch. The trained model was tested with 
an independent dataset (n = 267; AD = 118; NC = 149) and 
its performance was evaluated by accuracy.

Fig. 1   a, b The two-dimensional input image reassembled by 4 × 4 
slices of F-18-FDG PET and Tc-99m-ECD SPECT images respec-
tively. c The CNN architecture, Inception v3 model was used in this 
study. There were 11 modules and each module was concatenated 
with different numbers of convolutional layers and average pooling or 
max pooling. A fully connected layer (FC) with a length of 128/256 

was connected to the top layer of the Inception v3, and the batch nor-
malization (BN) followed by activation function (ReLU) and dropout 
layer added after the FC. Finally, the Softmax function was used for 
classifying AD and NC. d The model for the predicting cognitive 
score was almost the same as c except the last layer used was sigmoid
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Transferred AI model for ECD SPECT images

Fifty images (AD = 22; NC = 28) were randomly selected 
as an independent test set and 80% of the remaining 197 
images (AD = 91; NC = 106) were used for training and 20% 
for validation. The training model was the same except the 
FC changed the length size to 128. The loss function and 
optimization algorithm selection were the same as above.

Transferred AI model for MMSE Prediction

For predicting the MMSE scores of Tc-99m-ECD SPECT 
images, F-18-FDG PET images of AD and NC were used 
for pre-train, also including the MCI data and only consid-
ering an MMSE score ≥ 15. The model was the same as the 
image classification task but used regression for predicting 
the output of the FC2 shown in Fig. 1d. The model train-
ing settings were similar except the loss function was Mean 
Squared Error, the learning rate was set to 0.0000005, and 
the learning performance evaluated by Mean Absolute Error.

Model interpretation and features visualization

The nonlinear dimensionality reduction algorithm t-distrib-
uted stochastic neighbor embedding (t-SNE) [11] is suitable 
for dimension reduction of high-dimensional data to two 
dimensions for visualization. In this study, image features 
extracted from each image (including AD and NC) through 
the CNN model were dimension reduced to two dimensions 
by t-SNE using package scikit-learn [12], allowing visual 
observation of the scattered location of each image to evalu-
ate the similarity between the data.

To more intuitively observe how the CNN model deduces 
its classification results, we used Gradient-weighted Class 
Activation Mapping (Grad-CAM) to visualize the regions 
of the image that were important for prediction as AD or 
NC from the model. Selecting the last concatenate layer of 
the Inception v3 model generated 2048 feature maps with 
a matrix size of 10 × 10. The class-feature heatmap of each 
image was a weighted combination of the weights, com-
puting gradient backpropagation from the last layer to the 
above-mentioned concatenate layer, and 2048 feature maps. 
The result showed the distribution of the most relevant 
image pixels when the image was classified as AD or NC.

Model testing and result evaluation

The accuracy of the model was evaluated by receiver operat-
ing characteristic (ROC) curves and the area under the ROC 
curve (AUC). The ROC curve was plotted with 95% confi-
dence intervals (CI) calculated using MATLAB (MATLAB 
R2020a, MathWorks, Natick, Massachusetts, USA) with 
1,000 iterations of bootstrapping. Also, statistical analysis 

was performed on the results of the classification prediction, 
including the calculation of the sensitivity, specificity, preci-
sion, accuracy, and F1 score.

The MMSE scores predicted by the deep learning model 
and the actual MMSE scores of the image dataset were plot-
ted as a scatter chart, with the linear relationship R2 calcu-
lated to evaluate the performance of the prediction model. 
The training and testing datasets of F-18-FDG PET and Tc-
99m-ECD SPECT images were processed respectively.

Results

Model interpretation and features visualization

The features extracted from each F-18-FDG PET training 
image via the Inception v3 model were displayed in t-SNE 
as shown in Fig. 2a. NC and AD data are observed as two 
clusters, indicating that the features of AD and NC can be 
distinguished after training. Figure 2b shows the feature of 
the images used for testing in the ADNI dataset, with AD 
data in the upper right and NC data in the lower left of the 
figure but there was a partial mixing of the clusters. The fea-
ture distributions of the Tc-99m-ECD SPECT image train-
ing and testing datasets are shown in Fig. 2c and 2d, with 
the distinction between the NC and AD data in the training 
dataset more obvious than in the testing dataset.

The Grad-CAM heatmaps of AD and NC cases with 
correct prediction results are shown in Fig. 3. ECD image 
features related to classifying AD or NC were localized 
on the individual ECD images. The regions of individu-
als highlighted by heatmaps were slightly different. Over-
all, the CNN model focuses on the regions of the parietal 
lobe and temporal lobe, which is consistent with the gen-
eral clinical interpretation of AD in temporoparietal region 
hypoperfusion.

Recognition of AD

The ROC curves of the pre-trained model using F-18-FDG 
PET images with different numbers of image datasets are 
shown in Fig. 4a, with the AUC values and performance 
evaluation index listed in Table 3. The model trained by 
1000 cases performed best. Furthermore, the ROC curves 
of models w/wo pre-training parameters for Tc-99m-ECD 
SPECT images are shown in Fig. 4b, with the AUC values 
and performance evaluation index listed in Table 4. Among 
them, the sensitivity, specificity, precision, accuracy, and 
F1 score were 77% (17/22), 79% (22/28), 74% (17/23), 78% 
(39/50), and 76 for the CNN model without ADNI pre-train-
ing; 100% (22/22), 75% (21/28), 76% (22/29), 86% (43/50) 
and 86 for CNN model with 1000 cases of F-18-FDG PET 
images for pre-training.  
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Predicting MMSE score

F-18-FDG PET images and their respective MMSE scores 
were used to fine-tune the image classification model to 
predict the cognitive score. Figure 5a shows the prediction 
plotted with MMSE score for training dataset (n = 1493), 
and Fig. 5b shows the independent test dataset (n = 373), 
with R2 values of 0.8967 (p < 1 × 10−4) for training data 
and 0.5129 for testing data (p < 1 × 10−4). Figure 5c and 
5d show the scatter plot of predicting cognitive score and 
actual MMSE score using Tc-99m-ECD SPECT image, 
with R2 values of 0.7072 (p < 1 × 10−4) for training data 
and 0.2225 for testing data (p < 5.4 × 10−4).

Discussion

The prerequisite for a deep learning model to automati-
cally learn about disease features from data is to have a 
large amount of data to train the model. The lack of a large 
dataset of Tc-99m-ECD SPECT images was overcome by 
using two-stage transfer learning technology, extracting 
the features from a larger dataset (F-18-FDG PET images 
from ADNI) for transfer to other domains with a smaller 
dataset (such as Tc-99m-ECD SPECT images). This study 
using conventional hardware equipment and more than 200 
cases of Tc-99m-ECD SPECT image data, reorganized 3D 
images into three sets of 2D images for data augmentation to 

Fig. 2   a, b Image features (256 features of FC1 for each image) visu-
alization of the ADNI training dataset (1,000 cases) and testing data-
set (267 cases) after dimension reduction with t-SNE. The AD and 
NC images were distinctively clustered. c, d Image features (128 fea-

tures of FC1 for each image) visualization of the ECD training data-
set (197 cases) and testing dataset (50 cases) after dimension reduc-
tion with t-SNE. The AD cluster distinguished from the NC cluster 
slightly



895Annals of Nuclear Medicine (2021) 35:889–899	

1 3

Fig. 3   The Grad-CAM heat-
maps of AD and NC cases with 
correct prediction results. The 
number in parentheses was 
the probability of the image as 
judged by the CNN model to be 
within this classification. ECD 
image features related to classi-
fying AD or NC were localized 
on individual ECD images

Fig. 4   a ROC curves of the deep learning model Inception v3 trained 
on the ADNI testing dataset to differentiate AD from NC, showing 
the effect of the size of the training dataset, with a larger dataset hav-

ing a higher AUC value. b ROC curves of the deep learning model, 
Inception v3 combined w/wo pre-training parameters, trained on 
ECD testing datasets to differentiate AD from NC
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improve the accuracy of the training results. The respective 
prediction of three sets of 2D images from the same subject 
for ensemble learning improved the accuracy, which is help-
ful for deep learning training with a small amount of data. 
However, compared with 3D CNN training for complete 
3D images, this study reassembled 16 slices of 3D images 
at equal intervals into 2D images for classification train-
ing. As a limitation, each subject’s image should undergo 
spatial normalization processing to ensure that the location 
of the regional structure on each 2D image has consistent 

features so that each slice image still has sufficient features 
to provide CNN models for learning to distinguish AD and 
NC. In addition, after the slices were rearranged, the order 
of the brain structure was destroyed, and the characteristics 
of inter-slice could not be learned from it, which may affect 
the performance of its deep learning training.

Using t-SNE to display the feature distribution of the 
data after dimension reduction can intuitively help users 
understand the pros and cons of data grouping by category 
after deep learning model training, quickly identifying the 

Table 3   Comparison of the training performance of ADNI datasets

* In this paper, the main goal is to distinguish AD, MCI, and non-AD/MCI, here except only the results of recognizing AD

Cases number of ADNI data-
set used for training

Sensitivity (%) Specificity (%) Precision
(%)

Accuracy
(%)

F1 score
(%)

AUC for AD/NC
(95% CI)

100 cases 88 (104/118) 62 (93/149) 65 (104/160) 74 (197/267) 75 0.86 (0.81–0.90)
200 cases 91 (107/118) 80 (119/149) 78 (107/137) 85 (126/267) 84 0.91 (0.87–0.94)
400 cases 92 (108/118) 86 (128/149) 84 (108/129) 88 (136/267) 87 0.95 (0.91–0.97)
800 cases 92 (109/118) 89 (133/149) 87 (109/125) 91 (142/267) 90 0.97 (0.95–0.99)
1000 cases 93 (110/118) 91 (136/149) 89 (110/123) 92 (246/267) 91 0.97 (0.94–0.98)
636 cases
(243 AD 393 NC)
Choi et al. [9]

– – – – – 0.94 (0.89–0.98)

193 cases
(93 AD 100 NC)
Feng et al. [7]

93.33 91.26 – 92.23 91.8 0.9651

193 cases
(93 AD 100 NC)
Liu et al. [13]

91.4 91 – 91.2 – 0.953

1921 cases
(AD, MCI, non-AD/MCI)
Ding et al. [6]

81 (29/36)* 94 (143/152) * 76 (29/38) * – 78* 0.92*

Table 4   Comparison of the 
training performance of ECD 
datasets in various pre-training 
models

* Deep Neural Network +Segovia F et al. 2017 [14]

Method Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

F1 score
(%)

AUC for AD/NC
(95% CI)

Inception v3 model
(without ADNI pre-train)

77 (17/22) 79 (22/28) 74 (17/23) 78 (39/50) 76 0.86 (0.72–0.93)

With ADNI pre-train
100 cases

91 (20/22) 68 (19/28) 69 (20/29) 78 (39/50) 78 0.85 (0.71–0.93)

With ADNI pre-train
200 cases

100 (22/22) 64 (18/28) 69 (22/32) 80 (40/50) 81 0.89 (0.75–0.95)

With ADNI pre-train
400 cases

100 (22/22) 68 (19/28) 71 (22/31) 82 (41/50) 83 0.86 (0.72–0.94)

With ADNI pre-train
800 cases

95 (21/22) 75 (21/28) 75 (21/28) 84 (42/50) 84 0.86 (0.72–0.94)

With ADNI pre-train
1000 cases

100 (22/22) 75 (21/28) 76 (22/29) 86 (43/50) 86 0.90 (0.77–0.97)

3 layers DNN*,+ 95.12 75.0 – 83.51 – –
Naïve Bayes+ 68.29 91.07 – 81.44 – –
Decision Trees+ 78.05 85.71 – 82.47 – –
SVM+ 82.92 82.14 – 82.47 – –
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incorrectly predicted cases. For example, Fig. 2d shows 
the feature distribution of the ECD testing dataset trained 
by the Inception v3 model combined with the pre-training 
parameters, there were seven NC data points (blue dots 
with red borders) below the auxiliary line (gray dotted 
line) misjudged as AD. The age of these patients ranged 
from 61 to 84 years old, four of them had a CDR score of 
0.5, and another person had obvious hypoperfusion in the 
left frontal lobe. These cases are difficult to evaluate by 
the model, consequently, changes in such cases require 
further follow-up.

The Grad-CAM heatmaps help us to explain the deci-
sion of the CNN model. Although the reassembled 2D lost 
the characteristics of inter-slice, whether AD-related or 
NC-related regions seemed to focus on the slices including 
the parietal lobe and temporal lobe. It should be noted that 
although these patterns are similar to the typical hypoperfu-
sion area judged by ECD images as AD, they are still not 
directly regarded as abnormal image judgments from clinical 
use. The visualization of AD-related regions could indirectly 
prove the CNN model captured appropriate brain regions for 
decision and comparison with domain knowledge.

The overall comparison of the training performance of the 
ADNI and ECD datasets in various training models showed 
that for the ADNI database, the larger the amount of data 
used for training resulted in better training performance, 
with 1000 cases achieving the highest AUC value 0.97. In 
a similar study, the AUC value of AD/others was 0.92 [6] 
when 1921 cases of F-18-FDG PET images of AD, MCI, and 
non-AD/MCI were used. Also, 636 F-18-FDG PET images 
from the ADNI database used to train the 3D CNN model 
resulted in an AUC value of AD/NC of 0.94 [9]. In addition, 
literature [7] and [13] used a complex deep learning model 
of CNN and recurrent neural network (RNN) training 193 
F-18-FDG PET images from the ADNI database, and their 
AUC values were higher than 0.95.

In summary, the developed model performed better than 
previously reported models (using about 2 times the data) 
[6], with high sensitivity (93 vs. 81%), specificity (91 vs 
94%), precision (89 vs. 76%), accuracy (92%), and the F1 
score (91 vs. 78) for F-18-FDG PET images. Other studies 
[7, 13] used a hybrid model with more complex methods 
to train 193 cases of F-18-FDG PET images, reporting a 
sensitivity of 93.33%, a specificity of 91.26%, accuracy of 

Fig. 5   Fine-tuning of the image classification model for predicting 
MMSE. a, b The last layer of the model was tuned to predict individ-
ual MMSE scores using the ADNI training and testing dataset. The 
output of the fine-tuned model was plotted with MMSE score, and 
was significantly correlated (training data: R2 = 0.8967, p < 1 × 10−4; 

testing data: R2 = 0.5129, p < 1 × 10−4). c, b For ECD training and 
testing dataset, the output of the fine-tuned model was plotted 
with MMSE score and the output of the model correlated with the 
MMSE score (training data: R2 = 0.7072, p < 1 × 10−4; testing data: 
R2 = 0.2225, p < 5.4 × 10−4)
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92.23%, and an F1 score of 91.8 [7]. The performance of 
our model with a similar-sized training dataset (200 cases 
of F-18-FDG PET images) yielded a sensitivity of 91%, a 
specificity of 80%, accuracy of 85%, and an F1 score of 84. 
Although other studies [7, 13] used less data, the classifica-
tion performance of the hybrid model of 3D CNN (with-
out dimension reduction, more information was retained) 
and RNN (consider the information of inter-slice and 
multi-view) was better than our 2D CNN model (easier to 
approach and implement).

Moreover, the training performance of the ECD dataset, 
the AUC value was higher than 0.85 regardless of training 
conditions. Although their confidence interval was wide, it 
matched the performance characteristics obtained with less 
data. In addition the sensitivity of 100%, a specificity of 
75%, precision of 76%, accuracy of 86%, and F1 score of 
86 for 1000 cases pre-training. Another study [14] used Tc-
99m-ECD SPECT images for a deep learning method to 
diagnose AD, reporting a sensitivity of 95.12%, specificity 
of 75%, and accuracy of 83.51%. The results of our method 
were slightly better than those of the literature. Although it 
may be because the image quality of Tc-99m-ECD SPECT 
images is worse than F-18-FDG PET images, the error rate 
of judging NC is higher, resulting in specificity not being 
improved, and more test data is needed for further research 
and verification. Finally, in terms of the impact of transfer 
learning, the use of ADNI pre-training parameters resulted 
in better prediction results, increasing the sensitivity by 30%, 
and the accuracy by 10%.

In this study, apart from using a model trained by trans-
ferring a larger amount of ADNI F-18-FDG PET images to 
Tc-99m-ECD SPECT images to identify AD, it also used 
the same method to estimate the MMSE score of the Tc-
99m-ECD SPECT images. This study demonstrated the 
clinical feasibility of transferring different biomarker char-
acteristics based on deep learning by validating the model 
using Tc-99m-ECD SPECT images to identify AD. The 
problem with nuclear medicine images is that they are three-
dimensional with different image characteristics from the 
clear-morphology image, so it was not appropriate to trans-
fer the model trained by the ImageNet directly. It has been 
demonstrated that it is possible to transfer the model trained 
by relatively large F-18-FDG PET images consisting of AD 
and NC to Parkinson’s disease patients [9]. Thus, the same 
metabolic characteristics of F-18-FDG PET images can be 
shared in different diseases. Our study indicated that the 
model trained using a large amount of PET metabolic imag-
ing data for the same disease can be transferred to a small 
number of SPECT cerebral perfusion images. This model 
will contribute to the practicality of SPECT cerebral perfu-
sion images and a relatively small dataset, using deep learn-
ing technology to objectively assess cognitive dysfunction. 
In the future, this research will be extended to investigate the 

use of deep learning technology in SPECT brain perfusion 
imaging to evaluate the cognitive function and severity of 
various neurodegenerative diseases, such as AD, vascular 
dementia, and dementia with Lewy bodies.

Conclusion

This study proposed two-stage transfer learning to develop 
a model to objectively assess AD. A large amount of PET 
metabolic imaging data was transferred to a small number of 
SPECT cerebral perfusion images, increasing the sensitivity 
and the accuracy of the model to recognize AD. This model 
will contribute to the application of SPECT cerebral perfu-
sion images using deep learning technology.
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